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Cullin-RING ligases (CRLs) are the largest class of E3 ubiquitin ligases regulating

the stability and subsequent activity of a large number of important proteins

responsible for the development and progression of various diseases, including

autoimmune diseases (AIDs). However, the detailed mechanisms of the

pathogenesis of AIDs are complicated and involve multiple signaling pathways.

An in-depth understanding of the underlying regulatory mechanisms of the

initiation and progression of AIDs will aid in the development of effective

therapeutic strategies. CRLs play critical roles in regulating AIDs, partially by

affecting the key inflammation-associated pathways such as NF-kB, JAK/STAT,
and TGF-b. In this review, we summarize and discuss the potential roles of CRLs

in the inflammatory signaling pathways and pathogenesis of AIDs. Furthermore,

advances in the development of novel therapeutic strategies for AIDs through

targeting CRLs are also highlighted.
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1 Introduction

Autoimmune diseases (AIDs) refer to autoantibody and autoreactive immune cells

attacking self-tissues and inducing severe inflammatory reactions, which damage a variety

of host organs including the skin, kidneys, joints, bowel, and the nervous system, among

others (1, 2). AIDs can be classified as either organ-specific or systemic AIDs based on

whether a single organ or a system, respectively, is damaged. Organ-specific AIDs include

Hashimoto’s thyroiditis (HT), pemphigus, insulin-dependent diabetes mellitus (IDDM),

and ulcerative colitis (UC). Systemic AIDs include multiple sclerosis (MS), systemic lupus

erythematosus (SLE), and rheumatoid arthritis (RA) (3, 4). Environmental risk factors and

genome instability are the common leading causes of AIDs (5). The immune system can

recognize self from non-self in physiological conditions. However, in certain conditions,

environmental triggers such as chemical toxicants, pollution, infection, or intrinsic genome
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changes can break the immune tolerance and generate excessive

autoantibody and autoreactive lymphocytes, which will attack the

host tissues and result in the onset of AIDs (3, 6, 7). However, the

detailed mechanisms of the pathogenesis of AIDs remain largely

unknown and need further in-depth investigation.

In recent years, a lot of studies have shown that the

posttranslational modification (PTM) of proteins plays a pivotal

role in the occurrence and progression of AIDs (8–10).

Ubiquitination, one of the important PTM types, regulates the

protein stability, activity, subcellular localization, and interactions

in key signaling pathways, subsequently influencing the cell cycle,

proliferation, apoptosis, autophagy, and inflammation (10–13).

Dysregulation of the ubiquitination of critical proteins could

induce excessive immune activation and AIDs (14, 15). The

modification of proteins by ubiquitin is a reversible process

controlled by ubiquitination and de-ubiquitination. De-

ubiquitination modulates the ubiquitin removed from substrates,

which is regulated by deubiquitinating enzymes (DUBs). On the

other hand, ubiquitination is catalyzed by a cascade of reactions

involving three types of key enzymes: ubiquitin-activating enzymes

(E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases

(E3) (11, 13). Ubiquitin is activated in an ATP-dependent

manner by E1s and forms a thioester between the ubiquitin C-

terminal carboxyl and the E1 active site sulfhydryl of cysteine.

Subsequently, ubiquitin transfers from the E1 to the E2 active site

cysteine and forms another thioester complex through the catalysis

of E2s. In the final steps, E3s catalyze the ubiquitin from E2s to the

lysine ϵ-amino group of substrates via isopeptide bonds (11, 16).

The E3s play a pivotal role in the ubiquitination cascade because

they are responsible for substrate specificity.

There are more than 600 E3s in humans, which comprise three

families: the really interesting new gene (RING) family, the

homology to E6AP C-terminus (HECT) family, and the RING-

between-RING (RBR) family (16). The HECT and RBR E3s mediate

the transfer of ubiquitin from E2 to the cysteine of the E3 active site

and then transfer the ubiquitin from E3 to specific substrates.

However, the RING E3s lack the cysteine of active sites and

directly transfer the ubiquitin from the E2 ubiquitin intermedia to

the substrates (17, 18). Cullin-RING ligases (CRLs), the largest

subfamily of the RING E3 ligases, consist of 300 members

distributed into different subclasses according to the Cullins. In

humans, there are eight Cullin proteins—Cul1, Cul2, Cul3, Cul4A,

Cul4B, Cul5, Cul7, and Cul9—that are organizers of the CRL

complex (19). CRLs are responsible for the ubiquitination and

subsequent degradation of approximately 20% of the proteins

regulated by the ubiquitination proteasome system (UPS) in

mammalian cells (20, 21). The CRLs play a crucial part in

regulating autoimmunity and homeostasis in physiological and

pathological conditions (22–24). Previous studies suggested that

the F-box and WD repeat domain-containing 7 (FBW7), as a

substrate receptor (SR) of SKP1–Cul1–F-box (SCF), was

predominantly upregulated in the colon tissues of patients with

inflammatory bowel disease (IBD) and was correlated with its

severity (25, 26). In addition, the expression of DCAF2, which is

a SR of CRL4, was significantly suppressed in biopsies from patients

with psoriasis. DACF2 deficiency mediated the activation of the
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nuclear factor kappa B (NF-kB) signaling pathway and accelerated

the severity of psoriasis (23). In this review, we summarize and

discuss the potential roles of CRLs in AIDs and provide new

insights for AIDs therapy via targeting CRLs.
2 Cullin-RING E3 ligases: Composition
and mechanism

2.1 Composition and catalytic mechanism
of CRLs

The multi-subunit CRL complex consists of the RBX1 or the

RBX2 RING protein, the scaffold Cullin protein, and the adaptor

and SR unit. The N-terminal domain of Cullins binds to the SRs

with or without the adaptor protein SKP1 or Elongins B/C. The C-

terminal domain of Cullins connects with the RING subunit (RBX1

for Cul1–Cul4 and RBX2 for Cul5) (19, 27, 28). The RING domains

are responsible for the binding to the E2s and mediates the transfer

of ubiquitin, while the SRs recognize and recruit specific substrates.

The Cullins, as scaffold proteins, are essential for the assembly of the

whole E3 complex and its functions (18, 19, 27).
2.2 The subfamily of CRLs and their
distinct functions

The CRLs are divided into eight subfamilies according to the

eight types of Cullins (Cul1, Cul2, Cul3, Cul4A, Cul4B, Cul5, Cul7,

and Cul9). Importantly, each CRL has a distinct composition and

structure. The first identified CRL is SCF E3 ligase, in which SKP1,

as the adaptor protein, mediates the linkage between Cul1 and the

F-box SR protein (27). There are 69 F-box proteins that determine

the substrate diversity and specificity in humans. SCF ligases

catalyze the mono- or poly-ubiquitination of substrates and affect

various cellular processes such as the cell cycle, DNA damage and

repair, and other signaling pathways (29). The adaptor proteins for

Cul2- or Cul5-based RING E3 ubiquitin ligases are Elongins B and

C, which mediate the linkage between the N-terminal of Cullin and

the BC-box SRs (30). The first identified substrate of CRL2 is

hypoxia-inducible factor 1a (HIF-1a), which regulates the hypoxia

response (28, 31). CRL5 has similar components of adaptors and

SRs to CRL2. However, the RING unit of CRL5 is RBX2. CRL5 is

mainly responsible for signaling transduction, virus infection, and

tumorigenesis (32, 33). For CRL3, the SRs directly interact with the

Cul3 scaffold protein without the adaptor proteins Skp1 or Elongins

B/C. The SRs of CRL3 are usually BTB/POZ (Broad-complex,

Tramtrack, and Bric-a-brac/pox virus and zinc finger) domain

proteins that share a fold with Skp1. The MATH and Kelch

domains of the CRL3 SRs are generally associated with the BTB

domain, which is responsible for substrate recognition and

recruitment. CRL3 plays a crucial role in regulating the oxidative

stress response, cellular homeostasis, tumorigenesis, and

progression (28, 34). CRL4 includes two homologous Cullin

proteins, i.e., Cul4A and Cul4B, that share the same adaptor

protein and the SR proteins including damage-specific DNA
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binding protein 1 (DDB1) and DDB1/CUL4-associated factor

(DCAF). CRL4s have great impact on the disorder of the nervous

system and oncogenesis (35). CRL7 and CRL9 are two novel CRLs

reported in recent years. Only two F-box proteins Fbxw8 and

Fbxw11 have been identified as the SRs of CRL7. Moreover, Cul7,

as a scaffold protein, interacts with the RBX1 RING protein and the

Skp1 adaptor protein. Importantly, CRL7 could mediate proteolytic

and non-proteolytic ubiquitination. There are approximately 10

substrates in total in the involvement of CRL7 in the regulation of

cell proliferation, apoptosis, and DNA damage repair (36, 37). The

exact components of CRL9 are largely unknown. CRL9 has been

reported to mediate the ubiquitination and degradation of survivin

and to maintain genome integrity. CRL9 also acts as an activator of

p53 to inhibit cell proliferation and promote DNA damage repair.

Therefore, CRL9 has been considered a tumor suppressor due to its

function in the regulation of p53 and survivin (38–40).
2.3 Regulation of CRLs via
NEDDylation, substrate adaptor
exchange, and phosphorylation

The process of protein ubiquitination and the subsequent

proteolytic or non-proteolytic functions that are controlled by

CRLs can also be regulated by several mechanisms. The protein

NEDD8 can covalently attach to a lysine moiety located in theWHB

(winged-helix) domain of Cullins and enhance the activity of CRLs

(41). Similar to ubiquitination, NEDDylation is a reversible process.

It is catalyzed by an enzymatic cascade with the E1 NEDD8-

activating enzyme (NAE), E2 NEDD8-conjugating enzyme, and

E3 NEDD8 ligase. The COP9 signalosome (CSN) mediates the

deNEDDylation of Cullins. The processes of NEDDylation/

deNEDDylation regulate the activation of CRLs and influence the

fate of the substrates of CRLs (20, 42).

Previous biochemical studies suggested that Cullin-associated

and NEDDylation-dissociated protein 1 (CAND1) is a negative

regulatory factor of SCF. CAND1 binds to the unNEDDylated Cul1

and inhibits the assembly of the SCF complex by blocking the

combination of the adaptor protein Skp1 with Cul1 (43, 44).

However, recent genetic studies have identified that CAND1 also

promotes the activation of SCF; moreover, the CAND1 mutant

showed a reduction of the SCF activity in Arabidopsis (45). A

growing body of later studies demonstrated that CAND1, as an

exchange factor, mediates the dynamic exchange of F-box–Skp1

substrate adaptors and regulates the substrate specificity of SCF

(46–48).

The crosstalk between the phosphorylation and ubiquitination

mediated by CRLs is prevalent in eukaryotic cells. The

phosphorylation of substrates often inhibits or promotes their

recognition and interaction with CRLs. It is well established that

the SR of SCF, FBW7, recognizes and interacts with its substrates

after the phosphorylation of special amino acids in their degron

(49). In addition, as the SR of CRL3, the speckle-type POZ protein

(SPOP) often recognizes the substrates with conserved Ser/Thr-rich

motifs. In most cases, phosphorylation in the motif is essential for

the interaction between substrates and SPOP (50). However, a
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previous study indicated that casein kinase 1 (CK1) mediated the

phosphorylation of Ci at the Ser/Thr-rich degrons and inhibited the

interaction between Ci and MATH and BTB domain-containing

protein (HIB/SPOP), which is a SR of CRL3 (51). On the other

hand, the phosphorylation of the adaptor or SR of CRLs also

influences the substrates’ binding to CRLs and the subsequent

ubiquitination and degradation (50). Targeting the CRL pathways

might be a promising strategy for the treatment of related diseases

through regulating the abundance of the key proteins in human

diseases. Identification of more detailed mechanisms of the

regulation of CRLs will help in the development of CRL-

targeted therapy.

3 Critical signaling pathways of
immunity and inflammation regulated
by CRLs

3.1 NF-kB signaling pathway

NF-kB, as a transcription factor, regulates the expression of a

series of genes involved in multiple cellular processes including

inflammation, autoimmunity, and cell survival (52, 53). The NF-kB
signaling pathway consists of canonical and non-canonical

pathways. The transcription factor complexes assembled by p65

(RelA) and p50 can translocate into the nucleus and promote the

transcription of a set of target genes, which leads to the activation of

the canonical NK-kB signaling pathway. The p65/p50 complex is

maintained in the cytoplasm by IkappaB (IkB), an inhibitor of the

canonical NF-kB pathway. IkB can be phosphorylated by IkB
kinase (IKK) and subsequently degraded by the 26S proteasome

to release the p65/p50 complex from cytoplasmic retention (52, 54).

RelB/p52 heterodimers are responsible for the transcriptional

activation of the target genes in the non-canonical NF-kB
signaling pathway. p100, the precursor of p52, acts as an inhibitor

that blocks the translocation of RelB into the nucleus. The

proteolysis of p100 results in the production of p52 and

constitutes the RelB/p52 complex, which is important for the

activation of the non-canonical NF-kB pathway (54, 55).

CRLs regulate the activity of NF-kB both in the canonical and

non-canonical signaling pathways (Figure 1, left). SCFb-TrCP

mediates the degradation of the NF-kB inhibitor IkB after its

phosphorylation by IKK and releases the p65/p50 complex, which

translocates into the nucleus and performs transcriptional activity

in the NF-kB canonical pathway (56, 57). A recent study has

reported that SCFFBW7 promoted the ubiquitination and

proteolysis of IkB. The upregulation of FBW7 promoted the

activation of the NF-kB pathway through the negative regulation

of IkB and accelerated the intestinal inflammation in intestinal

epithelial cells (IECs) (25). In addition, SCFb-TrCP modifies p100 at

the C-terminal domain, induces degradation, and generates the p52

mature subunit, constitutes the RelB/p52 complex then

translocating into the nucleus and activating NF-kB in the non-

canonical pathway (58, 59). SCFFBW7, another SCF E3 ligase, could

recognize p100 based on the conserved degron in a GSK3-

dependent manner. SCFFBW7 recognizes and destroys the p100 in
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the UPS after being phosphorylated by GSK3 at the Ser 707 and 711

sites, which subsequently contributes to the activation of the non-

canonical NF-kB pathway (60–62). The Regulator of Cullins 1

(ROC1) mediates p-IkBa ubiquitination and the subsequent

degradation induces the nuclear translocation of the P65 subunit

and NF kB activation in bladder cancer. CRL5SPSB1 negatively

regulates the activity of NF-kB through an undefined mechanism

(63). Early studies have suggested that the NF-kB-inducing kinase

(NIK) can be subjected to proteolysis in a TRAF3-dependent

manner. TRAF3 mediates the ubiquitination and degradation of

NIK by recruiting it to the cIAP1–cIAP2–TRAF2 ubiquitin ligase

complex (64, 65). However, recent research has indicated that

CRL4DCAF2 mediates the poly-ubiquitination and destruction of

NIK in a TRAF3 pathway-independent manner. It was also found

that CRL4DCAF2 inhibits the non-canonical activity of NF-kB in a

NIK-dependent manner and ultimately reduces the production of

interleukin 23 (IL-23), which can be a potential therapeutic target

for psoriasis (23).
3.2 MAPK signaling pathway

It is well known that the mitogen-activated protein kinase

(MAPK) signaling pathway plays a central role in cell proliferation,

apoptosis, and inflammation. Three main subgroups namely,

extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase
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(JNK), and p38 build up the MAPK signaling pathway. The ERK

pathway mainly regulates cell proliferation and differentiation.

However, the JNK and p38 pathways generally participate in the

response to oxidative stress and inflammation (66–68). A previous

study showed that the RAS activator SHOC2 is a substrate of

SCFFBW7. SCFFBW7 mediates the ubiquitination and proteolysis of

SHOC2 after being phosphorylated by MAPK at Thr507 and blocks

the RAS–MAPK pathway (69). CRL4CRBN promotes the K48 linkage

ubiquitination and the subsequent degradation of c-Jun and restrains

the activity of the AP-1 complex, which leads to the down-expression

of the pro-inflammatory factors inducible nitric oxide synthase

(iNOS) and COX-2 (70). COP1, another Cul4-based E3 ubiquitin

ligase, also regulates the protein stability of c-Jun. In mice, COP1

deficiency induced tumorigenesis and tumor progression depending

on the upregulation of c-Jun (71). In addition, SCFFBW7 recognizes c-

Jun after being phosphorylated by GSK3 and mediates the

ubiquitination and the subsequent degradation of c-Jun by

proteasome (72). CRL4CRBN promotes a non-K48 linkage

ubiquitination and degradation of the AMP-activated protein

kinase alpha subunit (AMPKa). Notably, cereblon (CRBN)

knockout decreases allergic responses in an AMPKa-dependent
manner (73). CRBN plays an important role in the senescence

process, and the depletion of CRBN activates p38/MAPK and

downstream p53/p21 signaling and upregulates the senescence-

associated markers SAHF (senescence-associated heterochromatic

foci) and SA-b-Gal (74) (Figure 1, right).
FIGURE 1

Cullin-RING ligases (CRLs) regulate the expression of multiple pro-inflammatory cytokines through modulating the nuclear factor kappa B (NF-kB)
and mitogen-activated protein kinase (MAPK) signaling pathways. Left: SCFb-TrCP mediates the degradation of the NF-kB inhibitor IkB after
phosphorylation by IkB kinase (IKK). CRL4DCAF2 mediates the poly-ubiquitination and destruction of the NF-kB-inducing kinase (NIK). SCFb-TrCP

modifies p100 at the C-terminal domain and induces degradation, generating the p52 mature subunit. SCFFBW7 recognizes and destroys the IkB and
p100 in the ubiquitination proteasome system (UPS). These CRLs modulate the NF-kB pathway through regulating the stability of the key
components. Right: SCFFBW7 mediates the ubiquitination and proteolysis of SHOC2 after being phosphorylated by MAPK at Thr507 and blocks the
RAS-MAPK pathway. CRL4CRBN promotes the K48 linkage ubiquitination and the subsequent degradation of c-Jun and restrains the activity of the
AP-1 complex. COP1, another Cul4-based E3 ubiquitin ligase, also regulates the protein stability of c-Jun. SCFFBW7 mediates the ubiquitination and
destruction of c-Jun by proteasome. CRL4CRBN promotes a non-K48 linkage ubiquitination and the degradation of AMPKa.
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3.3 JAK/STAT signaling pathway

The Janus kinase/signal transduction and activator of

transcription (JAK/STAT) signaling pathway responds to a

variety of inflammatory factors including cytokines, colony-

stimulating factors, and growth factors. It also plays a central role

in the pathogenesis of carcinoma and AIDs (75–77). Interleukins

(ILs), interferons (IFNs), hormones, and colony-stimulating factors

interact with specific type I/II cytokine receptors and induce the

receptor dimerization and transphosphorylation of JAKs. As a step

further, STATs are recruited and phosphorylated by JAKs, and the

activated STATs dissociate from the receptors and form

homodimers or heterodimers. The dimers then translocate into

the nucleus and promote the transcription of associated genes (77,

78). The JAK family includes JAK1, JAK2, JAK3, and tyrosine

kinase 2 (TYK2). Notably, in mammalian cells, STATs have seven

subclasses: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B,

and STAT6 (78, 79). Targeting JAK signaling is thought to be a

promising therapeutic strategy, and a series of JAK inhibitors

(Jakinibs) have been approved by the US Food and Drug

Administration (FDA) for the treatment of AIDs and lymphoma

(76, 77).

CRL5SOCS3 promotes the ubiquitination and degradation of

JAKs and STATs by the 26S proteasome (77, 80). The function of

the negative regulation of the JAK/STAT signaling pathway makes

suppressor of cytokine signaling (SOCS) proteins potential

therapeutic targets for the treatment of JAK/STAT-associated

diseases (81). Moreover, the Notch signaling pathway could

transcriptionally activate Asb2, which is a SOCS-box-containing

protein and is a SR of CRL5. Asb2 could replace SOCS in CRL5 and

mediate the assembly of CRL5 and SCFSkp2 in a non-canonical E3

super complex, consequently promoting the degradation of JAK2

and E2A (82). SCFHOS recognizes and interacts with the type I IFN

receptor IFNAR1 in a phosphorylation-dependent manner upon

the stimulation of IFN-a and subsequently promotes its

degradation, which influences the function of the JAK/STAK

signaling pathway in cells (83).

The HIV virus protein Vif (viral infectivity factor) mediates the

host STAT1 and STAT3 ubiquitination and degradation via the

Elongin–Cullin–SOCS-box binding motif and subsequently reduces

the production of the antiviral ISG15 induced by IFN-a (84). The

Epstein–Barr virus (EBV) tegument protein BGLF2 utilizes the host

SCF to promote the ubiquitination and degradation of STAT2 in

the K48 linkage type by the 26S proteasome, which leads to the

reduction of the expression of interferon-stimulating genes (ISGs)

upon stimulation of IFN (85) (Figure 2, left).
3.4 TGF-b signaling pathway

Abnormal activation of the transforming growth factor beta

(TGF-b) signaling pathway is one of the main causes of

inflammatory diseases and cancers. TGF-b signaling plays a key

role in remodeling the tumor microenvironment and in promoting

immune tolerance and tumor evasion (86–88). The active TGF-b
interacts with TGF-b type I and II receptors in the cell membrane.
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TGF-b type I and II receptors are activated through interacting with

TGF-b , subsequently activating Smad2 and Smad3 via

phosphorylation. The activated Smad2 and Smad3 then bind to

Smad4 to form trimeric complexes and translocate into the nucleus

to regulate the expression of associated genes (86, 87). SCFb-TrCP1

specifically binds to Smad4 instead of Smad2 and Smad3 to facilitate

the ubiquitination and degradation of Smad4 and inhibits the

expression of the genes in the TGF-b signaling pathway (89).

Moreover, SCFFBXL15 promotes the ubiquitination and protein

destruction of Smad ubiquitination regulatory factor 1 (Smurf1)

by the 26S proteasome, which further regulates the bone

morphogenetic protein (BMP) signaling pathway, thus affecting

embryonic development and adult bone formation (90)

(Figure 2, middle).
3.5 Hippo signaling pathway

The Hippo signaling pathway is an evolutionarily conserved

pathway in mammalian cells that regulates a variety of biological

processes including cell growth, tissue repair, organ regeneration,

inflammation, and immunity. Dysregulation of the Hippo pathway

leads to various human diseases such as cancer, AIDs, and

abnormal development (91–93). The Hippo pathway is also

involved in a series of kinase cascades in which MST1/2 interacts

with SAV1 and phosphorylates SAV1, MOB1, and LATS1/2.

Furthermore, the activated LATS1/2 subsequently mediates the

phosphorylation of YAP/TAZ (yes-associated protein/

transcriptional coactivator with PDZ-binding motif) at multiple

sites and prevents them from translocating into the nucleus,

ultimately inhibiting the transcription of the genes correlated with

cell proliferation and survival. The activated Hippo signaling

pathway plays a tumor suppressor role, while inactivated Hippo

signaling promotes tumor progression (91, 93).

Overexpression of Cul4A is prevalent in human colon cancer

(CC) cells. Cul4A induces the downregulation of MST1, LAST1,

and p-YAP and promotes tumor progression by inactivating the

Hippo pathway (94). Furthermore, a study on hepatocellular

carcinoma (HCC) showed that the long non-coding RNA

(lncRNA) uc.134 can inhibit the Cul4A-mediated ubiquitination

and degradation of LATS1 and promote the phosphorylation of

LATS1; moreover, it activates the Hippo pathway to suppress the

cell proliferation of HCC (95). CRL4Mahj promotes the

ubiquitination and degradation of Wts, the ortholog of LATS1/2,

therefore inactivating the Hippo pathway and contributing to the

reactivation of neural stem cells (NSCs) in Drosophila (96). In other

ways, PRAMEF2, a SR of Cul2-based ubiquitin ligases, promotes the

degradation of LATS1 and subsequently induces the nuclear

translocation of YAP. Subsequently, the nucleus-localized YAP

transcriptionally activates the pro-proliferation genes to facilitate

tumor progression (97). NEDD8-mediated NEDDylation of Cul7

promotes the ubiquitination and destruction of Mst1 and enables

the translocation of YAP into the nucleus. Therefore, cell

proliferation-related genes have been activated to promote

cardiomyocyte proliferation and ventricular chamber maturation

(98). Large tumor suppressor kinase (LATS) phosphorylates YAP at
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Ser127 and Ser381 and promotes the binding of YAP with 14-3-3 and

cytoplasmic retention. The phosphorylated YAP will then recruit

the E3 ubiquitin ligase SCFb-TrCP and be destroyed in a proteasome-

dependent manner. In addition, the NAE inhibitor MLN4924 could

inhibit the activity of CRL4DCAF to inhibit the degradation of LATS

by CRL4DCAF, also promoting the phosphorylation and inactivation

of YAP. MLN4924 in combination with the mammalian target of

rapamycin–phosphatidylinositol-3-kinase (mTOR/PI3K) inhibitor

GDC-0980 significantly suppresses the proliferation of NF2-mutant

malignant pleural mesothelioma (MPM) cells (99). Moreover,

previous studies indicated that FBW7 promoted the

ubiquitination and destruction of YAP in HCC and KrasG12D-

driven pancreatic cancer. YAP silencing inhibited the

tumorigenesis induced by FBW7 depletion in KrasG12D-dependent

pancreatic cancer (100, 101). Therefore, both the cytoplasmic

location and the degradation of YAP by UPS inhibit its oncogenic

functions in the Hippo pathway (102). The apical polarity protein

Crumbs (Crb) promotes the phosphorylation and the subsequent

degradation of the Moesin domain protein Expanded (Ex) by

SCFSlimb/b-TrCP, which inactivates the Hippo pathway through

inhibiting the phosphorylation of the Hpo–Wts–Yki cascade

(103). TAZ, another transcription coactivator, could also be

phosphorylated by LATS, which primes it for further
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phosphorylation by CKI at the phosphorylation degron and

recruits the SCFb-TrCP E3 ligase for ubiquitination and

degradation (104). Similarly, the PI3K/AKT signaling pathway

modulates the protein abundance of TAZ through inhibiting the

activity of GSK3, which catalyzes the phosphorylation of the N-

terminal domain of TAZ and promotes its degradation by SCFb-

TrCP (105) (Figure 2, right).
3.6 Autophagy signaling pathway

Autophagy is a fundamental catalytic process of mammalian

cells that contributes to the elimination of dysfunctional organelles,

pathological proteins, and invading microbes upon stimulation by

hypoxia, oxidative stress, and infection (106–108). Autophagy plays

an important part in the pathogenesis of neurodegenerative

disorders, AIDs, and carcinomas. The process of autophagy

involves a series of autophagy-related proteins (ATGs), the

autophagosome infusion with lysosomes, and the hydrolyzed

cargos (106, 107, 109).

CRL4Ambra1, as an E3 ligase, catalyzes the K63 linkage

ubiquitination of Beclin1 under stimulation of starvation and

promotes the interaction between Beclin1 and vacuolar protein
FIGURE 2

Cullin-RING ligases (CRLs) regulate the expression of multiple pro-inflammatory cytokines via modifying the Janus kinase/signal transduction and
activator of transcription (JAK/STAT), TGF-b, and Hippo signaling pathways through the ubiquitination proteasome system (UPS). Left: SCFHOS

recognizes and interacts with the type I interferon (IFN) receptor IFNR1 in a phosphorylation-dependent manner upon stimulation of IFN-a,
subsequently promoting the degradation of IFNR1. CRL5SOCS3 promotes the ubiquitination and degradation of JAK and STAT by the 26S proteasome.
Asb2 mediates the assembly of CRL5 and SCFSkp2 in the non-canonical E3 super complex and promotes the degradation of JAK2. The HIV protein
Vif (viral infectivity factor) mediates the host STAT1 and STAT3 ubiquitination and degradation via the Elongin–Cullin–SOCS-box binding motif. The
Epstein–Barr virus (EBV) utilizes the host SCF (SKP1–Cul1–F-box) to promote the ubiquitination and degradation of STAT2 in the K48 linkage type.
Middle: SCFb-TrCP1 specifically binds and destructs Smad4 to inhibit the expression of the genes in the TGF-b signaling pathway. Right: Cullin7
promotes the ubiquitination and destruction of Mst1. PRAMEF2, a substrate receptor (SR) of the Cul2-based ubiquitin ligase and CRL4DCAF promotes
the degradation of LATS1. SCFb-TrCP and SCFFBW7 promote the degradation of the phosphorylated YAP through UPS. Moreover, SCFb-TrCP mediates
the ubiquitination and degradation of TAZ (transcriptional coactivator with PDZ-binding motif) in a phosphorylation-dependent manner.
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sorting 34 (VPS34), which serves as a central component in the

initiation of autophagy. However, WASH (Wiskott–Aldrich

syndrome protein) competes with Ambra1 to bind to Beclin,

reduces the K63 linkage of ubiquitination of Beclin1, induces the

dissociation between Beclin1 and VPS34, and finally inhibits

autophagy (110). In addition to being an E3 ligase, Ambra1, as a

regulator, influences the activation and termination of autophagy by

switching the interaction with Cul4 or Cul5. In detail, Cul4 binds

with and reduces the abundance of the Ambral1 protein and

inhibits the initiation of autophagy. Upon stimulation of

autophagy, Ambral1 dissociates from Cul4 and binds with and

inhibits Cul5, subsequently leading to the accumulation of the

mTOR inhibitor DEPTOR and inactivating autophagy (111).

However, SCFb-TrCP, another CRL, influences the initiation of

autophagy through the negative regulation of the protein

abundance of DEPTOR. SCFb-TrCP mediates ubiquitination and

the subsequent degradation of DEPTOR after phosphorylation in

its conserved degron in an mTOR- and CK1-dependent manner

(112–114). Furthermore, DNA damage triggers the activation of

cyclin-dependent kinase (CDK). The activated CDK further

promotes the phosphorylation of VPS34, which facilitates the

ubiquitination and degradation of VPS34 by SCFFBXL20, finally

inhibiting autophagy. Interestingly, DNA damage could also

trigger the p53-mediated transcriptional activation of FBXL20

and regulate the initiation of autophagy (115). CRL3ZBTB16 could

especially promote the ubiquitination and degradation of ATG14L,

which plays a key role in the formation of the phagophore

nucleation PI3KC3 complex I and promotes the initiation of
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autophagy. The antagonist of G-protein-coupled receptors

(GPCRs) activates GSK3b, which decreases ZBTB16 and elevates

the protein abundance of ATG14L, which then promotes autophagy

and benefits treatment outcomes of neurodegeneration (116).

CRL3KLHL16 promotes the K48 linkage ubiquitination and

degradation of ATG16L and influences the elongation of the

autophagosome (117). Moreover, both the CRL4A- and CRL4B-

based E3 ligase could induce the destruction of WIPI2 through the

26S proteasome to inhibit autophagosome biogenesis during

mitosis (118). SCFFBXO27, a glycoprotein-specific E3 ligase,

regulates the ubiquitination of the lysosomal glycoproteins

LAMP1/2, GSN, PSAP, and TMEM192 and the SNARE (SNAP

receptor) proteins VAMP3 and VAMP7 upon lysosomal damage.

After ubiquitin modification, the lysosomal proteins will recruit the

autophagic machinery to launch lysophagy (119). The

ubiquitination mediated by CRLs plays a central role in the onset

and elongation of autophagy and influences selective autophagy,

such as mitophagy and lysophagy (13, 120) (Figure 3).
3.7 Caspase signaling pathway

Caspases, members of the conserved cysteine protease family,

play a critical roles in regulating cell apoptosis and inflammation

(121, 122). The caspases involved in apoptosis signaling are caspases

3, 6, 7, 8, 9, and 10. Caspases 8, 9, and 10 are classified as initiator

caspases, while caspases 3, 6, and 7 are executioner caspases. In

humans, the caspases involved in inflammation are caspases 1, 3, 4,
FIGURE 3

Cullin-RING ligases (CRLs) regulate the initiation and elongation of autophagy. Ambral1 binds with and inhibits Cul5, which leads to the
accumulation of the mammalian target of rapamycin (mTOR) inhibitor DEPTOR, inactivating autophagy. However, SCFb-TrCP mediates the
ubiquitination and proteolysis of DEPTOR and activates autophagy. SCFFBXL20 facilitates the ubiquitination and degradation of VPS34 depending on
the phosphorylation catalyzed by cyclin-dependent kinase (CDK). CRL4Ambra1 catalyzes the K63 linkage ubiquitination of Beclin1 under stimulation of
starvation and promotes the interaction between Beclin1 and VPS34. CRL3ZBTB16 specifically promotes the ubiquitination and degradation of ATG14L.
CRL4A- and CRL4B-based E3 ligases could induce the destruction of WIPI2 through the 26S proteasome to inhibit autophagosome biogenesis.
CRL3KLHL16 promotes the K48 linkage ubiquitination and degradation of ATG16L1 and influences the elongation of the autophagosome.
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5, and 12. Activation of the caspases in apoptosis or inflammation

will induce programmed cell death or the release of inflammatory

cytokines, including high-mobility group box (HMGB), IL-1b, and
IL-18, which affect the development and progression of carcinomas

and AIDs (121–123).

The NAE inhibitor MLN4924 inhibits the NEDDylation of

Cullins and inactivates CRLs, resulting in the accumulation of

activating transcription factor 4 (ATF4). ATF4 activates the

transcription factor CHOP and then transcriptionally activates

death receptor 5 (DR5) and caspase 8, which ultimately induces

the extrinsic apoptosis of esophageal squamous cell carcinoma

(ESCC) cells (124). It has been reported that the knockdown of

CAND1 will activate caspase 8 and promote cell apoptosis in HCC

via activating the CRLs (125). Interestingly, the Cul3-based

ubiquitin ligase-mediated poly-ubiquitination and activation of

caspase 8 is essential for the assembly of the death-inducing

signaling complex (DISC) under the treatment of extrinsic

apoptosis signaling. P62 associates with the DISC and promotes

the aggregation of caspase 8 modified by Cul3 (126). SCFSkp2

promotes the ubiquitination and degradation of FLIP(L) and

interrupts the interaction of p43-FLIP(L) and DISC. It also

modulates the apoptosis mediated by TRAIL-R2 (DR5) (127).

SCFb-TrCP is the E3 ubiquitin ligase of pro-caspase 3 and mediates

its degradation by the 26S proteasome, which protects cells from

apoptosis (128) (Figure 4).
4 Cullin-RING ligases in
autoimmune diseases

4.1 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is termed based on the

uncontrolled autoantibodies specific for the nuclear autoantigens,

including double-strand DNA and the associated proteins induced

to produce immune complex and tissue damage (129). SLE is a

systemic AID that is triggered by genetic factors combined with a

variety of environmental risk factors, such as exposure to ultraviolet

radiation, smoking, infections, and environmental pollutants (129,

130). Autoreactive T and B cells produce diverse cytokines and

autoantibodies that break the immune tolerance and induce

immune dysfunction, promoting the occurrence of SLE. However,

the pathological mechanisms of SLE remain largely unknown

(129, 131).

Ubiquitination, as an important form of the PTM of proteins,

regulates protein abundance, activity, subcellular localization, and

their interactions, as well as a variety of signaling pathways.

Ubiquitination plays a pivotal role in the pathogenesis of SLE

(132, 133). A phase I clinical trial showed that the expression of

Aiolos and Ikaros was significantly higher in patients with SLE than

in healthy volunteers. CRLs, the largest family of E3 ubiquitin

ligases, play a central role in the management of ubiquitin

modification. CRBN, one of the SRs of CRL4, specifically

promotes the transcriptional factors Ikaros (IKZF1) and Aiolos

(IKZF3) for proteasomal degradation, which leads to the

inactivation of T cells through downregulating the expression of
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IL-2. Lenalidomide and pomalidomide are immunomodulatory

agents that activate T cells by promoting the ubiquitination and

degradation of IKZF1 mediated by CRL4CRBN (134). Therefore,

lenalidomide is used as an effective drug for the treatment of

myeloma, which works by mediating the degradation of IKZF1

and IKZF3 in a CRL4CRBN-dependent manner (135).

Recent studies have shown that Iberdomide (CC-220), a new

modulator of CRBN, interacts with CRBN at a higher affinity than

lenalidomide or pomalidomide. It is used in the treatment of SLE.

CC-220 promotes the binding of Aiolos and Ikaros to CRBN E3

ligase and the subsequent degradation by the 26S proteasome. CC-

220 finally decreases the cell proliferation, plasmablast

differentiation, and the immunoglobulin G (IgG) secretion of B

cells stimulated by B-cell activating factor (BAFF) and CD40L,

resulting in the attenuation of the progression of SLE (136, 137).

CC-220 can help reduce the protein levels of Aiolos and Ikaros in B

cells, T cells, and monocytes. In addition, CC-220 could markedly

decrease the absolute population of CD19+ B cells and the

expression of IL-1b and increase the production of IL-2 ex vivo

(138). FBXW7 acts as a tumor suppressor by promoting the

ubiquitination and degradation of various substrates including c-

Myc, c-Jun, cyclin E, and MCL-1, which usually function as

oncoproteins and promote tumor growth and survival (139, 140).

SCFFBXW7 E3 ligase was also found to play a crucial role in the
FIGURE 4

Cullin-RING ligases (CRLs) influence pyroptosis through regulating
the caspase signaling pathway. Cul3-based ubiquitin ligases mediate
the poly-ubiquitination and activation of caspase 8, which is
essential for the assembly of the death-inducing signaling complex
(DISC) under the treatment of extrinsic apoptosis signaling. SCFSkp2

promotes the ubiquitination and degradation of FLIP(L). SCFb-TrCP

mediates the degradation of pro-caspase 3 by the 26S proteasome
and protects cells from apoptosis.
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development of SLE. In tetramethylpentadecane (TMPD)-induced

SLE, SCFFBXW7 induced cell apoptosis by promoting the K48

linkage ubiquitination and degradation of MCL-1. The apoptosis

of peritoneal macrophages and neutrophils was lower in myeloid

cell-specific Fbxw7-deficient (Lysm+Fbxw7f/f) C57BL/6 mice than

in wild-type (WT) mice. In addition, the accumulation of immune

complex, glomerulonephritis, the proliferation of glomerular

mesangial cells, and the base membrane thickness decreased in

the kidney of Lysm+Fbxw7f/f mice. Fewer anti-Sm/RNP and anti-

ANA autoantibodies and a reduced expression of major

histocompatibility complex (MHC) II in B cells were found in

Lysm+Fbxw7f/f mice (141) (Table 1).
4.2 Inflammatory bowel disease

Crohn’s disease (CD) and ulcerative colitis (UC) are two forms

of IBD that comprise a type of chronic and relapsing intestinal

inflammation disease (161, 162). The pathological mechanism of

IBD is complicated, which includes alterations of genomic and

environmental risk factors, destruction of the gut microbiome

barrier, and immune dysfunction (161–163).

PTMs such as phosphorylation, acetylation, and ubiquitination

play critical roles in the pathogenesis and progression of IBD by

modulating a variety of signaling pathways involved in its

regulation (14, 164). CRLs, the largest family of E3 ubiquitin

ligases, have been reported to regulate the development of IBD.

SCFFBW7, one of the most important CRLs involved in the

regulation of the inflammation pathway, is significantly correlated

with the severity of IBD. Notably, SCFFBW7 promotes the

progression of colitis through mediating the ubiquitination and

degradation of the histone-lysine-N-methyltransferase enhancer of

zeste homolog 2 (EZH2). The degradation of EZH2 results in the

inhibition of H3K27me3 modification and increases the expression

of CCL2 and CCL7 in CXCR1hi macrophages, subsequently

promoting the recruitment of CX3CR1int pro-inflammatory

mononuclear phagocytes (MPhs) into colitis-affected colon

tissues. Myeloid deficiency of FBW7 significantly alleviates the

colitis induced either by dextran sodium sulfate (DSS) or 2,6,4-

trinitrobenzene sulfonic acid (TNBS) in mouse models (26). On the

other hand, SCFFBW7 activates the NF-kB signaling pathway by

promoting the 26S proteasome-mediated IkB degradation and

aggravates the intestinal inflammation in IBD. Interestingly, miR-

129 could negatively regulate the expression of FBW7 through

promoting the 3′-UTR for degradation. Therefore, the upregulation

of miR-129 reduces the inflammation of colitis induced by TNBS in

a FBW7-dependent manner (25).

In addition, commensal bacteria influence the host intestinal

homeostasis and play a pivotal role in regulating mucosal immunity

and inflammation. A pioneer work by Neish et al. reported that

prokaryotic microflora attenuated the inflammation of IECs by

inhibiting the activation of the NF-kB signaling pathway through

the blockage of the ubiquitination and degradation of IkBa (142).

The group further found that commensal bacteria generated
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reactive oxygen species (ROS) and butyrate to inhibit the

NEDDylation of Cul1 by inactivating the NEDD8-conjugating

enzyme Ubc12, which led to the consequent blockage of the NF-

kB and b-catenin signaling pathways (143, 144). The probiotic

bacteria Lactobacillus rhamnosus GG (LGG) can induce the

production of ROS and consequently inactivate Ubc12 and

inhibit the NF-kB signaling pathway through blocking the

NEDDylation of Cul1, which contributes to preventing

necrotizing enterocolitis (NEC) and relieving IBD in neonates

(145). Inhibition of NEDDylation modification could reduce

mucosal inflammation and alleviate the severity of IBD in mice

because inhibition of NEDDylation blocks the degradation of the

mTOR inhibitor DEPTOR by the Cul1-associated CRL. The

inactivation of mTOR subsequently inhibits the function of

dendritic cells (DCs) and induces their apoptosis in an mTOR

pathway-dependent manner (147).

Human umbilical cord mesenchymal stem cell-derived

exosomes (hucMSC-exosome) contain high levels of miR-326 that

could attenuate the NEDDylation of Cul1 and consequently inhibit

the NF-kB signaling pathway, contributing to the relief of IBD

induced by DSS in mice (146). Adrenomedullin (ADM)

downregulates the inflammation of IECs due to the stabilization

of HIF mediated by the deNEDDylation of Cul2 (148). In addition,

pharmacological inhibition of NEDDylation by MLN4924 could

stabilize HIF through the inhibition of Cul2 NEDDylation, which

potentially attenuates IBD. Furthermore, human deNEDDylase-1

(DEN-1) could reduce the inflammatory response by promoting the

deNEDDylation of Cullins (149).

The JAK/STAT signaling pathway plays a pivotal role in

regulating inflammation. STAT3 has been reported to be closely

correlated with the pathogenesis of IBD. Deficiency of the myeloid-

derived STAT3 promotes the development of chronic enterocolitis

through activating Th1 cells (165, 166). Similarly, deficiency of the

IEC-specific STAT3 accelerates mucosal inflammation (167). Cul3-

based E3 ubiquitin ligase promotes the proteolysis of nuclear factor

erythroid 2-related factor 2 (Nrf2) and subsequently downregulates

the expression of O-GlcNAc transferase (OGT), which is responsible

for the O-GlcNAcylation of STAT3. Li et al. reported that the O-

GlcNAcylation of STAT3 on T717 inhibited its phosphorylation and

consequently accelerated the intestinal chronic inflammation in

Cul3-deficient myeloid cells (150) (Table 1).
4.3 Rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic systemic AID. Joint pain

and swelling are the prominent symptoms of RA. Anti-citrullinated

protein antibodies (ACPAs), the RA-correlated autoantibody

rheumatoid factor (RF), and C-reactive proteins (CRPs) are

usually upregulated in patients with RA. The pathological

mechanisms of RA include the change of the susceptibility genes

and environmental risk factors. Of these, HLA-DRB1 is the most

important genetic risk factor, while smoking is the main

environmental risk factor (168, 169).
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TABLE 1 Multiple functions of Cullin-RING ligases (CRLs) in autoimmune diseases (AIDs).

AID CRL Function Pathogenesis Modulator Reference

SLE CRL4CRBN Attenuates the
progression of SLE

CRL4CRBN targets the transcriptional factors IKZF1 and IKZF3 for proteolysis by
UPS, leading to the decrease of cell proliferation, plasmablast differentiation, and
IgG secretion of B cells.

Lenalidomide
Pomalidomide
CC-220

(134–138)

SCFFBW7 Accelerates the
progression of SLE

SCFFBW7 induces cell apoptosis by degrading MCL-1. Lysm+FBxw7f/f in SLE mice.
It lowers apoptosis and decreases immune complex accumulation,
glomerulonephritis, glomerular mesangial cell proliferation, and base membrane
thickness in the kidney.

– (141)

IBD SCFFBW7 Promotes the
progression of
colitis

SCFFBW7 mediates the degradation of EZH2 and promotes the CX3CR1int

mononuclear phagocyte recruitment into colitis-affected colon tissues.
– (26)

SCFFBW7 Aggravates the
intestinal
inflammation of
IBD

SCFFBW7 activates the NF-kB signaling pathway by degrading IkB and induces the
aggravation of intestinal inflammation of IBD.

– (25)

SCF Accelerates
intestinal
inflammation

Commensal bacteria generates ROS and butyrate to inhibit the neddylation of
Cul1 and subsequently inhibits the NF-kB and b-catenin signaling pathways.

– (142–146)

SCF Accelerates the
severity of IBD

SCF degrades DEPTOR and activates mTOR, resulting in the acceleration of
mucosal inflammation by enhancing the function of DCs.

MLN4924 (147)

CRL2 Accelerates the
inflammation of
IBD

CRL2 mediates the degradation of HIF and accelerates the severity of IBD. MLN4924 (148, 149)

CRL3 Attenuates the
severity of IBD

CRL3 promotes the degradation of Nrf2 and downregulates the expression of
OGT, resulting in the inactivation of STAT3 and acceleration of IBD.

– (150)

RA SCF Accelerates the
progression of RA

SCF promotes IL-8 production, which increases the recruitment of inflammatory
cells into the damaged joint area of RA.

– (151)

SCF Accelerates the
progression of RA

SCF promotes IkB degradation to activate the NF-kB pathway and promotes RA
progression.

– (152)

SCFFBXL19 Attenuates the
severity of RA

SCFFBXL19 promotes ST2 degradation and abrogates the pro-apoptotic and pro-
inflammatory effects of IL-33 and relieves the symptoms of RA.

– (153)

CRL4CRBN Attenuation the
inflammation of
RA

CRL4CRBN promotes c-Jun degradation and inhibits the production of pro-
inflammatory cytokines and attenuates the inflammation induced by LPS, relieving
the severity symptoms of RA.

– (70)

CRL4B Accelerates the
severity of RA

CRL4B activates the Wnt pathway and increases the production of IL-1b and IL-8
to accelerate the severity of RA.

– (154, 155)

Psoriasis SCF Promotes the
progression of
psoriasis

Cul1 is associated with the development of psoriasis. The mechanism remains
unclear.

– (156)

CRL4DACF2 Attenuates the
severity of psoriasis

CRL4DACF2 promotes NIK degradation and inhibits the non-canonical NF-kB
pathway, leading to the reduction of the production of IL-23 and attenuating the
severity of psoriasis.

– (23)

T1DM CRL3KLHL3 Accelerates the
T1DM
accompanied by
hypertension

In db/db diabetes mouse, PKC phosphorylates KLHL3 on Ser433 and results in
WNK4 accumulation, accelerating hypertension in T1DM.

– (157, 158)

IPEX
syndrome

CRL2VHL Maintains the
homeostasis and
suppressive
capacity of Tregs

The dysfunction of Tregs overactivates autoimmunity and leads to the occurrence
of IPEX. VHL deficiency leads to the dysfunction of Tregs in a HIF-1a/IFN-g/
FOXP3-dependent manner.

– (159)

(Continued)
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Importantly, Cul1 has been identified as one of the susceptibility

genes of RA. Cul1 is often highly expressed in T and B lymphocytes.

Suppression of the expression of Cul1 in T cells will reduce the

production of IL-8. It has been reported that IL-8 plays a pivotal

role in regulating the recruitment of inflammatory cells in the

damaged joint area in RA (151). Another piece of research has also

reported the close association of a promoter and two intronic

polymorphisms of Cul1 with RA and the methotrexate response

in patients with RA (170). Bmi1 regulates the stability of IkBa
through binding with the SCF E3 ubiquitin complex via its N-

terminus after the phosphorylation by IKKa/b. Consistently, Bmi1

deficiency inhibits the NF-kB pathway via the accumulation of

IkBa and attenuates arthritis (152).

Cytokines regulate the progression of RA through influencing the

function of multiple immune cells, including T and B lymphocytes

and mast cells. The IL-33/ST2 axis is closely correlated with the

severity of RA. Pro-inflammatory cytokines are secreted by mast cells

upon the stimulation of IL-33. Moreover, IL-33 could induce

macrophages to produce chemokines and recruit neutrophils in

RA-affected tissues. ST2 is the receptor of IL-33, and ST2

deficiency can relieve the symptoms of RA. IL-33 is highly

correlated with the response of patients with RA to tumor necrosis

factor (TNF) inhibitors (171, 172). SCFFBXL19 was found to promote

the ubiquitination and degradation of ST2 by the 26S proteasome

after phosphorylation on Ser442 by GSK3b and to abrogate the pro-

apoptotic and pro-inflammatory effects of IL-33 (153).

CRL4CRBN attenuates the inflammation induced by

lipopolysaccharides (LPS) in a c-Jun-dependent manner and

relieves the symptoms of inflammation-related diseases such as RA.

CRL4CRBN promotes the K48 linkage ubiquitination and degradation

of c-Jun, therefore inhibiting the production of pro-inflammatory

cytokines such as COX-2, iNOS, IL-1b, and IL-6 (70). Cul4B was

significantly upregulated in the synovium and fibroblast-like

synoviocytes (FLS) of adjuvant-induced arthritis (AIA) rats, which

is a RA rat model. Cul4B promotes the activation of the canonical

Wnt signaling pathway and the production of the pro-inflammatory

cytokines IL-1b and IL-8, accelerating the severity of AIA. Therefore,

MiR-101-3p plays an important role in anti-inflammation in AIA by

reducing the expression of Cul4B (154). The elevated expression of

circ_0015756 in FLS and the synovium of RA upregulates the

expression of Cul4B by inhibiting the expression of miR-942-5p,

consequently promoting the progression of RA by activating the

canonical Wnt signaling pathway (155) (Table 1).
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4.4 Psoriasis

Psoriasis is a prevalent chronic inflammatory skin disease

worldwide. The pathogenesis of psoriasis is complicated. Genetic

susceptibility, depression, smoking, obesity, and streptococcal

infection could induce the occurrence and development of psoriasis.

IL-17 and IL-23 are the key inducers of psoriasis. Targeting IL-17,

IL-23, and TNF-a has been considered as the predominant therapeutic

strategy for the treatment of psoriasis (173, 174). A study based on the

microarray data of a cDNA library indicated that Cul1 is highly

associated with the development of psoriasis (156). CRL4DCAF2

negatively regulates the production of IL-23 through the

ubiquitination and degradation of NIK, which is associated with the

non-canonical NF-kB pathway. Therefore, DCAF2 deficiency induced

the accumulation of NIK, promoted the activation of the NF-kB non-

canonical signaling pathway, and increased the production of IL-23. In

a mouse model, MLN4924 treatment accelerated the severity of

psoriasis through the inactivation of CRLs, including CRL4DCAF2.

Furthermore, DCAF2 DC-conditional knockout mice showed

increased susceptibility to AIDs (23) (Table 1).
4.5 Type 1 diabetes

Type 1 diabetes mellitus (T1DM) is IDDM and is an organ-

specific AID and a severe metabolic disease. T1DM is frequently

accompanied by the occurrence of hypertension. Autoreactive T

cells and other components of the immune system attack pancreatic

B cells to induce the occurrence of T1DM. Currently, multiple

susceptibility genes and environment risk factors associated with

the development of T1DM have been identified. Human leukocyte

antigen (HLA) is one of the major susceptibility genes related to the

autoantigen recognition and immune tolerance of T cells.

Infections, commensal bacteria, and diet are the important

environmental risk factors that influence the development of

T1DM by modulating the functions of the immune system

(175, 176).

Cul3KLHL3 is a SR of E3 ubiquitin ligase and plays an essential

role in hypertension. Kinase with-no-lysine 4 (WNK4), a bona fide

substrate of KLHL3, modulates the activation of the Na–Cl

cotransporter (NCC). The phosphorylation of KLHL3 on Ser433

of the Kelch domain by protein kinase C (PKC) inhibited the

interaction of WNK4 and KLHL3 (177). The phosphorylation of
TABLE 1 Continued

AID CRL Function Pathogenesis Modulator Reference

CRL Maintains the
homeostasis and
suppressive
function of Tregs

Treg-specific deletion of Rbx1, a catalytic subunit of CRL1–4, developed an early-
onset fatal inflammatory disorder by disrupting the stability and suppressing the
capacity of Tregs.

– (160)
f

SLE, systemic lupus erythematosus; IBD, inflammatory bowel disease; RA, rheumatoid arthritis; T1DM, type 1 diabetes mellitus; IPEX syndrome, immune dysregulation, polyendocrinopathy,
enteropathy, X-linked syndrome; UPS, ubiquitination proteasome system; ROS, reactive oxygen species; mTOR, mammalian target of rapamycin; DCs, dendritic cells: HIF, hypoxia-inducible
factor; OGT, O-GlcNAc transferase; SCF, SKP1–Cul1–F-box; LPS, lipopolysaccharides; NIK, NF-kB-inducing kinase; PKC, protein kinase C; WNK4, kinase with-no-lysine 4; VHL, von Hippel-
Lindau.
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KLHL3 by PKC was also observed in the kidney of db/db mice

(157). In streptozotocin-induced T1DM, the expression of KLHL3

was significantly decreased, therefore inducing the activation of the

WNK–NCC cascade. Furthermore, KLHL3 plays a pivotal role in

renal sodium reabsorption in conditions of T1DM (158) (Table 1).
4.6 Immune dysregulation,
polyendocrinopathy, enteropathy, and X-
linked syndrome

Immune dysregulation, polyendocrinopathy, enteropathy, X-

linked (IPEX) syndrome is a multisystem AID with diverse clinical

syndromes including enteropathy, skin manifestations, and

endocrinopathy. Loss-of-function mutations in the transcription

factor forkhead box P3 (FOXP3) are the dominant factors that

induce the occurrence of IPEX (178–180). FOXP3 is mainly

expressed on CD4+CD25+ regulatory T cells (Tregs) and

modulates their development and functions. FOXP3 deficiency

leads to the downregulation of a few of the core signature genes

in Tregs and suppresses the activity of these cells. The dysfunction

of Tregs overactivates autoimmunity and leads to the occurrence of

IPEX (181).

A previous study indicated that the von Hippel-Lindau (VHL)

E3 ubiquitin ligase played a pivotal role in regulating the functions

of Tregs. VHL interacts with Elongins B and C, Cul2, and Rbx1 to

form the CRL2 complex, which mediates the ubiquitination and

subsequent degradation of HIF-1a. Conditional knockout of VHL

in Tregs leads to the accumulation of HIF-1a, which induced the

production of IFN-g. VHL deficiency is accompanied with the

downregulation of FOXP3, which can be reversed by IFN-g
deprivation. In conclusion, VHL modulates the stability and

immunosuppressive functions of Tregs in a HIF-1a/IFN-g/
FOXP3-dependent manner (159). In addition, a recent study has

suggested that Tregs with depletion of Rbx1, a catalytic subunit of

CRL1–4, developed an early-onset fatal inflammatory disorder due

to their disrupted stability and suppressive capacity. Moreover,

deficiency of the Ube2m, but not the Ube2f, NEDDylation

conjugation enzyme in Tregs presented similar but less severe

phenotypes compared to Rbx1 deletion. Therefore, the Ube2m–

Rbx1 axis plays a crucial role in regulating the homeostasis and

function of Tregs (160) (Table 1).
5 Conclusion and outlook

AIDs are chronic inflammation-associated diseases induced by

the dysfunction of the immune system. Overactivated autoreactive

immune cells such as T cells, DCs, and macrophages produce pro-

inflammatory cytokines, including IL-1b, IL-6, IL-17, IL-23, COX-
2, and iNOS, or chemokines that promote the recruitment of

inflammation-associated cells in the affected areas of AIDs.

Ultimately, the tissue injury and the severity of AIDs are further
Frontiers in Immunology 12
accelerated (5). Hyper-activation of the inflammation-associated

signaling pathways such as NF-kB, JAK/STAT, MAPK, and TGF-b
is prevalent during the occurrence and progression of AIDs,

including IBD, SA, and SLE.

Given that the activation of the inflammation-associated

signaling pathways plays critical roles in the initiation and

progression of AIDs, it is important to explore the underlying

mechanisms of the abnormal activation of the key genes related to

AIDs. These mechanisms include the transcriptional regulation of

genes and the PTM of the correlated proteins. Ubiquitination, one

of the PTMs of proteins, plays a pivotal role in regulating their

stability, activation, and localization. The abnormal regulation of

ubiquitination is closely related to the activation of the genes in the

inflammatory pathways and the progression and recurrence of

AIDs (10). CRLs comprise the largest class of E3 ubiquitin ligases

and include more than 300 members that regulate the stability of

about 20% proteins in a proteasome-dependent manner in

mammalian cells (50). The results from clinical and animal model

studies revealed that the dysregulation of CRLs usually functions as

an inducer or an inhibitor in the development of inflammation and

in the progression of AIDs. For instance, SCFFBW7 functions as a

regulator of AIDs in the following aspects: 1) promoting the

degradation of IkB, EZH2, and MCL-1; 2) accelerating the pro-

inflammatory NF-kB signaling pathway; 3) promoting the

recruitment of MPhs into colitis-affected colon tissues; 4)

increasing the apoptosis of macrophages and neutrophils; and 5)

leading to the accumulation of immune complex and inducing the

aggravation of SLE (25, 26, 141). On the other hand, CRL4CRBN

promotes the degradation of IKZF1, IKZF3, or c-Jun, which leads to

the reduction of the secretion of IgG or the pro-inflammatory

cytokines COX-2, iNOS, IL-1b, and IL-6, consequently attenuating

SLE or RA (70, 138) (Table 1).

The development of small molecules targeting CRLs will be a

promising therapeutic approach in the clinical intervention of

AIDs. In line with this notion, treatment with the NEDDylation

inhibitor MLN4924 effectively decreases inflammation through

inhibiting the activation of SCF E3 ligases in IBD (143, 144, 147).

Immunomodulatory imide drugs (IMiDs) such as thalidomide and

its derivatives lenalidomide, pomalidomide, and Iberdomide (CC-

220) act as molecular glue degraders to promote the ubiquitination

and degradation of IKZF1 and IKZF3 by CRL4CRBN, ultimately

relieving the symptoms of SLE (134, 137, 138, 182) (Table 1).

Proteolysis-targeting chimera (PROTAC) technology is another

novel targeted protein degradation (TPD) method that has

rapidly developed in recent years. As bifunctional small

molecules, PROTACs induce the ubiquitination and proteolysis of

target proteins by E3 ubiquitin ligases (183). In addition, small

molecules targeting the interface between CAND1 and Cullins

comprise a new pharmocological strategy based on UPS. A recent

study has shown that the chemical probe C60 perturbs the normal

interaction between CAND1 and Cul1, resulting in the

accumulation of p53, thus inducing the reactivation of EBV from

latency (184). Either small-molecule inhibitors or the emerging
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TPD technology involving molecular glue degraders and PROTACs

could be effective thrapeutic strategies to benefit the intervention of

inflammation and AIDs. In particular, the TPD method, a novel

pharmacological strategy to degrade the protein of interest (POI)

using small-molecule degraders via hijacking CRLs, could be

promising for the treatment of AIDs in the near future.
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