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Établissement Français du Sang (EFS),
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Patients with hematological disorders and severe thrombocytopenia require

extensive and iterative platelet transfusion support. In these patients, platelet

transfusion refractoriness represents a serious adverse transfusion event with

major outcomes for patient care. Recipient alloantibodies against the donor HLA

Class I antigens expressed at the cell surface of platelets result in a rapid removal of

transfused platelets from the circulation and thus, therapeutic and prophylactic

transfusion failure leading to a major bleeding risk. In this case, the only way to

support the patient relies on the selection of HLA Class I compatible platelets, an

approach restricted by the limited number of HLA-typed donors available and the

difficulty of meeting the demand in an emergency. However, not all patients with

anti-HLA Class I antibodies develop refractoriness to platelet transfusions, raising

the question of the intrinsic characteristics of the antibodies and the immune-

mediated mechanisms of platelet clearance associated with a refractory state. In

this review, we examine the current challenges in platelet transfusion

refractoriness and detail the key features of the antibodies involved that should

be considered. Finally, we also provide an overview of future therapeutic strategies.
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Introduction

The management of patients with severe thrombocytopenia may require extensive and

iterative platelet transfusion support. A serious complication of these multiple transfusions is

the platelet transfusion refractory state (PTR), characterized by ineffective transfusion

efficiency. Immune and non-immune causes can lead to PTR. Non-immune factors, which

account for 80% of PTR cases, include all causes of platelet hyperconsumption such as acute

inflammatory conditions, e.g. infection, splenomegaly or disseminated intravascular
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125367/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125367/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125367/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125367/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1125367&domain=pdf&date_stamp=2023-02-09
mailto:blandine.maitre@efs.sante.fr
https://doi.org/10.3389/fimmu.2023.1125367
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1125367
https://www.frontiersin.org/journals/immunology


Couvidou et al. 10.3389/fimmu.2023.1125367
coagulation (1). On the other hand, immune factors, i.e. adaptive

immune response through humoral and cellular components, which

play a role in approximately 20% of patients with PTR, include

antibodies directed against HLA Class I (HLA-I) molecules and/or

against human platelets antigens (HPA). Nonetheless, anti-HLA-I

antibodies are considered to be the main cause of immune-mediated

PTR. In both cases, PTR is associated with serious outcomes,

including longer hospital stays (2), higher treatment costs, excessive

use of labile blood products, and increased risk of death (3, 4).

The anti-HLA-I antibodies associated with PTR may lead to the

clearance of transfused platelets, resulting in ineffective platelet

transfusions to prevent and/or stop bleeding. Immune PTR can

potentially be circumvented by using HLA I-matched platelets, i.e.

perfectly HLA I-matched platelets between donor and recipient,

platelets carrying only antigens against which the recipient has not

developed antibodies (permissive antigens) (5, 6) or crossmatched

platelets (7). However, finding a suitable donor can be difficult,

especially in the case of a highly immunized patient. Indeed, this

method necessitates knowledge of the recipient’s HLA phenotype and

access to a large database of donors with a known HLA phenotype.

This requires a significant amount of time and workload, sometimes

incompatible with the urgency of transfusion support. According to

the “Trial to reduce alloimmunization to platelets” (TRAP) study, the

presence of anti-HLA-I antibodies in the recipient is correlated to

refractoriness. Platelet concentrate preparation processes, such as

leukoreduction or platelet concentrate storage time, which impact

alloantibody production, are parameters that indirectly influence the

incidence of PTR (8). Nevertheless, not all patients with anti-HLA-I

antibodies develop PTR upon platelet transfusions, raising the

question of the antibodies’ intrinsic features associated with PTR.

Identifying the mechanisms by which platelets are removed from the

circulation and determining the characteristics of anti-HLA-I

antibodies associated with PTR would improve the management of

patients who require transfusion support.

In this review, we describe the clinical criteria for PTR and outline

the main features of HLA-I antibodies which could be considered in

the context of transfusion deadlock. Finally, we discuss the current

challenges of PTR and provide a brief perspective on future

therapeutic strategies.
Definition and diagnosis criteria of
platelet transfusion refractoriness

In non-bleeding patients with thrombocytopenia, PTR is defined

as two repeated transfusion failures with, ABO-identical platelets and

a quantity adapted to the patient's weight. In addition, in some

countries, the notion of “fresh” platelets (i.e. less than 3 days of

storage) is included in this definition, which reinforces the stringency

of the criteria for concluding a PTR. To assess proper response to

platelet transfusion, one must follow platelet count increments at 60

minutes and 24h post transfusion. The corrected count increment

(CCI) is widely used to assess the post-transfusion platelet increment.

The CCI is derived from the following equation: ((Platelet count after

transfusion – platelet count before transfusion) x body surface area

(m2) x 100)/(Number of platelets transfused × 1011).
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There is no consensus yet on the threshold of the CCI value

indicating a PTR. The TRAP study defined refractoriness as a CCI

value < 5000 (9) but a CCI <7500 is also an accepted value to indicate

a PTR (10). Studies have shown that platelets need at least 60 minutes

to equilibrate in the intravascular space, which is why platelet counts

should not be measured before 1 hour after the end of the transfusion

(11). However, several groups have reported the relevance of taking

the platelet count at 10 min for practical reasons and because the

10 min count might be as informative as the platelet count at 1h (12).

Theoretically, the calculation of the CCI at 1h and at 24h can be

used to discriminate immune from non-immune PTR. In non-

immune PTR, the platelet count rises 1 hour after platelet

transfusion but falls again after 24 hours, whereas in immune PTR,

the transfused platelets are rapidly cleared from the circulation and

there is no increase in platelet count 1 hour after transfusion (13, 14).

Once refractoriness has been confirmed, non-immune causes

must be explored and ruled out in order to ascertain an immune

PTR. Bleedings, infections, inflammatory conditions, or drug

interference should be considered before testing the presence of

anti-HLA-I antibodies and requesting HLA-matched platelets (15).

However, in patients with hematological disorders, immune and non-

immune factors are often not mutually exclusive and may be present

simultaneously (6, 16, 17). All the criteria required for defining a

refractory state are very strict, and not necessarily compatible with

daily clinical practice. In particular, CCI is of no value in

thrombocytopenic patients who bleed. In this situation, the only

way to ascertain the efficiency of platelet transfusion is to observe the

arrest of bleeding. Depending on the patient’s pathology and the

country in which the clinical study is conducted, the occurrence of

PTR can range from 10% to 49% (18). This wide range of incidence

possibly reflects the variability due to the challenge of

diagnosing PTR.
Mechanisms leading to clearance of
transfused platelets during an
immune PTR

Anti-HLA-I alloantibodies can lead to clearance of transfused

platelets. Several mechanisms for antibody-mediated platelet

clearance have been described (Figure 1A):
Opsonisation

The first function of antibodies is to act as opsonins to promote

phagocytosis of sensitized platelets (19). Antibodies are fixed to the

target, leading to activation of Fc receptors and phagocytosis. Anti-

HLA-I antibodies or auto-antibodies directed against platelets, in case

of immune thrombocytopenia (characterized by an isolated

thrombocytopenia), appear to be partially caused by IgG-mediated

platelet destruction in the spleen (20). Moreover, internalization of

platelets with high HLA-I density by macrophages has been shown to

be significantly increased in contrast to platelets coming from patients

with low HLA-I density at the surface. Thus, the degree of antibody

opsonisation and antigen expression directly correlates with
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antibody-mediated internalization of platelets by macrophages,

suggesting that platelets expressing fewer antigens could be used in

priority to treat refractory patients (21).
Activation

Platelet activation mediated by anti-HLA-I antibodies could

partially explain immune platelet clearance during refractoriness.

Some antibodies directed against HLA-I molecules have been

reported to induce platelet activation (22, 23). Depending on both

the antibodies and the recognized epitopes, two mechanisms have

been described. First, anti-HLA-I antibodies can mobilize the

FcgRIIa/CD32a expressed on the cell surface of platelets, which

leads to platelet activation. FcgRIIa is a low affinity receptor for IgG

subclasses. It bears an intracellular immunoreceptor tyrosine-based

activation motif (ITAM) that mediates cell activation upon its

crosslinking by IgG-immune complexes (24). HLA-I antibodies can

initiate the signaling cascade, leading to ITAM phosphorylation and

consequent platelet activation (22). Using human monoclonal

antibodies that recognize different epitopes of HLA-I on platelets,

the same group showed that blocking the classical pathway of the

complement, by using anti-C1q or anti-C5 (Eculizumab) antibodies,

inhibited to some extent the level of platelet activation. Finally, the

activation induced by anti-HLA-I antibodies can be fully abrogated by

the inhibition of the CD32a receptor with monoclonal antibody IV.3

in combination with complement classical pathway inhibitor

Eculizumab, meaning that both FcyRIIa and complement activation

pathways can act in synergy (23).
Desialylation

Antibody-mediated platelet clearance can also be explained by

deglycosylation. In immune thrombocytopenia, anti-GPIba
Frontiers in Immunology 03
antibodies cross-link GPIba subunits, initiating activation and

signaling. The activation of platelets conducts to granule secretion,

after which released CD62P and NEU1 desialylate surface sialic acid

residues, particularly on GPIba. The removal of the bulky terminal

sialic residues facilitates assembly of the GPIb complex and also

triggers activation, thus forming an activation loop (25). Once

desialylated, platelets are trapped in the liver where they can be

cleared by Kupffer cells, a subset of liver professional phagocytes. A

collaboration between Ashwell Morell receptors and macrophage

galactose lectins, both expressed by Kupffer cells, has been

described to eliminate efficiently desialylated platelets (26). More

recently, the C-type lectin receptor, CLEC4F, expressed specifically

on Kupffer cells, has been reported to recognize desialylated glycans

and to participate in the clearance of aged platelets (27). The question

of potential desialylation of platelets during PTR is still open.
Intrinsic features of
anti-HLA-I antibodies

As not all HLA-I antibodies induce platelet refractoriness,

analysis of antibodies’ features can be relevant to identify those

capable of pathogenicity. Here we describe the main features of

HLA-I antibodies that should be taken into consideration in a

PTR context.
Isotypes and IgG subclass

The isotypes involved in PTR are predominantly IgG (28). IgGs,

the major immunoglobulins in serum, are divided into four

subclasses: IgG1, IgG2, IgG3 and IgG4. The differences between

each subclass lie in the amino acid composition of their heavy

chain and have a decisive impact on the hinge region as well as in

their relative abundance. Each subclass has therefore a particular
A B

FIGURE 1

Mechanisms of platelet elimination and prospective therapies in HLA Class I-alloantibody-mediated PTR. (A) Potential mechanisms leading to transfused
platelets clearance during immune platelet transfusion refractoriness. Anti HLA Class I-alloantibodies can opsonize platelets or lead to their activation via
deglycosylation, formation of membrane attack complex or CD32a receptor mobilization. (B) Strategies/Future directions in platelet transfusion
refractoriness: cleavage of the heavy chain of IgGs by IdeS enzyme, inhibition of the membrane attack complex formation with Eculizumab, inhibition of
Fc receptor mobilization with IvIg, and transfusion of universal HLA platelets that do not express HLA molecules on the surface.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1125367
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Couvidou et al. 10.3389/fimmu.2023.1125367
profile, particularly in terms of ability to activate the complement

cascade, with IgG1 and IgG3 being more efficient in complement

activation than IgG2 and IgG4, and their affinity for the Fc receptors

(FcR), meaning that anti-HLA-I antibody subclasses could correlate

with distinct effects on platelets (29). Moreover, a study performed in

baboons suggested that the subclasses could influence the location of

platelet sequestration. They showed that platelets were sequestered in

the spleen when the anti-platelet antibody was IgG1, whereas IgG2 led

mostly to liver elimination (30). A link between anti-HLA-I antibody

subclasses and allograft outcome has also been studied, suggesting a

correlation between complement fixation and allograft failure (31).

All of these observations indicate that it might be useful to consider

the HLA-I antibody subclass when facing an immune PTR.
Glycosylation

IgG glycans are essential for the maintenance of functional

structure and can evolve depending on time, age, disease, or

environmental factors. The glycosylation of antibodies affects their

affinity for FcR and their ability to mobilize complement (32) thus

potentially modulating their ability to activate platelets.

Analysis of sera from alloimmunized patients showed that Fc

glycosylation of anti-HLA-I antibodies is highly variable. Using

recombinant glycoengineered anti-HLA monoclonal antibodies with

variable Fc glycosylation, Van Osch et al. showed that galactosylation

of human anti-platelet IgG enhances complement activation by

promoting hexamerization of hIgG1 which constitutes an optimal

platform for C1q to bind (33). Furthermore, Kapur et al. showed

that anti-HLA-I IgG, collected from alloimmunized patients in PTR

or from patients with neonatal thrombocytopenia, are more

galactosylated than total serum IgG1 levels, but they do not present

different levels of sialylation and fucosylation. Modulation of

galactosylation can affect IgG clearance in vivo and predisposes them

for further modification by the addition of sialic acid. By contrast, anti-

human platelet antigens antibodies are less fucosylated than total

serum IgG1, leading to enhanced phagocytosis of IgG-binded

platelets and increased disease severity (34). Accordingly, HLA-

specific afucosylated IgG1 have been proposed to be a potential

predictor of antibody pathogenicity (35), illustrating the importance

of sugars in antibody functions.
Antigen specificity

As analyzed by Wang et al., in a 204-patient cohort,

alloantibodies were directed towards the most prevalent HLA-I A

and B molecules in that population (36). WIM8E5, an anti-HLA-I

monoclonal antibody that recognizes an epitope on all HLA-A

antigens, except for HLA-A3 and HLA-A32 (and reduced binding

to HLA-A2), has been suggested to fix complement depending on

the number of epitopes available for it; however, it remains to be

determined if the identity of these epitopes matters, or just the

number of binding sites on HLA-I available on platelets for a given

antibody (23).
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It has also been proposed that a higher diversity in the antibody

specificity correlates with a higher level of HLA-I antibodies as detected

by screening. It is likely that the greater the range of specificities, the

higher the probability that an antibody will recognize HLA-I antigens

on transfused platelets (37). This scenario becomes particularly relevant

in multi-transfused (i.e. oncohematologic) patients where multiple

exposures could potentially boost titers of specific anti-HLA-I

antibodies, as well as elicit antibody responses to new alloantigens (38).

It is possible that the presence of anti-idiotypic antibodies

directed against the variable regions of anti-HLA-I antibodies can

regulate the latter’s abundance (39). It remains to be studied if the

anti-idiotypic antibodies recognize preferentially some V regions in

anti-HLA-I with determined specificities for particular HLA antigens.
Strategies/Future directions

Since the expression of HLA-I molecules on the surface of

platelets and their recognition by alloantibodies are responsible for

the majority of immune PTR, future strategies to avoid transfusion

refractoriness focus on either reducing the expression of HLA

antigens or modulating the effects of antibodies (Figure 1B).
Universal HLA-I platelets

Platelet refractoriness could be overcome by transfusing platelets

devoid of any HLA-I molecules. The first attempt to remove, or at least

decrease, HLA antigens platelet expression was based on chemical

modification. Acid treatment of human cells has been reported to

eliminate the antigenicity of class I MHC molecules without significant

cell death (40). Based on this discovery, several methods for preparing

HLA-I depleted platelets have been reported. Acid treatment has been

proven to reduce HLA-I molecules expression (41) and the subsequent

HLA-antibody-mediated phagocytosis (42). Interestingly, proteomic

analyses showed that the changes of platelet proteins after treatment

with citric acid were functionally safe (43). However, despite the

description of the absence of negative effects on proteins involved in

coagulation and haemostasis, these results still need to be confirmed by

functional tests. This approach is therefore attractive because it could

theoretically be suitable for mass production at a reasonable cost.

However, no method has yet been approved for clinical use and

research is still ongoing in this field.

A promising but challenging alternative to the chemical treatment

could be the use of HLA-I-deficient platelets generated in vitro.

Different methods of in vitro platelet production have been

reported, which differ in the source of the stem cells: induced

pluripotent stem cells (iPSCs) or hematopoietic progenitors (CD34+

cells). Each of these offers advantages and disadvantages for the

development of a transfusion product (44). To be expressed on the

surface of cells, HLA-I molecules must form a heterodimer between a

heavy chain and a light chain, the b2-microglobulin. The strategy

used so far to suppress the expression of HLA-I molecules relies on

the deletion of the b2-microglobulin gene, consequently leading to the

absence of HLA-I molecules on the cell surface. HLA-I deficient
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platelets produced from iPSCs have been reported to successfully

circulate in an alloimmune PTR model of mice reconstituted with

human NK cells (45). More recently, results from the first clinical trial

of ex vivo-generated platelets show that it is a safe product, however, it

remains restricted to autologous and therefore individualized ex vivo

platelet production (46). Thus, optimization is necessary before

cultured platelets can become a plausible alternative to the HLA-

compatible blood product.
Targeting the complement pathway

Based on the data suggesting the involvement of complement in

platelet HLA-I antibodies-related activation, a pilot study has been

designed to assess the efficiency of eculizumab, a monoclonal

antibody that inhibits C5 complement component, in platelet

transfusion refractoriness (47). In this preliminary study,

administration of eculizumab allows some patients to overcome

PTR despite their transfusion with HLA-incompatible platelet

concentrates. A clinical trial with a larger cohort should provide

definitive conclusions concerning this strategy. However, it is

important to keep in mind the high cost of such a treatment,

which, even if it proves to be effective, will be restricted to real

transfusion deadlocks but will not allow the handling of all PTR.
Repurpose of antineoplastic drugs

Drugs against underlying pathologies common in PTR patients may

help in their management when transfusion with HLA-compatible

products is not feasible. Rituximab, a monoclonal antibody directed

against CD20 expressed on B cells, has been reported to increment

platelet count in refractory patients with aplastic anemia or

myelodysplatic syndrome (48, 49). Daratumumab, an anti-CD38

monoclonal antibody common in myeloma treatment, has also proven

to increase platelet transfusion efficiency in refractory patients (50).

However, at least for rituximab, two response profiles were identified: an

early and transient response, or a late and continuous response (48).

Interestingly, Bortezomib, a specific inhibitor of 26S proteasome,

induced a drastic decrease in the amount of anti-HLA-I antibodies in

the serum of a patient treated for multiple myeloma, resulting in clinical

response to transfusion from random donors (51). In addition, several

studies describe an impact of these drugs on platelet count which means

that these considerations should be taken into account in the design of

future pharmacological strategies to manage refractoriness to platelet

transfusions (52, 53). These different approaches seem promising but

should be validated with a larger cohort of patients.
Intravenous immunoglobulin and
plasma exchange

One strategy used in antibody-related disease lies on the modulation

of antibodies themselves. Intravenous immunoglobulin (IvIg) therapy,

defined as the use of a combination of antibodies obtained from healthy
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human donors, or plasma exchange (PE) have been reported as a

successful treatment for PTR patients (54, 55). The clinical benefit of

IvIg treatment could be due to blockage of FcgR expressed by the

reticuloendothelial system, where opsonized platelets would not be

cleared anymore by these cells, and also due to modulation of

antibodies’ effects, i.e. interference with the complement or regulation

of different FcR (56). Samuelsson et al. proposed that the IvIg anti-

inflammatory activity is mediated by upregulation of the inhibitory Fc

receptor, FcgRIIb, as IvIg has no protective effects on a mouse model of

immune thrombocytopenia lacking this receptor (57). Another

interesting role for saturation of FcRn could be the increased

elimination of circulating pathogenic antibodies. FcRn are MHC-class

I like molecules expressed by leukocytes and endothelial cells, which

control the half-life of IgG and albumin. FcRn can form a ternary

complex on an IgG Fc scaffold under acidic condition, which protects

IgGs from endothelial catabolism. However, Crow et al. have suggested

that the mechanism of IvIg action is FcRn-independent, as IvIg

improved platelet count in a murine model of ITP in FcRn-deficient

mice comparable to WT mice (58).

Furthermore, evidence of its benefit in immune-mediated PTR is

still lacking and a large clinical study should be conducted to draw firm

conclusions about its potential efficiency in this particular context.
IdeS

IgG-degrading enzyme from S. pyogenes (IdeS) is a cysteine

protease that cleaves the heavy chain of IgG, generating one F(ab’)2

fragment and two Fc fragments (59). Since IdeS can selectively and

rapidly neutralize the Fc-mediated effector function of human IgG, it

is a promising new therapy for treating IgG-driven disorders.

Recently, an elegant study describing the use of IdeS in a platelet

immune disorder has been reported. A recombinant protein with the

N-terminus of IdeS and the C-terminus of a single-chain variable

fragment from a CD32a antibody was generated. This protein can

bind specifically to all cells expressing CD32a, including platelets, and

it can neutralize anti-platelet antibodies. Interestingly, platelets with

surface-bound IgG-degrading enzymes are protected from clearance

in murine models of immune thrombocytopenia (60). This

technology could represent a very promising strategy to avoid or

alleviate PTR in the future.
Conclusion

Refractoriness to platelet transfusions remains a major

complication, especially for patients requiring chronic transfusion

support. Alloantibodies directed towards HLA-I rapidly recognize

and eliminate transfused platelets from the recipient’s circulation.

Some of these antibodies do not affect transfusion yield, raising

questions about the determinants of anti-HLA-I pathogenicity.

Further studies are necessary to shed light upon the anti-HLA-I

antibodies’ capacity to eliminate transfused platelets and the link to

their intrinsic properties, in order to potentially develop new

therapeutic approaches to prevent, or at least manage, PTR.
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