
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Fuwu Zhang,
University of Miami, United States

REVIEWED BY

Bowen Zhao,
University of Miami, United States
Xiao Zhang,
University of Miami, United States
Furong Cheng,
Virginia Commonwealth University,
United States

*CORRESPONDENCE

Fanyan Meng

fanyanmeng@hotmail.com

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 16 December 2022

ACCEPTED 07 February 2023
PUBLISHED 21 February 2023

CITATION

Shi T, Sun M, Lu C and Meng F (2023)
Self-assembled nanoparticles: A new
platform for revolutionizing
therapeutic cancer vaccines.
Front. Immunol. 14:1125253.
doi: 10.3389/fimmu.2023.1125253

COPYRIGHT

© 2023 Shi, Sun, Lu and Meng. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 21 February 2023

DOI 10.3389/fimmu.2023.1125253
Self-assembled nanoparticles:
A new platform for
revolutionizing therapeutic
cancer vaccines

Tianyu Shi1,2, Mengna Sun1,2, Changchang Lu1,2

and Fanyan Meng1,2*

1The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Traditional
Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China, 2The
Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing
University Medical School, Nanjing, China
Cancer vaccines have had some success in the past decade. Based on in-depth

analysis of tumor antigen genomics, many therapeutic vaccines have already

entered clinical trials for multiple cancers, including melanoma, lung cancer, and

head and neck squamous cell carcinoma, which have demonstrated impressive

tumor immunogenicity and antitumor activity. Recently, vaccines based on self-

assembled nanoparticles are being actively developed as cancer treatment, and

their feasibility has been confirmed in both mice and humans. In this review, we

summarize recent therapeutic cancer vaccines based on self-assembled

nanoparticles. We describe the basic ingredients for self-assembled

nanoparticles, and how they enhance vaccine immunogenicity. We also

discuss the novel design method for self-assembled nanoparticles that pose as

a promising delivery platform for cancer vaccines, and the potential in

combination with multiple therapeutic approaches.
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1 Introduction

Cancer vaccines, typically given through exogenous administration of selected tumor

antigens combined with adjuvants that activate dendritic cells (DCs), ultimately aim to

stimulate the immune system against tumor antigens. In recent years, the success of

therapeutic cancer vaccines has dramatically revolutionized cancer treatments and has

provided more alternative approaches to patients with cancer (1, 2). Several clinical trials

have also confirmed the potential of this strategy, including those for melanoma, lung

cancer, and prostate cancer (3–5). With the discovery of neoantigen target being

continually advanced to improve the identification of immunogenic neoepitopes that

can be recognized by CD8+ T cells, personalized therapeutic cancer vaccines have been

considered in clinical investigation (6). The potential of therapeutic cancer vaccines in
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tumor immunotherapy has led to growing interest in developing

more effective vaccine strategies to achieve tumor regression.

However, recent years have seen excellent advances in self-

assembled nanoparticle (SANP) platforms for therapeutic cancer

vaccines. SANPs can evoke the epitope-specific B/T-cell immune

responses through epitope folding similar to microorganisms that

can protect payloads from enzymatic degradation, deliver to

lymphoid organs, and target the tumor (7, 8). Additionally,

antigen loading is also increased with the improved performance

of SANPs. Because of the advantages from SANPs, they have

naturally become the focus of current vaccine research and have

appeared in various medical fields.

As early as the 1950s, rod-shaped particles have been found in

tobacco mosaic virus (TMV); this is one of the earliest discoveries in

history about self-assembled particles (9). In 1981, Drexler proposed

the molecular engineering of proteins, being the monomeric building

blocks, through self-assembly (10). Since then, materials based on

self-assembled peptides such as nanofibers have been produced (11).

Indeed, with the development of nanoparticle (NP) technology,

including poly(lactic-coglycolic acid) (PLGA) (12), polymersomes

(13), and liposomes (14), the design and manufacture of self-

assembled nanovaccines are an empirical process. SANPs are

composed of multi-component homologous NPs through non-

covalent bonds or weak covalent bond interactions aimed at

achieving a stable and balanced state (15). The assembly of

different or similar molecules driven by intermolecular forces,

including van der Waals interactions, electrostatic interactions,

hydrogen bonding, coordination, hydration forces, and solvation

interactions, occurs if there is equilibrium between them (11, 16).

While these forces are indeed weak when considered individually,

mixtures of different interaction types can result in structural and

chemical stabilization, and these conformations formed by the free

assembly of molecules are easy to accept. Of course, the modified

module can also be selected as the substrate, which can control the

direction of self-assembly to a certain extent and can directly act

between the molecules or the module by external stimuli, including

pH, temperature, solvent polarity, electromagnetic radiation, and

light, to guide self-assembly (17). NPs designed through synthetic

self-assembled technology (SANPs) can be given certain physiological

functions. They can be used as platforms to display the arrangement

of specific immunogens and orderly matrices to mimic the folding

and complex structure of natural microbial surfaces (18). Therefore,

SANPs can offer potential advantages such as improved stability due

to the co-delivery of an antigen with adjuvant, and constant release

and/or specific activation of the immune system (19). To a certain

extent, we believe that the limitations of clinical application caused by

the defects of the conventional vaccine platforms can be alleviated

by SANPs.

The development of SANPs has led to many vaccine platforms

and drug delivery systems (17), including broad platforms such as

peptides/polymers (20). Generally, antigen loading is chemically

defined, and SANPs based on peptide antigens are linked to

hydrophobic carriers like peptide, lipids, and polymers. Of course,

we also introduce a new way of antigen loading here. In this review,

we discuss the characteristics of the internal structure of vaccines

based on various self-assembled NPs, such as polymers and lipids
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for inducing anticancer T-cell immunity, and some SANP-based

delivery platforms. Additionally, we also discuss current challenges

of therapeutic cancer vaccines and their potential applications when

combined with other treatments for overcoming tumor resistance

and promoting clinical efficacy.
2 The design of SANPs

There are two ways to achieve nanotechnology: top-down and

bottom-up (21). The top-down method dissociates NPs from larger

structures while maintaining their original composition and

properties; the bottom-up method uses assembly or self-assembly to

design NPs at the basic molecular level. To design an appropriate

antigen carrier that delivers the screened pathogen epitopes and can

induce a corresponding response in animal immunity studies model

(22, 23). For example, in the PGS-co-PEG NPs system, Ankur and his

colleagues synthesized the PGS-co-PEG polymer through a two- step

polycondensation reaction (24). The first step, polycondensation

reaction of PEG and sebacic acid under stirring condition. In the

second step, glycerol was added to obtain a block copolymer of

PGSco-PEG (pre-polymer) with different ratio of PEG segments..

The size of NPs can be controlled by controlling the molar ratio of

PEG, thereby synthesizing precise nanostructures. To a certain extent,

the size of NPs determines the binding and activation of their

membrane proteins and receptors (25). Different immune cells have

their corresponding SANPs from different dimensions. SANPs of size

> 100 nm are mostly absorbed by local antigen-presenting cells

(APCs) at the site of injection, as well as tend to accumulate in

highly permeable tumor tissue, when employed in prophylactic and

therapeutic immunotherapy (26). In contrast, smaller nanostructures

(40–50 nm) tend to enter lymphatic vessels and reach lymph nodes

(LNs); they can be internalized with greater efficiency by LN-resident

DCs, triggering an effective and long-lasting immune response against

tumor (26, 27) (Figure 1C). The peptide self-assembly process and the

size of its production are strongly influenced by amino acid sequences

and physicochemical indicators, such as pH (from acidic to slightly

alkaline), temperature (4–95°C), metal ion concentrations (such as

calcium, potassium, magnesium and sodium), and salt concentrations

(28). SANPs can become structurally stable if the environmental

parameters are obtained (26). The self-assembled form can be

achieved by adjusting the concentration of metal ions. Changing the

MgCl2 concentration, for example, could encourage carbonic

anhydrase (BCA) linked with P114 peptide (BCA-P114) NPs to

self-assemble (26). NPs can be obtained by using MgCl2 and Tris-

HCl as low as 5 mM and 10 mM at neutral pH. The maximum size of

these NPs can be formed whenMgCl2 concentration is 25 mM.When

the concentration of MgCl2 exceeds 25 mM, the particle size decreases

(28). In another study (29), a self-assembled nanovaccine based on

synthetic peptide conjugation of IKVAV-PA and OVA shows that

different concentrations have an effect on vaccine characteristics

including size, zeta potential, and encapsulation efficacy. Therefore,

optimization of the formulation that is used for chemical reaction is a

critical step for producing the best-performing SANP.

To summarize, one of the important functions of SANPs as

tumor antigen carriers is to effectively deliver tumor antigens to LNs
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and then induce durable and effective specific-tumor immunity and

immune memory. Aside from the fact that the encapsulation

process protects antigens from the effect of phagocytosis or

protease degradation, facilitates longer circulation time, and can

generate effective immune responses (30–32), modularization with

surface-attached antigens often elicit superior immune responses in

comparison to encapsulated antigens perhaps owing to intracellular

processing (33). Thus, composition, size, shape, and surface

characteristics are key factors in ensuring stable delivery and

inducing an immune response. Better biocompatible materials

need to be selected to prevent their rapid removal. Particle size, as

well as surface area (related to the load of the antigen), plays a

critical role in DC phagocytosis and immune induction, which can
Frontiers in Immunology 03
be determined by controlling reaction conditions. During the

design, attention should be paid to the control of chemical

reaction conditions, while avoiding the infiltration of impurities,

which may cause toxicity or damage the stability of the structure.
3 Several SANPs for vaccine design

We can classify SANPs for vaccine design from multiple

perspectives. From a general point of view, we can classify them

according to the method of self-assembly: dynamic self-assembly

and static self-assembly (15). According to the constituent elements,

SANPs can be divided into protein-based biological entities and
FIGURE 1

Strategies of SANPs: (A) SANPs based on multiple materials. (B) During the synthesis of SANPs, antigens or other immune activators can be loaded
onto SANPs by chemical modification or physical packaging. Nucleic acids and antigens can be physically embedded in liposome and polymer
SANPs; bacterial membrane can wrap around SANPs’ surface; virus glycoprotein and peptides are loaded into viral particles or peptide chains
through autonomous synthesis, as well as antigens. (C) SANP-based nanovaccines targeting SANPs were injected intravenously into the bloodstream
and circulate throughout the body to activate dendritic cells and recruit T cells around lymph nodes and tumor tissue. (D) Tumor-specific T-cell
induction: SANPs can induce cytotoxic T lymphocytes by activating peripheral dendritic cells (DCs) that then present antigens to T cells in lymph
nodes, or SANPs can directly target lymph nodes for induction within lymph nodes. Nanovaccines deliver antigens and adjuvants to DCs, which
subsequently upregulate co-stimulatory molecules and present the processed antigen to T cells via MHC-II molecules. DCs can directly activate T
cells by MHC-bound antigens and costimulatory molecules present on cell-derived membranes on the surface of SANPs.
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non-protein-derived synthetic particles (23). In this review, we

briefly introduce several vaccine designs based on the different

components of SANPs (Figures 1A, B; Table 1).
3.1 Polymer-based SANPs

Polymer NPs are one of the earliest NPs used as drug delivery

systems. They are often used as a material for packaging drugs like

nanocapsules and nanospheres because they are non-toxic and have

good biocompatibility. They can also be biodegraded into harmless

alcohols and other low-molecular-weight products (21, 56).

Polymers that have been developed for drug delivery can be

classified into synthetic polymers and natural polymers. Common

synthetic polymer NPs include polylactic acid (PLA), chitosan,

polylactide glycolide acid (PLGA), polyglutamic acid (PGA), and

polyethylene glycol (PEG), which are all typical polymers (11).

Natural polymers such as albumin have been used to carry
Frontiers in Immunology 04
paclitaxel and can be used to treat metastatic cancer in the

clinic (21, 57). The variety and adaptability of polymer carriers

increase their therapeutic efficacy by controlling drug release,

long cycle characteristics, tissue or cell targeting, and stimuli

responsiveness (58).

Chemical modification of the polymer system helps to prolong

the retention time in the blood, reduce widespread distribution, and

target tissue or specific cell surface antigens with targeted ligands

(peptides, aptamers, antibodies/antibody fragments, and small

molecules). NPs based on PLGA are currently one of the most

widely studied adjuvants for the effective delivery of antigens, and

PLGA is a biodegradable copolymer composed of lactic acid and

glycolic acid linked through ester bonds (58). DSPE-PEG2000-Gal

was synthesized in an NHS-ester crosslinking reaction, which can

be modified to the surface of PLGA to combine the advantages of

biodegradable polymeric NPs and biomimetic liposomes, by using a

water-in-oil-in-water (W/O/W) double-emulsion solvent

evaporation method. PLGA polyester can be degraded from
TABLE 1 Summary of SANPs that have been explored as delivery platforms for vaccines.

NP type Pathogen/disease Antigen/adjuvant Animal model Reference

Polymer Cancer OVA BALB/c mice (34)

HPV-related cancers human papillomavirus (HPV) E7 protein-derived peptide Mice (35)

Cancer Ovalbumin Female C57BL/6 mice (36)

Cancer MUC1 Mice (37)

Cancer R837 BALB/c mice (38)

Cancer TLR7/8 C57BL/6 mice (39)

VLPs Breast cancer (BC) Aberrantly glycosylated mucin-1 Mice (40)

Breast cancer HER2 ECO Mice (41)

Breast cancer IGF-1R Mice (42)

Cancer Influenza virus, hemagglutinin, neuraminidase BALB/c mice (36)

Cancer HPV16 E6 C57BL/6 mice (43)

Pancreatic cancer hMSLN C57BL/6 mice (44)

Pancreatic cancer mMSLN C57BL/6 mice (45)

Melanoma Gp100 C57BL/6 mice (46)

Melanoma LCMV-TT830-843 C57BL/6 mice (47)

Self-assembled peptides Cancer Antigen peptide SL8 (SIIN-FEKL), O antigen polysaccharides (OPS) BALB/c mice,
Cynomolgus monkeys

(36)

HER2+ cancer HER2 Mice (48)

Cervical cancer HPV-L2 Mice (49)

Glioblastoma EGFRvIII, PADRE, OVA Mice (50)

Liposomes Cancer — Murine melanoma model (51)

Cancer HER-2/neu-P5 BALB/c mice (52)

Cancer Mycolic acid C57BL/6 mice (53)

Pancreatic tumor CpG-DNA C57BL/6 mice (54)

Melanoma OVA RNA C57BL/6 (55)
f
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certain substances in vivo into lactic acid and glycolic acid so that

the internal immunogen can be released continuously; in this way,

cells are stimulated multiple times to avoid the need for multiple

vaccinations (59, 60). For example, Po et al. designed OVA antigen-

loaded PLGA NPs, glycosylated poly(lactic-co-glycolic acid) NPs

loaded with the SIINFEKL peptide (OVA) as a tumor-specific

antigen, and CpG oligodeoxynucleotide (CpG) as an adjuvant for

an effective DC-targeted cancer vaccine (61). The biodistribution

and antitumor efficiency of the SANP vaccine had a longer

retention time compared with other groups. Geoffrey and his

colleagues linked TLR-7/8a to HPMA-based polymers particles

(Poly-7/8a) with high agonist density (8–10 mol% TLR-7/8a) and

induced substantially higher LN cytokine production [which led to

a ~400-fold higher level of TLR-7/8a (AUC) in draining LNs]

compared with unformulated small-molecule TLR-7/8a (SM 7/

8a) (62).
3.2 Lipid-based SANPs

The versatility and plasticity of a liposome-based delivery

system are the main reasons why liposomes can act as vehicles to

directly deliver drugs to cancer cells (63, 64). Liposomes are natural

or artificial biodegradable phospholipid bilayer vesicles surrounded

by an amphiphilic lipid bilayer with an internal water core (14, 65).

It has been proven that liposomes have a good lifespan in the blood,

allowing them to accumulate in lesions where blood vessels are

damaged (65). This is conducive to the specific targeting of the

antigen or cargo attached to the surface of the carrier to the disease

site, resulting in a powerful therapeutic effect. In vaccine designs,

antigenic peptide determinants can be encapsulated in lipid

bilayers, and the immunogenic peptides can be protected by lipid

bilayers and not degraded by enzymes (60). In addition to being a

delivery agent, it also acts as a potent immune adjuvant to induce

the innate immunity of the immune system (66).

One of the most classic cationic liposomes is 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) (67). It is a cationic

monounsaturated phospholipid that has been found to activate

DCs, thereby promoting endocytosis and antigen delivery in APCs,

leading to MAP kinase, ERK activation, and induction of

chemokines (68). Reactive oxygen species (ROS) were induced by

cationic DOTAP liposomes from mouse bone marrow DCs

(BMDCs), and ROS were involved in the expression of DOTAP-

induced costimulatory molecule CD86/CD80, indicating the

antitumor activity of ROS for vaccine induction (69). Recently,

cationic liposomes have been shown by several studies to be

promising vaccine delivery platforms for therapeutic cancer

vaccines because of their ability to increase the immunogenicity

of antigen-based vaccines (70–72). The liposome-based synthetic

long peptide (SLP) vaccine has been shown to efficiently induce

functional antigen-specific CD8+ and CD4+ T cells and to effectively

eliminate tumor in two different tumor-bearing mouse models (71,

72). Heuts et al. investigated cationic liposomes loaded with 15

SIINFEKL T-cell epitope-containing SLPs; cationic liposomes
Frontiers in Immunology 05
efficiently delivered the SLPs to DCs that subsequently activated

SIINFEKL-specific CD8+ T cells, indicating the improved

immunological activity of the SLPs (73). In addition to vaccines

based on peptide antigens, liposomes have also been used to deliver

RNA-based vaccines (74). Jinjin et al. developed an LN targeting

lipid (113-O12B), which was used to deliver an OVA-encoding

mRNA cancer vaccine against a melanoma mouse model. In

addition to exhibiting better expression in LNs compared with

ALC-0315 (a synthetic lipid used in the COVID-19 vaccine

Comirnaty), the vaccine also promoted mRNA expression in

APCs, but the potential hepatotoxicity needs to be verified (75).

Matthias et al. found that incorporation of different adjuvants (LPS)

will improve the potency of the lipid-based SANP mRNA vaccine,

resulting in B16 F10 melanoma tumor shrinkage and extended

survival of the tumor-bearing mouse (76).
3.3 Peptides-based SANPs

Most of the vaccines based on biological materials have been

extensively studied. Peptide-based vaccines can cause a more

concentrated immune response over protein sequences or

inactivated viruses (77). The primary structure and site

modification of peptide nanomaterials are based on amino acid

design (78), which can be designed into self-assembled peptide

nanostructures with unique secondary structures (79). The

distribution of charges around amino acids will affect the

performance of the nanoscaffold and the speed of self-assembly

(80, 81). Compared to other types of vaccine platforms, self-

assembled peptides are less toxic than polymer-based SANPs (82),

and they are generally considered to have higher stability than lipid-

based SANPs (83). The self-assembled supramolecular structures can

be perfect modules for constructing nanofibers, nanotubes,

nanocapsules, and nanomicelles (84). Self-assembled peptides can

be coupled with peptide epitopes without affecting their respective

characteristics; finally, immunogenic, biocompatible, stable, and self-

adjuvanted vaccines can be designed. In recent years, due to their

unique chemical, physical, and biological properties, self-assembled

peptides have received increasing attention from scientists. Geoffrey

et al. developed a vaccine platform (SNP-7/8a) that is chemically

programmed to self-assemble into homogeneously sized (~20 nm)

NPs, based on charge-modified peptide-TLR-7/8a conjugates (85),

which targets patient-specific neoantigens’ physicochemical

variability and presents challenges in manufacturing personalized

optimal cancer vaccines to induce anticancer T cells. This approach

promotes T-cell immunity by promoting the uptake and activation of

APCs through the precise loading of multiple peptide neoantigens

linked to TLR-7/8a (adjuvant) in NPs. Wei et al. developed a self-

assembled peptide system as a novel adjuvant that can efficiently

deliver two antigens (MAGE/NY-ESO-1) (86). The SANPs not only

widened the response range within the same molecule but also

significantly prolonged the plasma half-life of single antigenic

peptides, which can be a broad-spectrum candidate for effective

breast cancer therapy.
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3.4 Virus-like particles and SANPs

Similar to self-assembling peptides, virus-like particles (VLPs)

are a complex structure composed of viral structural proteins that

have the ability to self-assemble when they are recombined and

expressed (87, 88). The main difference between VLPs and native

viruses is that they lack viral genetic material, so they cannot

replicate or induce infection (89). Therefore, VLPs are one of the

safest candidates for attenuated or inactivated pathogen-based

vaccines. VLP epitopes have repetitiveness and high density,

which is the main reason why they can cause a strong immune

response (90). This also shows that it has the potential for effective

recognition, cell absorption, and processing of the host immune

system (91). Its granularity further consolidates this advantage, and

its proper size (less than 40 nm) is particularly suitable for obtaining

DCs (92).

In the past 10 years, several VLP-based preventive vaccines have

been approved for marketing, including human papillomavirus

(HPV) and hepatitis B virus (HBV). VLPs based on HPV are

formed by a single structural protein, and there are also more

complex VLPs, such as the VLPs of the Reoviridae family composed

of two to four different proteins (93, 94). When selecting a VLP

production platform, it is necessary to fully consider the

modification requirements of the protein and select an

appropriate expression system. Common production platforms

include Escherichia coli, yeast, insect cells, and mammalian cells

(87). Consider safety or production times and costs, plant-derived

viruses such as cowpea mosaic virus (CPMV), tobacco mosaic virus,

and potato virus X (PVX) were successfully used as a carrier/

platform to present foreign epitopes (95, 96). Sourabh et al.

developed CPMV and PVX as vaccine platforms against HER2+

malignancies (48). CPMV generated a stronger selective induction

of cytokines and chemokines than empty CPMV, a VLP composed

of CPMV capsid without nucleic acids, in naïve mouse splenocytes

(95). Valeria et al. evaluated the function of bacteriophage MS2

VLP, which was used to display an extracellular loop of xCT

protein. In a metastatic breast cancer model, the VLP-based

vaccine reduces tumor metastasis by eliciting a strong antibody

response and is well-tolerated (97).
3.5 Other SANPs

Polymeric lipid hybrid nanoparticles (PLHNs) are an

emerging carrier platform, which can overcome the limitations

of liposomes and polymeric NPs. The biodegradable polymeric

matrix core has a larger surface area and more stability than

liposomes, as well as a controlled release, with the lipid layer

surrounding the polymeric core being a highly biocompatible shell

(98). Although this self-assembly method can obtain an optimal

conformation, the gap between synthetic immunotherapy and

endogenous immunity has been the reason for imprecise and

inefficient treatment. The strategy of using natural biomembranes

to camouflage NPs to mimic the properties and functions of

biological interfaces has been widely explored. For example,
Frontiers in Immunology 06
Chen and colleagues developed a cancer vaccine based on PLGA

and a hybrid membrane, which was from the fusion of E. coli

cytoplasmic membranes and an autologous tumor membrane

(99). The hybrid membrane NPs can induce DC maturation,

eliciting strong tumor-specific immune responses. Wang et al.

developed a bacterial outer-membrane vesicle–cancer cell hybrid

membrane and successfully tested it on HPDA NPs. The immune

activation properties derived from the source membrane can

rapidly stimulate DC maturation in LNs (100). Existing self-

assembled nanovaccines that can be biosynthesized in vivo have

been investigated. Pan and colleagues developed a Nano-B5

platform that can be synthesized in vivo and is a biosynthetic

self-assembled nanovaccine based on a whole protein (101). They

used genetic engineering technology to express a fusion module

monomer in the periplasmic space of E. coli DH5a cells, in which

the protein could be folded correctly. The monomer consists of B5

subunits of cholera toxin (CTB) as an adjuvant internal module,

and a C-terminal trimer peptide is linked through a connecting

peptide (GGSG). The antigen part is made up of O antigen

polysaccharides (OPS) formed by linking the pentameric sugar

unit oligosaccharide substrate produced by the cell. They can self-

assemble into NPs with a size of approximately 25–50 nm in the

cytoplasm without affecting their unique properties.
4 The self-adjuvanticity of SANPs

The regulatory mechanism of adjuvants is related to the direct

or indirect stimulation of APCs (60). The maturation of DCs

stimulated by adjuvants and the immune response to host

antigens are two major prerequisites for therapeutic cancer

vaccines to work (102) (Figure 1D). DCs are an important

messenger between CD4+ T helper cells and CD8+ T cells, and

are associated with triggering further adaptive immune responses

(103). The mechanistic routes of adjuvants were summarized by

Schijns (1): adjuvants facilitate antigen uptake, presence, and

transport by antigen-capturing and -processing cells; (2)

adjuvants prolong the time of antigen storage and release; (3)

adjuvants activate innate immune cells to release cytokines

through targeting the pattern recognition receptor (PRR); and (4)

adjuvants mimic danger signals to stimulate the APCs (104). Toll-

like receptors (TLRs) are a popular target for adjuvant research,

because of their involvement in identifying pathogen-associated

molecular patterns (PAMPs) (60). In the process of the adaptive

immune response, adjuvants can fully stimulate CD4+ T cells, but

the initiation of CD8+ T cells requires more complex

immunological activities (60).

Conventional adjuvants like aluminum salt have a certain effect

on inducing T helper 2 (Th2) cell responses, not Th1 or cytotoxic T

lymphocytes. Therefore, it is assumed that this type of adjuvant

would fail to activate the immune response required to cause tumor

killing (105). Live-attenuated viral vaccines generally do not need

an adjuvant because they can mimic a natural infection. Therefore,

virus-like NPs can be regarded as an exogenous antigen to be

presented by MHC class II molecules, which can also combine with
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MHC class I molecules by cross-presentation to activate humoral

and cellular immunity (106). In general, self-adjuvanticity of SANPs

relies on the formulation characteristics of the particulate’s

structure. Because SANPs have a bio-particulate structure that is

usually taken up efficiently by DCs, these SANPs with a perfect

phenotype are often preferred as adjuvants of cancer vaccines and

have been applied in multiple immunotherapy programs involving

vaccines. A variety of SANPs have been reported to induce powerful

antigen-specific T-cell responses through targeting TLRs.

Yoshikawa et al. demonstrated that poly-g-glutamic acid could

activate APCs and induce a potent antigen-specific T-cell

response through the TLR4 and MyD88-dependent signaling

pathway (107). Mesa et al. found that TLR4 on DCs can be

activated by small-sized proteoliposomes (VSSP), which are

produced by the hydrophobic interaction of GM3 ganglioside

with the meningococcal outer-membrane protein complex (108).

Additionally, Luo et al. developed heterocyclic lipid SANPs with

self-adjuvanticity that could activate type I interferon-stimulated

genes by inducing STING activation but not the TLR or

MAVS pathway (109). The potent T-cell activation with

checkpoint inhibition showed great synergy with 100% survival

over 60 days in a TC-1 tumor model. Furthermore, maintaining

safety and reducing the vaccine dose are important factors for

cancer patients who can benefit from the advancement of

SANP technology.

Notably, the potential of SANPs can act both as delivery systems

for vaccine antigens and as immunomodulators as previously

reported (110). Several in situ vaccine (ISV) approaches have

been suggested, with vaccine regimens including SANPs, Flt3L,

and TLR agonists (111–113). However, the development of

nanomedicine has fully demonstrated the advantages of SANP

with both physiological activity and physical properties. A

semiconducting polymer nano-immunomodulator (SPNI) has

been previously reported (114), which is self-assembled by a

polymer conjugated with a TLR7 agonist via an acid-labile linker.

The semiconducting polymer contributed to tumor eradication and

immunogenic cancer cell death through a near-infrared (NIR)

absorbing to exert photodynamic effects. This way, the synergistic

action of released immunogenic factors and acidic TME-activated

TLR7 agonist can not only kill tumor cells directly but also serve as

an in situ generated cancer vaccine to evoke strong antitumor

activities. This SANP-based design refreshes the acquired route and

presentation of traditional vaccines and improved therapeutic

cancer vaccines.
5 Self-assembled nanoparticle
platforms are a promising strategy in
future cancer therapy

Reports in recent years have shown us a variety of strategies that

try to improve the immunogenicity of vaccines by using the

powerful immune stimulation of SANPs in the tumor
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microenvironment. However, the great obstacles to the

production of the specific killing effect of cancer vaccines include

the genomic and phenotypic heterogeneity of cancer and the

immunosuppressive effect of the tumor microenvironment.

Furthermore, intertumoral and intratumoral heterogeneity

provided a basis for therapeutic resistance (115). The advent of

personalized therapeutic cancer vaccines provides a strategy by

targeting personal tumor antigens (neoantigen), and the success of

the neoantigen platform was achieved by tumor mutational burden

(TMB), which is the total number of mutations per coding area of a

tumor genome (116, 117). Specifically, the clinical significance from

immune checkpoint inhibitor therapy has also been shown to

correlate with the higher TMB, within several tumors including

NSCLC, small cell lung cancer, melanoma, and colorectal cancer

(118–123). It is reasonable to assume that high TMB induces high

densities of neoantigen-specific tumor-infiltrating lymphocytes,

leading to tumor cell secretion of IFN-g and upregulation of PD-

L1, while their relationship across the entire human cancer

spectrum remains unclear (124, 125). If the combination of the

SANP platform and a neoantigen is feasible, then it will bring

unexpected results. However, considerable challenges to this

approach include the cost and time required to achieving this

high degree of personalization.
5.1 SANPs combined with other treatments

In established cancers, therapeutic vaccines will require co-

treatments to overcome immune evasion and to become fully

effective. However, in clinical practical applications, these drugs

have failed to eliminate immunosuppressive cells (126–130) and

may have inadvertently created immune evasion of tumor cells in

the tumor microenvironment (131–134), resulting in suboptimal

therapeutic cancer vaccine efficacy. Nanotechnology interventions

have overcome the limitations of current conventional

chemotherapy, including poor biological distribution, cancer cell

resistance, and severe systemic side effects, dramatically changing

the treatment of cancer. The properties of these delivery systems

have been adjusted to enhance the stability of delivery to tumors; for

example, the hydrophilicity of NP surfaces provides longer cycle

times through stealth, positively charged surfaces that can enhance

the internalization of cancer cells. Delivery systems based on SANPs

are commonly used to deliver anticancer drugs, gene drugs, targeted

drugs, and stimulus-responsive drugs (26). Peptide self-assembled

fibers are popular materials for anti-cancer drug delivery systems.

Compared with traditional cancer treatment, peptide hydrogels can

slowly and directly release chemotherapeutic drugs to cancer

tissues. For example, Li and colleagues successfully developed NPs

through the self-assembly of hyaluronic acid (HA)–cystamine–

cholesterol (HSC) conjugates, in which IR780 was simultaneously

incorporated (HSCI NPs) (135). After cellular uptake, HSCI NPs

are broken down by the reaction of cystamine with overexpressed

GSH. The released IR780 will induce a fluorescent “on” transition,
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which can be used to effectively image the tumor site. After

irradiation with an 808-nm laser, programmed photoactive

therapy (PPAT) can be realized, and the ROS generated therein

will generate photodynamic therapy (PDT).

One of the main advantages of NP-based delivery systems is

that multiple drugs with similar or synergistic effects can be

encapsulated in a single nanoformulation (136). However, NPs

that enter the systemic circulation by intravenous injection usually

absorb the majority of macrophages through the mechanism of

phagocytosis (137). To avoid similar recognition, the stealth

substance PEG can be wrapped in the outer layer of the NP to

improve the efficiency of drug delivery to target cells and tissues

(138). However, people are worried about the production of PEG

antibodies. Of course, this can be solved by using other substances

instead of PEG, such as zwitterionic polymers (139). Akhilesh et al.

synthesized PGS and PEG copolymer elliptical NP PGS-co-PEG by

chemical synthesis based on the elastic properties and

biocompatibi l ity of polyglycerol sebacate (PGS) (13).

Subsequently, bovine serum albumin was used as a model protein

to encapsulate and self-assemble using the nanoprecipitation

method. The encapsulation rates of PGS-20PEG and PGS-40PEG

were 88.5% and 91%, respectively. As the outer surface of NPs, PEG

provides good stability and stealth properties, which play an

important role in improving pharmacokinetics, drug delivery

efficiency, and drug targeting.
5.2 The prospect of combination
immunotherapy

5.2.1 PD-1 blockers
The common goal of cancer vacc ines and other

immunotherapies is to stimulate effective antigen-specific

immunity. The combined use of cancer vaccines and other

immunotherapies also has a large experimental and theoretical

basis. Immune checkpoint inhibitors (ICIs) such as PD-1 blockers

have been shown to have exceptional effectiveness against solid

tumors by preventing PD-1/PD-L1 binding; however, the

monotherapy approach is not sufficient and most patients either

do not respond or eventually relapse. ICIs have emerged as a

breakthrough approach in cancer therapy due to the exposure of

the tumor microenvironment to immunosuppression and provided

a strong rationale for the combination with vaccines.

For advanced tumors, they are generally more resistant to ICIs

and vaccination alone has been ineffective for invasive cancer. A

randomized clinical trial has demonstrated the safety and

immunogenicity of this treatment regimen, and the contribution

of vaccination to the tumoricidal effects of PD-1 inhibition has also

been confirmed, including that for advanced melanoma, non-small

cell lung cancer, or bladder cancer (140). Recently, a therapeutic

HPV-16 SLP vaccine combined with the PD1 inhibitor in patients

with HPV-16-positive cancer was shown with only apparent

additive effects from each agent without increased immune

adverse events, relative to PD-1 monotherapy (141). Based on the
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discovery of the synergy of the two treatment modalities, we can

combine two routes of administration into one treatment system or

fuse them into a single expression system. Le et al. modified an anti-

PDL1 antibody to NP surfaces, which involve adjuvant-loaded NPs

that were prepared by entrapping imiquimod (IQ) in

photoresponsive polydopamine nanoparticles (IQ/PNs) (142).

Following NIR irradiation, mice treated with PDL1Ab-IQ/PNs

not only resulted in primary tumor ablation, but also completely

prevented secondary tumor growth at distant sites, with 100%

survival for up to 150 days. Recently, researchers from New York

have modified chimeric antigen receptor T cells (CAR-T) to secrete

PD-1 blocked single-chain variable fragments (scFv); these scFv-

secreting CAR-T cells play paracrine and autocrine roles to improve

the antitumor activity of CAR-T cells and bystander tumor-specific

T cells in syngeneic and xenogeneic mouse models of clinically

relevant PD-L1+ hematological and solid tumors (143). These

examples illustrate the complexity of tumor resistance to vaccines

and immunotherapies, and highlight how multiple modalities will

be required for therapeutic vaccines or other immunomodulatory

therapies to overcome suppressive TME.

5.2.2 Chimeric antigen receptor T-cell therapy
Directly inducing the immune response of tumor lesions or a

targeted effector T-cell response can be achieved through

vaccination approaches combined with adoptive cell therapy. Due

to the remarkable success of CAR-T cell therapy in hematological

malignancies but not in solid tumors, the combination with

nanotechnology may be more attractive (144, 145). Conventional

NPs can boost CAR-T therapy by emerging as carriers for CAR-T to

enhance targeting, or as a tool to enhance transfection efficiencies of

CAR gene. However, SANPs can provide more potential strategies

that could be used to modify CAR-T cells or as a booster vaccine to

overcome the existing challenges in solid tumors. Natnaree et al.

reported an approach in which cross-linked multilamellar vesicles

(cMLV) could be covalently attached to CAR-T cells to deliver the

A2aR-specific small-molecule antagonist SCH-58261 and the

cMLVs NPs without affecting the effector and viability of CAR-T

cells (146). In addition, Chenjun et al. previously established self-

assembled multivalent CAR-like aptamer NPs, which can activate T

cells while targeting B16 mouse melanoma tumor cells (147). The

predictable result is the increase in durability of tumors and even

the increase in efficacy of CAR-T against solid tumors. Towards this

end, the combination of therapeutic CAR-T cell therapy with

vaccines, such as DC vaccine, RNA vaccines, or novel approaches,

was tentatively developed. The main argument of this treatment

plan is synergy after immune activation. Reinhard et al. developed a

CAR-T cell-amplifying RNA vaccine with lipid-based SANPs (148),

by inducing DC natively displayed CLDN6, a tetraspanin

membrane protein that is involved in tight junction formation

(149), to promote cognate and selective expansion of CLDN6-CAR-

T cells. However, this vaccine did not directly participate in the

antitumor immune response in this process. Additionally, co-

delivering CAR-specific ligands that boost CAR-T cell numbers

and functionality in vivo with low toxicity decorate the APCs in the
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LN and provide critical priming signals to the CAR T cells (150). In

general, it is necessary to pay attention to the crucial problems and

obstacles of clinical progress, concentrate on resources and promote

the understanding of the inconclusive interactions of the immune

system, and develop optimal treatment schemes for cancer patients.
6 The challenge of SANPs in cancer
vaccine

Today, most of the existing production processes of self-

assembled nanovaccines are synthetic methods or semibiological

technologies based on certain specific cells (101). The potential

advantages of these strategies include reduced production time and

cost. However, chemical synthesis and semibiosynthesis will limit

the preventive and therapeutic effects of vaccines, which must face

the difficulty of displaying versatile antigens on these proteinaceous

NPs, especially glycan antigens with complex structures. Of course,

the toxicity of individual materials is still present. A series of local

events are generally considered as tissue or cell response

continuum, such as injury by injection or implantation, acute

inflammation, chronic inflammation, formation of granulation

tissue, severe cytotoxicity, foreign body reaction, and fibrosis

following implantation of microspheres (59, 151, 152). The

method of using protein-based fully biosynthetic vaccines is still

being explored, and this strategy still faces many difficulties related

to antigen display. The preparation process of some SANPs used for

antigen and drug delivery involves a series of chemical reactions;

interestingly, the molecular interaction between the drug and the

carrier does not break its inherent activity with the self-assembly

process (17, 153, 154), which is conducive to the carrier and cargo

fully playing their respective roles in vivo.
7 Conclusion

Future research on therapeutic cancer vaccines will focus not only

on individualization of antigen for every tumor, but even more on the

proper vaccine platform to maximize their impact. Breakthroughs in

antigen delivery platforms have increased our capacity to personalize

vaccines. Several supramolecular assembled programmable

nanomedic ines reported in recent years to improve

immunotherapy efficiency and the emerging technology have made

it possible to dissect the TME in-depth (113, 155, 156). To further

inform the design of future treatment platforms, mechanistic analyses

can be collected from previously failed and some clinically significant

vaccine trials. Many ongoing studies using a range of different vaccine

delivery platforms and combination therapies to alleviate tumor

resistance have the ultimate goal of inducing effective, long-lasting,

tumor-specific immunity in cancer patients.

SANPs composed of each material have specific advantages. For

example, polymers have good stabi l i ty and excel lent

biocompatibility, and peptide NPs are expected to achieve

comprehensive biosynthesis in the future. The high loading, low
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toxicity, and high biocompatibility of most SANPs make themmore

valuable in vaccine development than traditional adjuvant vaccines.

At the same time, vaccines based on various NPs also have shown

good results in animal models, which provides a huge impetus for

the development of many vaccines against complex diseases in the

future. Although many satisfactory experimental results have been

produced in the field of self-assembled nanovaccines, the current

understanding of the physical and chemical characteristics of

nanomaterials and their interaction with physiological systems is

limited, and the optimal synthesis, synthesis of nanomaterials, and

chemical modification are unclear (157). To provide better

protection, a self-assembled nanovaccine must be able to induce a

series of immune responses. Although existing functionalized NPs

can be internalized by immune cells, the effect of the sites of many

functional proteins for the uptake of APCs is still unknown (158). It

should be recognized that the idea of carrying antigens on the

surface of SANPs to induce immune responses proves to be

promising in the least. In the future, we are expected to load

more antigens on the surface of multivalent NPs to drive specific

and strong CD4+ T-cell and/or CD8+ T-cell responses. If an NP

platform can resolve distribution barriers in the future, the age of

enlightenment of nanotherapeutics is nearing its end.
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