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mice are resilient to hypobaric
hypoxia-induced myocarditis
and arrhythmias due to
enhanced immunomodulation,
metabolic homeostasis,
and antioxidants defense
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Background: Sea-level residents experience altitude sickness when they hike or

visit altitudes above ~2,500 m due to the hypobaric hypoxia (HH) conditions at

such places. HH has been shown to drive cardiac inflammation in both ventricles

by inducing maladaptive metabolic reprogramming of macrophages, which

evokes aggravated proinflammatory responses, promoting myocarditis, fibrotic

remodeling, arrhythmias, heart failure, and sudden deaths. The use of salidroside or

altitude preconditioning (AP) before visiting high altitudes has been extensively

shown to exert cardioprotective effects. Even so, both therapeutic interventions

have geographical limitations and/or are inaccessible/unavailable to themajority of

the population as drawbacks. Meanwhile, occlusion preconditioning (OP) has been

extensively demonstrated to prevent hypoxia-induced cardiomyocyte damage by

triggering endogenous cardioprotective cascades to mitigate myocardial damage.

Herein, with the notion that OP can be conveniently applied anywhere, we sought

to explore it as an alternative therapeutic intervention for preventing HH-induced

myocarditis, remodeling, and arrhythmias.

Methods: OP intervention (6 cycles of 5 min occlusion with 200 mmHg for 5 min

and 5 min reperfusion at 0 mmHg – applying to alternate hindlimb daily for 7

consecutive days) was performed, and its impact on cardiac electric activity,

immunoregulation, myocardial remodeling, metabolic homeostasis, oxidative

stress responses, and behavioral outcomes were assessed before and after
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exposure to HH in mice. In humans, before and after the application of OP

intervention (6 cycles of 5 min occlusion with 130% of systolic pressure and 5

min reperfusion at 0 mmHg – applying to alternate upper limb daily for 6

consecutive days), all subjects were assessed by cardiopulmonary exercise

testing (CPET).

Results: Comparing the outcomes of OP to AP intervention, we observed that

similar to the latter, OP preserved cardiac electric activity, mitigated maladaptive

myocardial remodeling, induced adaptive immunomodulation and metabolic

homeostasis in the heart, enhanced antioxidant defenses, and conferred

resistance against HH-induce anxiety-related behavior. Additionally, OP

enhanced respiratory and oxygen-carrying capacity, metabolic homeostasis, and

endurance in humans.

Conclusions: Overall, these findings demonstrate that OP is a potent alternative

therapeutic intervention for preventing hypoxia-induced myocarditis, cardiac

remodeling, arrhythmias, and cardiometabolic disorders and could potentially

ameliorate the progression of other inflammatory, metabolic, and oxidative

stress-related diseases.
KEYWORDS

hypobaric hypoxia, myocarditis, myocardial remodeling, arrhythmias, remote ischemic
preconditioning, immunomodulation, metabolic homeostasis, antioxidant responses
Introduction

Sea-level residents suffer from altitude sickness when they hike or

visit altitudes above ~2,500 m due to the hypobaric hypoxia (HH)

conditions at such places. Altitude sickness typically presents clinical

manifestations such as shortness of breath, headache, dizziness,

tiredness, mental confusion, and loss of appetite (1). Meanwhile,

recent studies have shown that besides the aforementioned

symptoms, individuals experiencing altitude sickness have

underlying myocarditis and arrhythmias that were either induced

or aggravated by HH (2, 3). Evidently, HH has been shown to drive

cardiac inflammation in both ventricles by inducing maladaptive

metabolic reprogramming of macrophages which evokes

hypersecretion of the proinflammatory mediator – inducible nitric

oxide synthase (iNOS) and cytokines (C-Reactive Proteins,

Interleukin (IL)-1b and IL-18). HH-induced hyperactive

proinflammatory responses expedite adverse cardiac remodeling by

activating and sustaining fibrosis cascades, ultimately resulting in

heart failure and sudden cardiac death (4, 5).

Therapeutic approaches developed against altitude sickness over

the years have mainly been preventive interventions targeted at

circumventing or mitigating the adverse outcomes of HH exposure.

Notably, the use of salidroside (a phenylethanoid glycoside found in

Rhodiola genus plants) and altitude preconditioning (AP) (as known

as intermittent HH preconditioning) prior to visiting high altitudes

have been extensively shown to exert cardioprotective effects (6, 7).

The efficacies of salidroside and AP interventions have been

attributed to their abilities to decrease reactive oxygen species
02
(ROS), induce adaptive regulation of antioxidants and anti-

inflammatory-related pathways as well as enhance tissue

oxygenation to prevent necrosis and apoptosis of cardiomyocytes

(6–9). However, the availability of Rhodiola plants or salidroside is

geographically limited to Europe, North America, and low-Arctic to

high-temperature regions of Asia (10). Similarly, hypoxia chambers

for AP are inaccessible/unavailable to the majority of the population,

and the intervention cannot be applied at one’s convenience before

hiking or visiting high altitudes.

Meanwhile, remote ischemic preconditioning [hereafter referred

to as occlusion preconditioning (OP)] has been extensively

demonstrated to prevent hypoxia-induced cardiomyocyte damage

by triggering endogenous cardioprotective cascade (11–13). These

generally positive outcomes of OP have encouraged its application in

clinical trials and settings to reduce the severity of ischemic injuries

and myocardial damage, even though the underlying mechanisms of

the intervention are still being elucidated.

Here, with the notion that OP can be conveniently applied

anywhere, we sought to explore it as an alternative therapeutic

intervention for preventing HH-induced myocarditis and cardiac

arrhythmia. Herein, we demonstrate the cardioprotective potentials

of OP in HH by comparing its impact on cardiac electric activity,

hypertrophy and injury, immunoregulation, oxidative stress

responses, and behavioral outcomes, with AP’s in HH. Also, we

showed that OP enhances respiratory and oxygen-carrying capacity

in humans. In addition, numerous studies have shown that the b2-
adrenergic receptor (b2AR) confers cardioprotection in stressful

conditions, including hypoxia (14, 15). Hence, we utilized b2AR-
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knockout (b2AR-KO) mice and uncovered that b2AR is involved in

mediating OP-induced cardioprotection in HH. These findings

illustrate OP as a potent alternative therapeutic intervention for

preventing hypoxia-induced myocarditis and as well suggest its

potential to ameliorate other oxidative stress-related diseases.
Methods

Experimental animal model protocols

Eight- to twelve-week-old wild-type (Adrb2+/+) and b2AR-
knockout (Adrb2-/-) FVB male mice were used in this study. The

mice were kept and fed in a hypoxia chamber (Guizhou Fenglei

Aviation Machinery Co., Ltd., Guizhou, China: FLYDWC50-IIA),

and hypobaric hypoxia (HH) was induced by increasing altitude to

3000 m for 10 min, then to 4500 m for 10 min, followed by 5500 m for

20 min before finally increasing to 6000 m altitude for 7 days. Mice in

the control group were kept and fed in a normobaric normoxia (NN)

environment at sea level (with ambient oxygen percentage) for 7 days.

To explore the therapeutic potentials of limb occlusion ischemic

preconditioning, hair was removed from mice’s hindlimbs. Limb

occlusion preconditioning (OP) was performed by applying a 200

mmHg pressure tourniquet for 5 min and allowing 5 min reperfusion

at 0 mmHg. Six cycles of OP were performed daily on alternate

hindlimbs for 7 days. Next, the mice were randomized into two

groups; the first group, (OP) mice, were sacrificed, and the second

group was exposed to HH stepwise as previously described for 7 days.

The latter group was designated as OP prior to HH exposure (OPHH)

(Supplementary Figure 1A). Additionally, we sought to compare the

experimental outcomes from OP and OPHH with altitude

preconditioning (AP) prior to HH exposure (APHH) models;

hence, AP was done by exposing wild-type FVB to HH at 3500

altitudes for 30 min daily, for 7 days. Afterward, the mice were

randomized into two groups; the first group (AP) mice were

sacrificed, and the second group (APHH) mice were exposed to

HH in a stepwise manner as previously described for 7 days

(Supplementary Figure 1B).

At the end of all experimental models, electrocardiography (EKG)

data acquisitions were performed with PowerLab (ADInstruments,

North America), and the mice were euthanatized by cervical

dislocation. Hearts were excised, quickly wet-weighed for

morphometric analysis, and processed for further investigations.

The performed experiments were approved by the Experimental

Animal Centre of Xuzhou Medical University and the Animal

Ethics Committee of the Medical University (permit number: xz11-

12541) and conform to the Guide for the Care and Use of Laboratory

Animals published by the US National Institutes of Health (NIH

Publication, 8th Edition, 2011).
Electrocardiography

Electrocardiography (EKG) data acquisitions were performed

with the 3-lead monopolar needle electrode from PowerLab systems

(ADInstruments, North America), as previously described (16).
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Assays

Enzyme-linked immunosorbent assay (ELISA)
Myocardia lysates were used to examine the concentration of

proinflammatory (iNOS, IL-1b, and IL-18) and anti-inflammatory

biomarkers (Arg-1, IL-10, and TGF-b) and cardiac hypertrophy/

injury markers (ANP and BNP). Sera were used to assess cardiac

troponin I (cTnI) and C-reactive protein (CRP) concentrations. IL-1b
(JL18442; Jianglai Bio. Tech), IL-18 (JL20253; Jianglai Bio. Tech.),

iNOS (JL20675; Jianglai Bio. Tech.), IL-10 (JL20242; Jianglai Bio.

Tech.), TGF-b (JL13959; Jianglai Bio. Tech.), Arg-1 (JL13668; Jianglai

Bio. Tech.), ANP (JL20612; Jianglai Bio. Tech.), BNP (JL12884;

Jianglai Bio. Tech.), CRP (JL13196; Jianglai Bio. Tech.) and cTnI

(JL31923; Jianglai Bio. Tech.) ELISAs were done in triplicates and as

per the manufacturer’s instructions.

NAD/NADH content assay
Using equal weights (0.1 g) of myocardia, the coenzyme I NAD/

NADH contents were assessed using assay kits (BC0310; Solarbio)

and following the manufacturer’s instructions.

Total antioxidant capacity assay
Equal weights (0.1 g) of myocardia were used to evaluate the total

antioxidant capacity (T-AOC). Assay kits (BC1310; Solarbio) were

used according to the manufacturer’s instructions.
Behavioral assessments

Open field test (OFT)
Locomotor activity and exploratory and anxiety-related behavior

of the mice were examined before and after preconditioning or

exposure to HH or NN by using the OFT apparatus. Briefly, the

apparatus consists of a squared box (50cm x 50 cm) with its base

divided into 9 squares; 1 central (zone C), 4 corners (zone B), and 4

peripheries (zone A). Before the initial and subsequent tests, fecal

pellets or urine were cleaned, and the chamber was wiped-dry with

95% ethanol to remove any clues and scent left by the last tested

mouse. The mice were individually placed in zone C and left

undisturbed to explore for 5 min while their locomotion activities

were tracked with video tracking software (ANY-maze version 7.00).
Elevated plus maze (EPM)
Utilizing the EPM apparatus, anxiety-related behaviors were

examined before and after preconditioning or exposure to HH or NN.

In brief, the EPM consists of a plus (+) shaped apparatus with a central

point, two opposite arms enclosed, and the other opposite arms opened.

Before the initial and subsequent tests, fecal pellets or urine were cleaned,

and the arms were wiped-dry with 95% ethanol to remove any clues and

scent left by the last tested mouse. During testing, the plus maze was

elevated ~ 1 m from the floor, and each mouse was placed at the central

point of the open and closed arms, with their head facing the open arm.

The mice were allowed to explore the maze for 5 min while their

locomotion activities and entries into either arm were tracked and

recorded by video tracking software (ANY-maze version 7.00).
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Myocardial macrophage isolations

Mice were euthanized by cervical dislocation; hearts were exposed

and perfused-blanch with iced-cold PBS through the right and left

ventricle by using a 5 mL syringe and 25 G needle. Hearts were then

transferred in 12-well plates containing 1 mg/mL collagenase IV

(Gibco™: 17104019) in 3 mL Hanks’ Balanced Salt Solution (HBSS)

kept on ice and minced with sterile scissors. Minced myocardia were

digested for 45 min at 37°C on a shaker (50 rpm). Next, the plates

were vortexed, kept on ice, and new Pasteur pipettes were used to

dissociate cells mechanically. Obtained suspensions were filtered

through 35 mm strainers into 15 ml tubes containing 10 ml cold

HBSS, centrifuged at 1500 rpm for 5 min, and the supernatants were

discarded. Red blood cells in the pellet were hemolyzed with ACK

buffer (Gibco™: A1049201) and washed twice with PBS. Myocardial

macrophage phenotypes were identified and sorted with FACS (BD

FACSAria™ III) after resuspension and incubation with Fc Blocker

(Invitrogen; 14-9161-73; 1:100), PE-Cy5 anti-CD45 (BD

Pharmingen™; 553082; 1:100), APC anti-F4/80 (BioLegend;

123116; 1:100), FITC anti-CD11b (BioLegend; 101206; 1:100),

PerCP anti-CD86 (BioLegend; 105028; 1:100) and PE anti-CD206

(BioLegend; 141706; 1:100).
Histology, immunohistochemistry, and
biochemical staining

Wheat germ agglutinin (WGA) staining
Cryopreserved heart sections were fixed with 4% formaldehyde for

30 min at room temperature (RT), washed thrice with PBS, and primed

with HBSS for 15 min. Next, without permeabilization, the myocardial

sections were incubated with WGA staining (Thermo Fisher Scientific;

W11261) in the dark for 10min at RT – followed by three timeswashwith

PBS and DAPI counterstaining. Imaging was done at X60 magnification,

and ImageJ (1.52a version; National Institute of Health USA) was used to

assess cardiomyocyte surface area.
Masson’s trichrome staining
Myocardial sections were trichrome stained according to the

manufacturer’s (Solarbio; G1340) instructions. Microscopy was

done at X40 magnification, and collagen volume fractions (CVF)

were analyzed with ImageJ.
Immunohistochemical (IHC) staining
CD86 (Abcam; ab53004; 1:1000) and CD206 (Abcam; ab8918;

1:1000) IHC staining were done as previously described (17), but with

few optimizations. Briefly, frozen sections were used; hence, the

antigen retrieval step in the described experiment was skipped, and

myocardial sections were fixed with 4% formaldehyde for 15 min

prior to staining. Infiltrated CD86+ and CD206+ macrophages were

observed at X40 magnification and quantified with ImageJ.
Oil Red O (ORO) staining
To investigate the metabolic state of the hearts, lipid depositions

in myocardia were assessed by performing ORO staining described by
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the manufacturer (Solarbio; G1261). Lipid depositions were observed

at X40 magnification and quantified with ImageJ.

Periodic Acid Schiff (PAS) staining
To examine the hearts’ metabolic state, glycogen and other

polysaccharide contents of the myocardia were assessed by

performing PAS staining described by the manufacturer (Solarbio;

G1281). PAS-positive areas were observed at X40 magnification and

quantified with ImageJ.
Western blot

Hearts were washed with cold PBS, homogenized, and cocktails of

RIPA buffer, protease, and phosphatase inhibitor (ratio 100:1:1) were

added to extract proteins. Protein sample concentrations were

normalized, electrophoresed on 10-12% gels, and transferred onto

0.45 mm PVDF membrane (Millipore Immobilon®-P; IPVH08100).

Membranes were blocked with 2% BSA in TBST, and proteins of

interest were blotted with the following antibodies: anti-HIF-1a
(Proteintech; 20960-1-AP; 1:1000), anti-HIF-2a (Abcam; ab199;

1:1000), anti-Nrf2 (Proteintech; 16396-1-AP; 1:1000), anti-b2AR
(Abcam; ab182136; 1:1000), anti-Scarb3 (Abcam; ab133625;

1:1000), anti-Slc2a1 (Abcam; ab115730; 1:1000), anti-GATA4

(Abcam; ab84593; 1:1000), GAPDH (Proteintech; 10494-1-AP;

1:1000) and HRP-conjugated Goat Anti-Rabbit IgG(H+L)

(Proteintech; SA00001-2; 1:1000). Membranes were imaged using

enhanced chemiluminescence (Tanon, China).
Quantitative RT-PCR

mRNAs were isolated from myocardial macrophages with

TRIzol™ Reagent (Invitrogen™; 15596026), cDNAs synthesized

using a reverse transcription kit (FSQ107; Toyobo), and qPCR

analysis was conducted by utilizing SYBR Green Master Mix

(Q111-02; Vazyme) according to manufacturer instructions. The

assessed macrophage metabolic genes (Gcdh, Adcd1, Acaa2, Decr1,

Hsd17b4, Hadha, Cpt2, Etfb, Echdc2, Scarb3, mTOR, Slc2a1, Hk2,

Ldha, Aldoc, Fbp1, Pgm2, Gpi1, Pgk1, and Pfkfb3) and their

respective primer sequences are tabulated here (Supplementary

Table 1). GAPDH was utilized as the housekeeping gene, and

mRNAs fold changes were computed by the 2−DDCt method.
Cardiopulmonary exercise test in humans

Before and after the application of OP intervention (6 cycles of 5 min

occlusion with 130% of systolic pressure and reperfusion at 0 mmHg –

alternating upper limb daily for 6 consecutive days), all human subjects

were assessed by cardiopulmonary exercise testing (CPET) (Vyaire

Medical; Vyntus® CPX) on a bicycle ergometer (Stex Fitness; S25U)

using the ramp 10 Watts protocol (10 W increment in workload per

1 min). Data analysis included the following physiological indexes; heart

rate (HR), systolic (Psys) and diastolic (Pdia) pressures, expiratory reserve,

inhalation and exhalation vital capacities,minute ventilation (V’E), carbon

dioxide output (V’CO2), oxygen uptake (V’O2), oxygen pulse (V’O2/HR),
frontiersin.org
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metabolic equivalent of task (MET) and respiratory exchange ratio (RER).

Additionally, oxygen saturation (SPO2) was measured with an ear sensor

probe (Integrated Nonin™).
Statistics

All results in this study are presented as mean ± standard error of

the mean. Statistical analyses were done using GraphPad Prism

(Software version 8.0.2). Unpaired t-test was used for comparing

two groups, one-way ANOVA was used for comparing three or more

groups, and two-way ANOVA was used for grouped data statistical

analyses. P-values less than 0.05 were deemed statistically significant.
Result

OP preserves cardiac electric activity during
hypobaric hypoxia

Electrocardiograms (EKG) of mice post-HH exposure showed overt

distortions in their cardiac electric activity (cEA) in comparison with the

normobaric normoxia (NN) mice (control group). A detailed look at the

EKG parameters revealed HHmice hadmodest increments in their heart

rates (HRs) butwith significant prolongations ofQT,QTc, JT, andTpeak-

Tend intervals, and ST height, P duration, and R and T amplitudes

(Figures 1A–G; Supplementary Table 2). Taken together, the

aforementioned EKG alterations indicate that HH mice had severe

arrhythmias resulting from chronic exposure to hypoxia. To determine

the efficacy of OP’s impact on OPHHmice, we employed AP and APHH

mice groups for comparison. The EKG data indicated that, similar to AP,

OP prevents disruption of cEAwith initial slight elevations of HRs and its

normalization when exposed to HH. However, we uncovered that OP
Frontiers in Immunology 05
preserved cEA better than AP because unlike in OPHHmice –QT, QTc,

JT, and Tpeak-Tend intervals, and ST height remained significantly

increased in APHH compared to NNmice.
OP mitigates myocardial hypertrophy, injury,
and fibrosis during hypobaric hypoxia

Mice exposed to HH without any preconditioning exhibited

significant body weight (BW) loss and increased heart weight/body

weight ratio (Figures 2A, B), depicting cardiac hypertrophy. Next,

cardiomyocyte surface area, atrial natriuretic peptide (ANP), brain

natriuretic peptide (BNP), and GATA4 expressions were ascertained to

validate the incidence of cardiac hypertrophy (Figures 2C–H). These

indexes and biomarkers were substantially increased in HH mice. Also,

the extent of ANP, BNP, and GATA4 upregulation in HH heart revealed

the incidence of cardiac injury. Compared with HH and APHH mice,

OPHH mice showed the least weight loss and moderate increases in the

prior mentioned cardiac hypertrophy and cardiac injury indexes. In

addition, utilizing trichrome staining, we observed massive fibrosis in

HH hearts (Figures 2I, J). Meanwhile, like APHH, OPHHmice had only

modest collagen depositions with no significant differences in comparison

to the NN mice. These findings indicated that employing the OP

intervention before exposure to chronic HH confers cardioprotection by

mitigating excessivemyocytehypertrophy, injury, andmyocardialfibrosis.
OP induces adaptive immunomodulation
and metabolic homeostasis during
hypobaric hypoxia

To understand how severe hypoxia affects immunoregulation in the

myocardia, we investigated the phenotype of macrophages infiltrating
D

A

B E F GC

FIGURE 1

OP preserves cardiac electric activity during hypobaric hypoxia. (A) Representative electrocardiography (EKG) of Normobaric Normoxia (NN), Hypobaric
Hypoxia (HH), Altitude Preconditioned (AP), Altitude Preconditioned before HH exposure (APHH), Occlusion Preconditioned (OP) and Occlusion
Preconditioned before HH exposure (OPHH) mice. P wave: atrial depolarization; Q wave: Interventricular septum depolarization; R wave: Ventricular
depolarization; S wave: Purkinje fibres depolarization; J wave: Early ventricular repolarization; T wave: End of ventricular repolarization. (B-G) Graphical
presentation of EKG parameters including; Heart Rate (HR), QT Interval, corrected QT Interval (QTc), JT Interval, Tpeak Tend Interval, and ST Height. (n=
5-9 mice per experimental group). $p<0.05, $$p<0.01, $$$p<0.001 HH vs NN; &p<0.05 APHH vs AP; #p<0.05 OPHH vs OP; *p<0.05, **p<0.01. Data are
expressed as mean ± SEM. Data were analyzed using one-way ANOVA, followed by Tukey’s post hoc analysis.
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the heart after chronic exposure to HH. We observed a substantial

influx of CD86+ (proinflammatory) macrophages into the myocardial

of HH mice, while the CD206+ (anti-inflammatory) populations were

repressed (Figures 3A, B; Supplementary Figures 2A-C). Contrarily,

CD206+ macrophages outnumbered the CD86+ cells when AP and OP

interventions were applied prior to HH exposure. Remarkably, the

degree of CD86+ macrophage infiltrations across all the groups

corresponded to sera levels of the damage-associated molecular

pattern (DAMP) – cardiac troponin I (cTnI) (Figure 3C). Further

investigations assessed the concentrations of inflammatory mediators

and cytokines in the hearts. The proinflammatory response mediator –

iNOS, was overtly upregulated in HHmice but modestly in AP and OP

hearts and without any significant alterations in APHH and OPHH

hearts; meanwhile, the contrast was observed for the anti-inflammatory

mediator, arginase (Arg)-1 (Figures 3D, E). Similarly, we found that

proinflammatory cytokines (IL-1b and IL-18) were significantly

upregulated in HH but only moderately in APHH and OPHH mice

hearts (Figures 3F, G). Additionally, the systemic inflammatory mark

(CRP) was prominently upregulation in HH but not in APHH and

OPHHmice (Supplementary Figure 2D). However, like Arg-1, the anti-

inflammatory cytokines (IL-10 and TGF-b) secretions were repressed
Frontiers in Immunology 06
in HH but modestly increased in APHH and OPHH hearts

(Figures 3H, I). These findings demonstrated that just like AP, the

OP intervention circumvents HH-induced myocarditis by minimizing

cardiomyocyte necrosis and DAMP secretions – ultimately preventing

the induction of hyperactive proinflammatory responses.

Furthermore, besides cardiac fibroblast activation, hypoxia-

induced glycolysis shift orchestrates immune cells reprogramming

toward proinflammatory phenotypes (18–20). Hence, the metabolic

states of the infiltrated CD45+F4/80+CD11b+ cells and the entire

myocardial were assessed. We observed that lipid metabolism-related

gene expressions (Gcdh, Adcd1, Acaa2, Decr1, Hsd17b4, Hadha,

Cpt2, Etfb, Echdc2, and Scarb3) in the macrophages isolated from

HH hearts were mostly downregulated. In contrast, glycolysis-related

genes (Slc2a1, Hk2, Ldha, Aldoc, Fbp1, Pgm2, Gpi1, Pgk1, and

Pfkfb3) and the cellular metabolic regulator – mechanistic target of

rapamycin (mTOR) mRNA levels were upregulated. Intriguingly, we

found only modest downregulation of the lipid metabolism-related

genes and slight increases in mRNA levels of the glycolysis-related

and mTOR genes in CD45+F4/80+CD11b+ cells obtained from APHH

and OPHH hearts (Supplementary Figure 2E). Consistently, Oil red O

and PAS staining showed HH mice myocardial had abundant lipid
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FIGURE 2

OP mitigates myocardial hypertrophy, injury, and fibrosis during hypobaric hypoxia. (A) Graphical representation of Body Weight (BW) trends of 14 days
period by Normobaric Normoxia (NN), Hypobaric Hypoxia (HH), Altitude Preconditioned (AP), Altitude Preconditioned before HH exposure (APHH),
Occlusion Preconditioned (OP) and Occlusion Preconditioned before HH exposure (OPHH) mice (n= 7-15 mice per experimental group). (B) Graphical
presentation of Heart Weight (HW)/BW ratio (n= 5-10 mice per experimental group). (C-H) Indexes for cardiac hypertrophy assessment, including;
Representative Wheat germ agglutinin (WGA) staining and Graphical presentation of Cardiomyocyte surface area (n=8-12 cells per section per 4-6 heart
per group), Atrial natriuretic peptide (ANP) and Brain natriuretic peptide (BNP) concentrations (n=6-8 hearts per group), Representative Immunoblotting
of GATA4 and its Graph plot (n= 3 hearts per group). ELISA were performed in triplicates. Immunoblots were performed in triplicates, and each blot band
in the representative blot is an independent biological sample. (I, J) Representative Masson’s trichome staining and Graphical presentation of collagen
volume fraction (CVF) showing the extent of fibrosis among experimental groups (n= 3-6 sections per 4,5 hearts per group). $p<0.05, $$$p<0.001 HH vs
NN; &p<0.05, &&&p<0.001 APHH vs AP; ##p<0.01, ###p<0.001 OPHH vs OP; *p<0.05, **p<0.01, ***p<0.001. Data are expressed as mean ± SEM. Data were
analyzed using one-way anova, followed by Tukey’s post hoc analysis.
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depositions compared to the NN mice, while glycogen and other

polysaccharide contents were substantially depleted. Meanwhile,

OPHH mice myocardial revealed a balance constitution of lipid

metabolism and glycolysis substrates, as similarly observed in

APHH hearts (Figures 3J–L). These phenomena were validated by

immunoblotting myocardial protein lysate, which revealed that HH

hearts had decreased expression of the fatty acid transporter (Scarb3).

In contrast, the glucose transporter protein (Slc2a1) was increased –

indicating a glycolysis shift in HH hearts but not entirely in APHH

and OPHH hearts (Figures 3M–O). Overall, these findings indicate

that the OP intervention exerts immunomodulation by adaptively

regulating metabolic shifts to prevent glycolytic reprogramming of

macrophages towards proinflammatory phenotypes during HH.
Frontiers in Immunology 07
OP induces adaptive modulation of
oxidative stress responses

Redox homeostasis (balance between ROS and antioxidants)

signaling are major alterations occurring during chronic hypoxia

(7). Hence, to elucidate the underlying mechanisms employed by

the OP intervention during HH, we investigated its impact on

oxidative stress regulators – hypoxia-inducible factors (HIF-1a and

HIF-2a) and antioxidant response element-dependent genes

regulator, nuclear factor erythroid 2–related factor 2 (Nrf2).

Compared to the control group (NN), we observed significant

decreases of HIF-1a expression in HH mice hearts and further

sharp declines in the protein levels when AP or OP interventions
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FIGURE 3

OP induces adaptive immunomodulation and metabolic homeostasis during hypobaric hypoxia. (A, B) Representative flow cytometry of myocardial
macrophages gated on CD45+CD11b+F4/80 and Graphical plots of CD86+ and CD206+. Normobaric Normoxia (NN), Hypobaric Hypoxia (HH), Altitude
Preconditioned (AP), Altitude Preconditioned before HH exposure (APHH), Occlusion Preconditioned (OP), and Occlusion Preconditioned before HH
exposure (OPHH) mice hearts (n=4 hearts per group). $p<0.05 vs NNCD86+;

##p<0.01, ###p<0.001 vs HHCD206+ (C) Graphical presentation of sera cardiac
troponin I (cTnI) concentrations. (D, E) Inflammatory mediators; Inducible nitric oxide synthase (iNOS) and Arginase-1 (Arg-1) concentrations assessed by
ELISA using myocardia lysates. (F-I) Inflammatory cytokines; Interleukin (IL)-1b, IL-18, IL-10, and transforming growth factor (TGF)-b concentrations
assessed by ELISA using myocardia lysates. All ELISA were performed in triplicates (n= 5-8 mice per group). (J-L) Representative Oil Red O (ORO) and
Periodic Acid Schiff (PAS) staining of myocardial sections and their respective graphical presentations showing lipid and glycogen depositions
percentages (n=4-6 sections per 4-6 mice per group). Yellow outlined boxes are original myocardial portions and red outline boxes are their zoomed-in
(5x) inserts to show positive stained area (indicated with black arrows). (M-O) Representative Immunoblotting of Scarb3 and Slc2a1 and their respective
Graphical plots; each blot band in the representative blot is an independent biological sample (n= 3 hearts per group). $$p<0.01, $$$p<0.001 HH vs NN;
&&p<0.01 APHH vs AP; *p<0.05, **p<0.01, ***p<0.001. Data are expressed as mean ± SEM. Data were analyzed using one-way ANOVA, followed by
Tukey’s post hoc analysis.
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were applied before HH exposure. Conversely, we observed that HIF-

2a and Nrf2 expressions were reduced substantially in HH but

modestly upregulated in APHH and OPHH mice hearts

(Figures 4A–D). Nicotinamide adenine dinucleotide (NAD+) and

NADH ratio are good predictors of the redox homeostasis state (21);

as such, NAD+ and NADH contents in the heart were assessed. The

outcomes demonstrated that AP and OP increased NAD+/NADH

ratio modestly compared to NN. Secondly, HH hearts had a ~60%

decrease in NAD+ and ~35% increase in NADH contents, thereby

decreasing the NAD+/NADH ratio compared with NN, APHH, and

OPHH hearts (Figures 4E–G). This indicated increased ROS with

deficient antioxidant defenses in HH hearts but not in APHH and

OPHH hearts which employed AP and OP interventions, respectively.

The total antioxidant capacity assays (T-AOC) performed with

myocardial lysates validated the prior statement. T-AOC of HH

hearts reduced significantly but remained unaltered in APHH and

OPHH, compared to NN hearts (Figure 4H). Thus, similar to AP, the

OP intervention reinforces antioxidant responses to confer protection
Frontiers in Immunology 08
against hypoxia-induced oxidative stress damage – improving

survival rates of OPHH compared to HH mice (Figure 4I).
OPHH mice are resilient to HH-associated
maladaptive behavioral outcomes

Since OP intervention prevented myocarditis and distortion of cEA in

OPHH mice, we next tested whether it influenced behavioral outcomes.

We observed that HH mice exhibited the most dullness among the

experimental groups. Utilizing the open field test (OFT) to validate our

observation, it was determined that the HH mice had the most decreases

in locomotive function – with the least total distance moved, average

velocity, andmobile duration compared to NN, APHH, and OPHHmice.

Also, HH mice exhibited significant immobile duration in the OFT, but

this was not the case for APHH and OPHH mice (Figures 5A–F). Thus,

similar to AP in APHH, the OP intervention resulted in only modest

reductions of locomotive functions in OPHH mice.
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FIGURE 4

OP induces adaptive modulation of oxidative stress responses. (A-D) Representative Immunoblotting of Hypoxia-inducible factors (HIF)-1a, HIF-2a, and
nuclear factor erythroid 2–related factor 2 (Nrf2), and their respective Graphical plots; each blot band in the representative blot is an independent
biological sample (n= 4 hearts per group). Normobaric Normoxia (NN), Hypobaric Hypoxia (HH), Altitude Preconditioned (AP), Altitude Preconditioned
before HH exposure (APHH), Occlusion Preconditioned (OP), and Occlusion Preconditioned before HH exposure (OPHH) mice hearts. (E-H) Antioxidants
state indexes; Graphical plots of the concentrations of redox cofactors, Nicotinamide adenine dinucleotide (NAD)+hydrogen (NADH) and their ratio, as
well as the Total antioxidant capacity (T-AOC) of the myocardia (n=8 hearts per group). (I) Graphical plot of survival data in Kaplan-Meier estimator (n=18
mice per group). $p<0.05, $$p<0.01, $$$p<0.001 HH vs NN; &p<0.05 APHH vs AP; #p<0.05 OPHH vs OP; **p<0.01, ***p<0.001. Data are expressed as
mean ± SEM. Data were analyzed using one-way ANOVA, followed by Tukey’s post hoc analysis. Survival curves were analyzed with the Kaplan-Meier
estimator.
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In addition, most HH mice were observed to restrict their

movement to the peripheries (zone A) and corners (zone B) but

avoided the central (zone C) of the OFT apparatus, thereby, had the

least relative entries into zone C (Figures 5G, H) – a phenomenon

shown to depict an increase in anxiety-related behaviors (22).

Intriguingly, neither APHH nor OPHH mice exhibited the same

exploratory behavior as HH mice, although they were all exposed to

chronic hypoxia. The elevated plus maze (EPM) was used to confirm

increased anxiety-related behaviors in HH mice. Most HH mice

refrained from exploring the EPM apparatus’s open arms and

mostly limited their movement to within the closed arm; hence,

they had the least relative open arm entries (Figures 5I, J). Conversely,

APHH and OPHH mice still demonstrated exploratory patterns in

both open and closed arms similar to NN and the respective

preconditioning groups. Taken together, the findings from OFT

and EPM indicated that chronic hypoxia exposure increased

susceptibility to developing anxiety-related behavior, as reported

previously (22). Meanwhile, like AP to APHH, OP intervention
Frontiers in Immunology 09
makes OPHH mice resilient to hypoxia-induced negative

behavioral outcomes.
OP enhances respiratory and oxygen-
carrying capacity in humans

Still, in attempts to elucidate the underlying mechanism employed

by the OP intervention, we assessed its impact on respiratory and

oxygen-carrying capacity in humans. Cardiopulmonary exercise tests

were performed on the healthy human subjects before (BOP) and

after (AOP) the application of OP for 6 consecutive days. We found

that HRs and diastolic and systolic blood pressures were slightly

decreased in AOP compared to BOP (Figures 6A–C). Also, the

inhalation and exhalation vital capacities were increased

substantially while expiratory reserve volume elevated modestly in

AOP compared to BOP (Figures 6D–F). The changes observed in the

aforementioned indexes suggest that OP induces adaptive respiratory
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FIGURE 5

OPHH mice are resilient to HH-associated maladaptive behavioral outcomes. (A-H) Locomotive and exploratory behavioral assessment indexes from
Open field test (OFT), including; Representative plots of Total distance moved and its graphical presentation, Representative plots of Average velocity,
Mobile duration, and Immobile duration, and their graphical presentations and Representative heat-maps of Relative zone entries and its graphical
presentation (n=6-10 mice per group). Normobaric Normoxia (NN), Hypobaric Hypoxia (HH), Altitude Preconditioned (AP), Altitude Preconditioned
before HH exposure (APHH), Occlusion Preconditioned (OP), and Occlusion Preconditioned before HH exposure (OPHH) mice. (I, J) Anxiety-related and
exploratory behavioral assessment indexes from Elevated plus maze (EPM), including; Representative heat-maps of Relative arm entries and its graphical
presentation (n=6-10 mice per group). $p<0.05 HH vs NN; *p<0.05. Data are expressed as mean ± SEM. Data were analyzed using one-way ANOVA,
followed by Tukey’s post hoc analysis.
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response and lowers the risk of pulmonary injuries and complications.

Additionally, we found that after performing OP, minute ventilation

(V’E), carbon dioxide output (V’CO2), oxygen uptake (V’O2), oxygen

saturation (SpO2), oxygen pulse (V’O2/HR), and the metabolic

equivalent of task (MET) were all significantly improved during the

maximal workload (Max Watts) phase of exercising with the cycle

ergometer (Figures 6G–L). Thus, OP enhanced the oxygen-carrying

capacity and endurance in humans – an adaptation shown to mitigate

the deleterious effects of severe hypoxia (23). Lastly, we observed that

in AOP, the respiratory exchange ratio (RER) was lowered and took

more time to reach ≥1.00 compared to BOP (Figure 6M).

Consolidating our observation in the mice myocardia and

macrophages, the lowered RER in AOP showed that OP induces

mechanisms that mitigate the extent of metabolic shift to glycolysis.
Frontiers in Immunology 10
b2AR is implicated in OP-induced adaptive
responses against hypobaric hypoxia

Thepleiotropicnatureofb2ARmakes it an essentialmediator formost

adaptive responses to stressful conditions in the heart and

immunoregulation (14). Concordant with previous reports, we found

b2ARoverexpressed inHHcompared toNN(24).Meanwhile,AP,APHH,

OP, andOPHHhearts hadmodest upregulation of b2AR (Supplementary

Figure3A,B).Byutilizingb2ARknockout (Adrb2-/-)mice,weexplored the

b2AR’s involvement in HH-induced myocarditis and arrhythmias and

OP-induced cardioprotective against HH. Consistently, the OP

intervention prevented significant body weight loss due to hypoxia in

the OPHHAdrb2+/+ mice; however, the contrast was observed in the

OPHHAdrb2-/- mice (Figure 7A). While the HRs remained similar in
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FIGURE 6

OP enhances respiratory and oxygen-carrying capacity in humans. (A-M) Cardiopulmonary Exercise Test (CPET) indexes for respiratory and oxygen
carrying capacity in humans (n=14 human volunteers), Before occlusion preconditioning (BOP) and After occlusion preconditioning (AOP), including;
Graphical plots of Heart Rates (HR), Systolic blood pressures (Psys), Diastolic blood pressures (Pdia), Vital capacity of inhalation (IN), Vital capacity of
exhalation(EX), Expiratory reserve volume, Minute ventilation (V’E), Carbon dioxide output (V’CO2), Oxygen uptake (V’O2), Oxygen saturation (SpO2),
Oxygen pulse (V’O2/HR), Metabolic equivalent of task (MET) and Respiratory exchange ratio (RER). Rest, Warm-up, Second ventilation threshold (VT2),
Maximal workload (Max Watts) and Recovery are timepoints of interest during the CPET. *p<0.05, **p<0.01 AOP vs BOP. Data are expressed as mean ±
SEM. Data were analyzed using an unpaired t-test for comparing two groups and two-way ANOVA for grouped analysis.
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OPHHAdrb2+/+ and OPHHAdrb2-/-, the EKG revealed arrhythmias in the

latter (Figure 7B; Supplementary Figure 3C). We found that despite the

occurrence of other forms of arrhythmias, the deletion of b2AR (in

HHAdrb2-/-) circumvented the long QT, QTc, JT, and Tpeak-Tend

intervals observed in HHAdrb2+/+. Intriguingly, this phenomenon was

reverted when OP was applied to Adrb2-/- mice prior to HH exposure.

The arrhythmias worsened in OPHHAdrb2-/- as QT, QTc, JT, and Tpeak-

Tend intervals prolongations and distortion of other EKG indexes were

aggravated, compared to OPHHAdrb2+/+ (Figures 7C, D; Supplementary

Figure 3D, E and SupplementaryTable 3). These observed outcomes show

that b2AR is involved in the OP-induced signaling cascades to preserve

cEA during hypoxia.

Also, checking inflammatory markers, we determined the role

of b2AR in OP-induced immunomodulation. At the baseline,

proinflammatory responses (CRP and iNOS) were found

further aggravated in HHAdrb2-/- than in HHAdrb2+/+ mice. While

the OP intervention significantly mitigated CRP and iNOS

upregulations in OPHHAdrb2+/+ , this phenomenon was

abolished by b2AR obliteration in OPHHAdrb2-/- mice (Figures 7E,

F). Additionally, we found Arg-1 expression sustained in

OPHHAdrb2+/+ but downregulated in the OPHHAdrb2- / -

(Figure 7G). Overall, the loss of adaptive immunoregulation in

OPHHAdrb2-/- compared to OPHHAdrb2+/+ mice suggests that

b2AR-mediated signaling cascades are implicated in OP-induced

immunomodulatory mechanisms.
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Next, as oxidative stress-responsive genes were adaptively

modulated in the wild-type OPHH mice heart, we examined

whether b2AR participated in HIF-1a, HIF-2a, and Nrf2

expressions regulation. We observed that, unlike HIF-2a and Nrf2,

HIF-1a was stabilized in HHAdrb2-/- and also refractory to OP in

Adrb2-/-, but not in the Adrb2+/+ hearts – suggesting that b2AR
mediates the destabilization of HIF-1a (Figures 7H–K). Conversely,

HIF-2a and Nrf2 expressions were sustained in OPHHAdrb2+/+ but

not in OPHHAdrb2-/- hearts, indicating that b2AR scaffolded the

stabilization of these proteins. Further, we investigated the impact

of these oxidative stress-responsive proteins alterations on the

antioxidant capacity and found that obliteration of b2AR (in

OPHHAdrb2-/-) weakened the cardioprotective antioxidant defense

mechanisms induced by OP against hypobaric hypoxia (Figure 7L).

Thus, these findings taken together shows that b2AR participates in

multiple adaptive responses induced by OP to circumvent the adverse

outcomes of chronic HH exposure.
Discussions

The fear of experiencing altitude sickness deters civilian workers,

hikers, tourists, and even defense personnel from going to places

2500 m above sea level for occupational or leisure purposes. Also, the

possibility of HH at such altitudes to induce or aggravate myocarditis,
DA B

E F G

I

H

J K L

C

FIGURE 7

b2AR is implicated in OP-induced adaptive responses against hypobaric hypoxia (A) Graphical presentation of Body weight (BW) alteration trends among Wild
type (Adrb2+/+) and b2AR knockout (Adrb2-/-) mice in experiment groups; Normobaric Normoxia (NN), Hypobaric Hypoxia (HH), Altitude Preconditioned (AP),
Altitude Preconditioned before HH exposure (APHH), Occlusion Preconditioned (OP) and Occlusion Preconditioned before HH exposure (OPHH) (n=5-15
mice per group). (B-D) Graphical presentation of electrocardiogram (EKG) indexes, including; Heart Rate, QT Interval, and JT interval (n=5-9 mice per group).
(E-G) Inflammatory biomarker; C-reactive protein, Inducible nitric oxide synthase (iNOS), and Arginase-1 (Arg-1) concentrations assessed by ELISA. Assays
were performed in triplicates (n=4 mice per group). (H-K) Representative Immunoblotting of Hypoxia-inducible factors (HIF)-1a, HIF-2a, and nuclear factor
erythroid 2–related factor 2 (Nrf2), and their respective Graphical plots; each blot band in the representative blot is an independent biological sample (n= 3
hearts per group). (L) Graphical plots of the concentrations of Total antioxidant capacity (T-AOC) of myocardia (n=4 hearts per group).$p<0.05,
$$p<0.01, $$$p<0.001 vs NNAdrb2+/+;

&p<0.05, &&p<0.01, &&&p<0.001 vs HHAdrb2+/+;
##p<0.01 vs OPAdrb2+/+;

¥p<0.05, ¥¥p<0.01, ¥¥¥p<0.001 vs
OPHHAdrb2+/+;

!!!p<0.001 vs NNAdrb2-/-;
%p<0.001 vs HHAdrb2-/-;

£p<0.05, ££p<0.01, £££p<0.001 vs OPAdrb2-/-. Data are expressed as mean ± SEM. Data
were analyzed using two-way ANOVA.
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arrhythmia, and ultimately heart failure due to adverse cardiac

remodeling has made clinicians to advised those prone to

cardiovascular complications and physiologically unprepared

individuals against visiting high altitudes (25–27). Studies over the

years have made attempts at elucidating the underlying

pathomechanisms of altitude sickness and have generally

demonstrated that the clinical manifestations observed are due to

HH-induced maladaptive oxidative stress responses (imbalance

between ROS and antioxidants), metabolic dysregulation and

dampened anti-inflammatory defenses (7, 28, 29). Currently, AP

and salidroside are the primary preventive therapeutic interventions

being employed to circumvent or mitigate the adverse effects of HH

exposure. Even so, inaccessibility to hypoxic chambers and

unavailability of salidroside due to geographical limitations are the

respective drawbacks of these interventions. Our study aimed to

explore OP – which is potent in preventing hypoxia-induced

damages (11–13), as an alternative therapeutic intervention for

HH-induced myocarditis and arrhythmias. To ascertain the efficacy

of OP intervention (in OPHH), its impacts on EKG, cardiac

architecture, immunomodulation, oxidative stress regulation, and

behavior outcomes were compared with APHH.

Concordant with previous studies (30, 31), we found that HH-

induced tachycardia and prolongations of QT, QTc, JT, and Tpeak-

Tend intervals, and ST height, P duration, and R and T amplitudes.

Reportedly, these observations are because at HH; there is an increase

in sympathetic activity, which triggers prolongation of repolarization,

resulting in arrhythmia, heart failure, and sudden death (30).

However, AP has been demonstrated to prevent significant

disruption of cEA (32); consistently, our findings showed similar

outcomes. Intriguingly, we observed that OPHH mice had fewer

alterations in the EKG indexes than APHHmice compared to the NN

mice. This led to the conclusion that OP preserved cEA modestly

better than AP during HH exposure.

Furthermore, unlike in HH mice, we observed that BW losses were

only modest, and the extent of cardiomyocyte hypertrophies, injury, and

fibrosisweremitigated inAPHHandOPHHhearts. Lippl et al. and others

have similarly shown that at high altitudes, there is a loss of appetite hence

the excessive BW (33, 34). Also, to compensate for oxygen demand,

hypertrophy cascades are induced, resulting in excessive enlargement of

cardiomyocytes and their apoptosis/necrosis, which in turn drives

proinflammatory and fibrotic responses (33, 35). Interestingly, both AP

and OP have been shown to lessen adverse cardiac remodeling during

hypoxic or ischemic events, just as we observed – and it has also been

suggested that both interventions might have similar underlying

mechanisms (32, 36). While OP’s cardiac cardioprotection has been

demonstrated mainly against ischemia/reperfusion injury, we show here

for the first time that OP intervention is potent against HH-induced

myocardial hypertrophy, injury, and fibrosis.

Myocarditis scaffolded by unresolved proinflammatory responses

drives the maladaptive remodeling of the heart in HH (5); hence we

investigated OP’s effect on immunomodulation. Typically observed at

injured tissues or inflamed sites (37), we found massive infiltrations of

proinflammatory (CD86+) macrophages in HH myocardia, whiles the

reparative (CD206+) macrophage populations were significantly less.

Also, inflammatory cytokines concentrations were altered in a similar

fashion in theHHmyocardia. In contrast, employing theOP intervention

facilitated anti-inflammatory defenses while minimizing the
Frontiers in Immunology 12
proinflammatory responses in OPHH, as AP did in APHH. While we

demonstratedOP’s immunoregulation inOPHH;Gorjipour et al.’s earlier

works had shown similar observations where the OP intervention

enhanced the elevation of IL-10 while downregulating the circulation IL-

8 to confer cardioprotection in coronary artery bypass graft surgery (38).

The metabolic state of inflammatory cells crucially influences their

immune responses and functions (39); as such, we sought to ascertain

themetabolic state of infiltratedmacrophages and the entiremyocardia in

further investigations. Interestingly, we found that glycolysis-related genes

had increased ~3 folds while that lipid metabolism-related genes were

downregulated in macrophages isolated from HH hearts. These findings

are consistentwithmetabolic shifts,which facilitate biased reprogramming

of macrophages toward proinflammatory phenotypes (19, 39). Similarly,

we observed that the entire HHmyocardia had increased lipid deposition

while glycogen and other polysaccharide contents were substantially

depleted – all of which are consistent with glycolysis shift (40).

Contrarily, OP intervention modulated metabolic homeostasis by

preventing complete glycolysis shift (41), thereby impeding the

reprogramming of macrophages towards proinflammatory phenotypes

in OPHH, as similarly done by AP in APHH.

Also, disruption in redox homeostasis is a cofactor in HH-induced

cardiac dysfunction (7), andourfindings consolidated this fact, asHIF-1a,
HIF-2a andNrf2 expressionwere declining inHHmice hearts. Even so, it

wasobserved thatbyemployingOPintervention,HIF-2aandNrf2butnot
HIF-1a expressions were rescued and sustained in OPHH mice hearts.

Similar outcomes were found in APHH mice hearts. These findings

indicated that, like AP, OP stimulates adaptive oxidative stress

regulation by reinforcing antioxidant responses. Consistently, OP has

been shown to improve antioxidant defenses by enhancing NAD+ levels,

which directly promotes Nrf2 antioxidant activities (42, 43). Next, we

investigated OP’s impact on the NAD+/NADH ratio. We found that the

OP intervention had increased the NAD+/NADH ratio and prevented

significant decreases in OPHH hearts, which contributed to sustaining

their T-AOC like in APHH hearts, while we observed declines in HH

hearts. In line with our finding, Morris-Blanco et al. previously

demonstrated that OP did increase NAD+/NADH ratio via protein

kinase C epsilon (PKCe) in neuronal-glial (42), hence it is suggestive

that similar mechanisms might be involved here. Overall, compared to

HH, survival rates improved in OPHH and APHH.

Cardiovascular events promote anxiety-related behavior and vice

versa; as such, it has become imperative to assess the behavioral

outcomes of interventions targeted at improving cardiac health (44,

45). Typically, HH has been shown decrease locomotive functions

while increasing the levels of anxiety and depression in humans (1).

These were confirmed in the HH mice model as they had decreased

total distance moved, average velocity, and mobile duration and

mostly refrained from the central zone and open arms in the OFT

and EPM apparatuses, respectively, during their locomotive and

exploratory activities. Contrarily, like APHH mice, OPHH mice

combed throughout zones and arms of the OFT and EPM

apparatuses – indicating that similar to AP (22), the OP

intervention makes mice resilient to HH-induced anxiety-related

behavior and decreased locomotive functions.

To have prevented HH-induced cardiac remodeling, it was

hypothesized that the OP intervention must have induced mechanisms

to facilitate adequate tissue oxygenation. Surprisingly and in validating our

hypothesis, CPET parameters in AOP showed enhanced respiratory and
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oxygen-carrying capacity and endurance in humans as V’E, V’CO2, V’O2,

SpO2, V’O2/HR, and MET were all substantially improved at Max Watts

(Maximal workload). Concordantly, it has been shown that OP mitigates

declines in regional oxygenation to confer cardioprotectionwhen exposed

to HH (46). Also, OP modestly delayed the time for RER=1 in AOP

compared to BOP; hence, indicating that the intervention induces

mechanisms that mitigate the extent of metabolic shift to glycolysis, just

as shown earlier and reported by others (41).

Lastly, we had previously demonstrated the adaptive roles of

b2AR in cardioprotection and immunoregulation during stressful

conditions (14); hence we sought to investigate its implication in

OP-induced cardioprotective against HH. We observed that HHmice

characterized with arrhythmias had b2AR expressions drastically

increased in their hearts. Consistent with our observation, Lang

et al. demonstrated that the overexpression of b2AR significantly

increases the predisposition to the occurrence of arrhythmias (47).

Surprisingly, b2AR deletion prevented long QT, QTc, JT, and Tpeak-

Tend intervals in HHAdrb2-/-, mimicking the effect of b-blockers in
preventing long QT syndrome (48). Meanwhile, most of the adaptive

responses we observed in OPHHAdrb2+/+ mice were abolished in

OPHHAdrb2-/- mice as their BW losses were substantial, arrhythmia

worsened, proinflammatory responses heightened against anti-

inflammatory responses, and antioxidant defenses declined

significantly. Consistent with our observations, carvedilol (a b-
blockers) was shown to have abolished the cardioprotection

conferred by OP during cardiac surgery (49).

In conclusion, by preserving cEA, mitigating cardiac remodeling,

facilitating adaptive immunomodulation and oxidative stress responses,

sustaining homeostasis in metabolic shifts, causing resilient against

anxiety-related behaviors, and enhancing respiratory and oxygen-

carrying capacity, OP demonstrates as a potent alternative therapeutic

intervention for preventing HH-induced adverse effects on cardiac and

overall health. Even so, OP is not recommended as an intervention for

individuals onb-blockermedications prior to their visit tohigh altitudes/

HH environments, as these medications blunt the cardioprotection

conferred by the intervention and conversing aggravates myocarditis

and arrhythmias. Lastly, immunoregulatory and metabolism

homeostasis induced by OP is suggestive of its potential to ameliorate

the progression of other inflammatory, metabolic and oxidative stress-

related diseases.
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