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Epstein-Barr virus DNA
seropositivity links distinct
tumoral heterogeneity and
immune landscape in
nasopharyngeal carcinoma
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Changqing Xie5*‡ and Jianxing He1*‡
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Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China, 2Department of
Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, The State Key Laboratory of
Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key
Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China, 3Department of
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Background: Epstein-Barr virus (EBV) DNA seronegative (Sero-) and seropositive

(Sero+) nasopharyngeal carcinoma (NPC) are distinctly different disease subtypes.

Patients with higher baseline EBV DNA titers seem to benefit less from anti-PD1

immunotherapy, but underlying mechanisms remain unclear. Tumor

microenvironment (TME) characteristics could be the important factor affecting

the efficacy of immunotherapy. Here, we illuminated the distinct multicellular

ecosystems of EBV DNA Sero- and Sero+ NPCs from cellular compositional and

functional perspectives at single-cell resolution.

Method: We performed single-cell RNA sequencing analyses of 28,423 cells from

ten NPC samples and one non-tumor nasopharyngeal tissue. The markers,

function, and dynamics of related cells were analyzed.

Results: We found that tumor cells from EBV DNA Sero+ samples exhibit low-

differentiation potential, stronger stemness signature, and upregulated signaling

pathways associated with cancer hallmarks than that of EBV DNA Sero- samples.

Transcriptional heterogeneity and dynamics in T cells were associated with EBV

DNA seropositivity status, indicating different immunoinhibitory mechanisms

employed by malignant cells depending on EBV DNA seropositivity status. The

low expression of classical immune checkpoints, early-triggered cytotoxic T-

lymphocyte response, global activation of IFN-mediated signatures, and

enhanced cell-cell interplays cooperatively tend to form a specific immune

context in EBV DNA Sero+ NPC.
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Conclusions: Collectively, we illuminated the distinct multicellular ecosystems of

EBV DNA Sero- and Sero+ NPCs from single-cell perspective. Our study provides

insights into the altered tumor microenvironment of NPC associated with EBV

DNA seropositivity, which will help direct the development of rational

immunotherapy strategies.
KEYWORDS
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1 Introduction

Nasopharyngeal carcinoma (NPC) is a type of tumor derived

from epithelial cells of the nasopharynx. Epstein-Barr virus (EBV)

infection is the predominant pathogenic factor of NPC (1). Integrated

EBV DNA can be detected in almost all EBV-associated NPC (2). The

EBV DNA fragments released from infected host cells during

replication or apoptosis offer rationales for EBV DNA detection

using serum samples in managing NPC (3–5). Our previous studies

have indicated that circulating EBV DNA load is a valuable predictive

biomarker for treatment response and outcomes (6–8). EBV DNA

seronegative (Sero-) and seropositive (Sero+) NPCs might represent

two distinct subtypes of the disease (8). However, the intrinsic feature

of NPC that connects with EBV DNA seropositivity has not

been illuminated.

Recently, several clinical trials have demonstrated impressive

antitumor effects of immune checkpoint inhibitors (ICIs) in

patients with advanced NPC (9). However, the objective response

rate of immunotherapy is suboptimal and only about 20-30%. Post-

hoc analysis of the POLARIS-02 study showed that patients with

higher baseline EBV DNA titers benefit less from anti-PD1

immunotherapy, but the underlying mechanisms remain unclear

(10, 11). This indicates there is a unique tumor microenvironment

(TME) in NPC with detectable EBV DNA in comparison to the one

with undetectable EBV DNA. A better understanding of the TME

heterogeneity between EBV DNA Sero- and Sero+ NPCs would be

critical for the rational development of optimal therapeutic strategies

in the future.

Single-cell RNA sequencing (scRNA-seq) can dissect

transcriptional features at single-cell resolution to reflect cellular

heterogeneity (12, 13). Several studies have used scRNA-seq to

depict the TME in NPC, demonstrating a complex landscape

involved in intratumoral heterogeneity, immune dynamics, and

cell-cell interplays (14–17). However, these studies mainly

compared the TME between malignant and nonmalignant

samples. No analysis is available to illuminate the atlas of the TME

in NPC with different EBV DNA statuses. Here, for the first time,

we comprehensively compared the multicellular ecosystem of

NPC with different EBV DNA seropositivity statuses. Our data

provided in-depth insights into the altered TME of NPC associated
02
with EBV DNA seropositivity, which will help develop rational

immunotherapy strategies.
2 Materials and methods

2.1 Patient samples

The analyzed scRNA-seq data were deposited at the Gene

Expression Omnibus database under accession code: GSE150430

(14). All samples were collected at Sun Yat-sen University Cancer

Center. Written informed consent was obtained from all participants.

Ethical approval was obtained from the Institutional Review Board of

Sun Yat-sen University Cancer Center. The inclusion criteria for NPC

samples we used were (1):. pathologically confirmed NPC (2);

treatment-naive (3); EBV positive as confirmed using in situ

hybridization of EBV encoded small RNAs in tumor tissue (4);

available baseline EBV DNA data. Ten EBV-related NPC samples

and one chronic nasopharyngitis sample were included in the final

analysis. The study samples’ sequencing parameters and patient

characteristics are summarized in Table S1 and Table S2, respectively.

EBV DNA Sero- was defined as undetectable EBV DNA in peripheral

blood. EBV DNA Sero+ was defined as detectable EBV DNA in plasma

with a titer of 103 copies/mL or greater because of the detection limits of

the plasma EBV DNA assays used in the study.
2.2 ScRNA-seq data processing

The preprocessed gene expression matrices for study samples

were converted to a Seurat object using the Seurat package (version

4.1.0) in R (18). Low-quality cells with unique molecular identifiers

< 200, expressed genes > 9000 or < 200, or mitochondrial genes >

20%, were removed. In the remaining cells, the gene expression

dataset was normalized using the NormalizeData function and

scaled with linear regression using the ScaleData function. In data

scaling, the variables used to regress were “S.Score” and “G2M.Score”

calculated by the CellCycleScoring function (19). The included

features were the top 6000 highly variable genes selected by the

FindVariableFeatures function.
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2.3 Determination of major cell types
and their subpopulations

The selected HVGs were summarized by principle component

analysis (PCA) to reduce dimensionality, and the first 20 principle

components were further projected using the Uniform Manifold

Approximation and Projection (UMAP) (20). The number of

principal components used was determined by an Elbow plot. We

performed cell clustering using the FindClusters function with default

parameters. The cell clusters were annotated as different major cell

types based on DEGs and well-recognized marker genes. For sub-

clustering analysis, we performed the second-round PCA reduction

and UMAP projection separately on cells within each major cell type.

The number of principal components and resolution used in each

major subtype were dataset-dependent. The second-round dimension

reduction and clustering revealed 28 distinct subpopulations in T/NK,

B, and myeloid cells.
2.4 Identification of DEGs and gene set
enrichment analysis

DEGs for each cluster were identified with the FindAllMarkers

function using the MAST test. The differentially over-expressed genes

in the specific group compared to the other group were identified with

the FindMarkers function using the MAST test. We used the

clusterProfiler package (version 4.0) for GO terms and KEGG

pathways enrichment analysis. We also applied the Gene Set

Variation Analysis (GSVA) implemented in the GSVA package

(version 1.40.1) to estimate the pathway activities. Differences in

pathway activities between groups were calculated using a linear

model provided with the Limma package (version 3.48.3).
2.5 Quantification of differences in
transcriptional signatures between
major cell types in EBV DNA Sero-
and Sero+ NPCs

We assessed differences in transcriptional profiles across major

cell types in EBV DNA Sero- and Sero+ NPCs using the

Bhattacharyya distance method implemented in the distdimscr

package (version 0.0.0.0.9) (21, 22). The distdimscr quantifies these

differences by examining the distance between cell types in a high-

dimensional space. Here, we only measured distances between cell

types that had 300 or more cells present across all samples from each

tumor type (here, EBV DNA Sero- vs. Sero+) in PCA. We embedded

all cell types in a new PCA space based on highly variable genes and

retained the top 10 PCs for subsequent analysis. We then sampled 300

cells from each tumor type for 100 replicates. The Bhattacharyya

distance between cells sampled regardless of EBV DNA status was

used to generate a background distribution for statistical comparison.

The Wilcoxon rank-sum test was conducted to compare the EBV

DNA Sero- vs. Sero+ cell types against the random selection for each

cell type.
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2.6 Single-cell copy-number variation and
clonality analysis

The large-scale chromosome CNVs in epithelial cells were

inferred from raw gene expression matrices using the inferCNV

package (version 1.10.1) (19). We performed inferCNV analysis

with the following parameters: “denoise”, default Hidden Markov

Model (HMM) settings, “subclusters” mode with “random_trees”

method, and a value of 0.1 for “cutoff”. Epithelial cells extracted

from the normal sample were used as reference data. To distinguish

malignant and non-malignant epithelial cells in NPC samples, K-

means clustering analysis was performed separately on epithelial cells

derived from each of the eight tumor samples and the non-tumor

sample according to CNV scores. Cells of the tumor samples in the

cluster that predominantly contained cells from the normal sample

were regarded as non-malignant cells. In contrast, the cells with high

CNV scores in other clusters were identified as malignant cells.

Consulting with the genome annotation data (GRCh38 version),

each CNV was further converted into a p- or q-arm level change

according to its position and annotated as either a gain or a loss. After

data conversion, subclones containing identical arm-level CNVs were

collapsed, and trees were restructured to represent subclonal CNV

architecture. The UPhyloplot2 plotting algorithm was used for the

visualization of intra-tumor evolutionary trees (23, 24).
2.7 Intratumoral transcriptional
heterogeneity and intertumor co-expression
modules

Consensus Non-negative Matrix factorization (cNMF, version

1.4) implemented by Python was used to infer gene expression

programs from the scRNA-Seq data (25). A total of 50 gene

expression programs from the eight tumor samples with at least 50

epithelial cells. We next determine the underlying biological functions

of each of the 50 gene expression programs using Gene Set

Enrichment Analysis (GSEA) based on their top 50 rank genes.

Hierarchical clustering based on pairwise correlation coefficients

calculated from each possible GEP pair was further performed to

identify potential co-expression modules. We identified six potential

co-expressed gene modules. To determine the gene signature of each

co-expression module, we combined the top 50 genes of each meta-

gene expression program. We calculated the average weighted score

of each gene according to the NMF load. Finally, the top 50 genes with

the highest weighted scores were defined as the gene signature of the

corresponding co-expression module.
2.8 Calculation of enrichment scores for
gene signatures or modules

For scRNA-seq data, we calculated the module/signature

enrichment scores on a single-cell level using the AddModuleScore

function provided by the Seurat package. For bulk RNA-seq data, we

calculated module/signature enrichment scores for each sample using
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the Mann-Whitney U statistic provided by the UCell package (version

1.44.2). Details on gene signature datasets we used were summarized

in the supplement (Table S3). These gene data sets were collated based

on reviewing relevant literature reports.
2.9 Correlation of malignant signatures
and survival

We assessed the associations of the malignant signatures and

survival outcomes in a bulk RNA-seq cohort (GSE102349), which

consisted of 113 NPC samples (26). Among 113 NPC samples, 88

samples with available survival data were used for subsequent survival

analysis. We determined the optimal cutpoints for gene expression

signatures using the maximally selected rank statistics from the

‘maxstat’ R package (version 0.7.25).
2.10 Single-cell regulatory network
inference and clustering analysis

We inferred gene regulatory networks using the SCENIC package

(version 1.2.4) implemented in R (27). The gene regulatory networks

are inferred based on co-expression modules and TFs motif

enrichment analysis from scRNA-seq data. We calculated and

ranked the activities of TFs, as measured by Regulon Specificity

Score (RSS), using the AUCell package (version 3.12) (28).
2.11 Trajectory analysis

The pseudotime trajectories of malignant cells and CD8+ T cells

were inferred with the Monocle 2 package (version 2.22.0). Only genes

with high dispersion across cells were used in the trajectory analysis.

Dimension reduction was performed with the reduceDimension

function using the “DDRTree” method and a value of 2 for

“max_components”. We ordered and visualized cells using the

plot_cell_trajectory function. Genes that separated cells into two

differentiated cell states were identified by the Branched Expression

Analysis Modeling (BEAM) implemented by the BEAM function.

Branch-dependent genes with a q-value less than 10-4 were classified

with hierarchical clustering using the plot_genes_branched_heatmap

function. Genes that changed along with the pseudotime were

identified with the differentialGeneTest functiom and visualized with

plot_pseudotime_heatmap function. The GO terms enrichment

analysis for the genes in each cluster was performed to characterize

the biological functions.

The CytoTRACE (Cellular (Cyto) Trajectory Reconstruction

Analysis using gene Counts and Expression) computational

method, another robust trajectory analysis tool provided in the

CytoTRACE package (version 0.3.3), was performed to validate the

Monocle 2 inferred linear transition (29). CytoTRACE can infer the

direction of differentiation from scRNA-seq data without any

prior knowledge.
Frontiers in Immunology 04
2.12 RNA expression-based stemness index
of malignant cells

We assessed the stemness of malignant cells using the RNA

expression-based stemness index (mRNAsi). The mRNAsi was

proposed by Malta et al. using the One Class Linear Regression

(OCLR) algorithm based on pluripotent stem cell samples from the

Progenitor Cell Biology Consortium dataset (https://www.synapse.

org) (30). The generated mRNAsi is a standardized value between 0

and 1; the closer it is to 1, the stronger the cell’s stemness. We applied

the model to the scRNA-seq dataset to calculate the mRNAsi of each

malignant cell.
2.13 Cell-cell communication

We performed ligand-receptor analyses using the CellChat

package (version 1.1.3) to compute cell-cell communication from

single-cell transcriptomics data. CellChat has built ligand-receptor

interactions for human in the CellChat database. The database

considers known interactions between ligands, receptors, and

cofactors. CellChat quantifies the cell-cell communication

probability and identifies significant cell-cell interactions. CellChat

can compare cell-cell communication patterns between two scRNA-

seq datasets and identify significant signaling changes across

different conditions.
2.14 Statistics analysis

All statistical analyses were performed using R (version 4.1.0) or

Python (version 3.9.5). The differences between groups were analyzed

by chi-square test, student t test, Wilcoxon test, Pearson correlation

test, and Kruskal-Wallis test, when appropriate. All tests were two-

sided and P < 0.05 was considered as statistical significance.
3 Results

3.1 Single-cell expression atlas in EBV-
associated NPC

We obtained single-cell transcriptome sequencing data from ten

NPC samples and one non-tumor nasopharyngeal tissue for

bioinformatics analysis (Figure 1A, Table S1, S2). The ten NPC

samples comprised three EBV DNA Sero- and seven EBV DNA

Sero+ NPCs. After data processing and quality control (Figure S1), a

total of 28,423 single cells were subsequently analyzed. We conducted

major cell-type annotation based on classical gene markers

(Figure 1B). Four major cell types were identified: epithelial cells, T/

NK cells, B cells, and myeloid cells (Figures 1C, D). The cell

composition in each sample, along with patient characteristics, are

provided in Figure 1E. The distribution of these cell types differed

significantly between the EBV DNA Sero- and Sero+ NPC groups
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(Figure 1F). The proportions of epithelial cells and myeloid cells were

higher in the EBV DNA Sero- group while those of T/NK cells and B

cells were higher in the EBV DNA Sero+ group. We then evaluated

differences in transcriptional profiles between major cell types in EBV

DNA Sero- and Sero+ groups using the Bhattacharyya distance

(Figure 1G). Epithelial cells had the most considerable differences.

The mean fold change between groups and random samples varied

from 21.8-fold (epithelial cells) to 6.2-fold (T/NK cells). The above

data revealed significant shifts in cellular compositions and

transcriptomics between EBV DNA Sero- and Sero+ NPCs,

suggesting a distinct TME context may be linked to EBV

DNA seropositivity.
Frontiers in Immunology 05
3.2 Complex clonal evolution of EBV-
associated NPC malignant cells

We next analyzed eight NPC samples that each sample contained

at least 50 epithelial cells from the individual sample, including two

EBV DNA Sero- and six EBV DNA Sero+ samples. We used large-

scale CNVs to distinguish the malignant cells from the non-malignant

cells and probe the clonal structure of each tumor (Figures 2A, B). We

identified 5,726 malignant cells from eight NPC samples for further

analyses, The inferred CNV profiles indicated that deletions in

chromosomes 3p, 9p, 11q, 14q, and 16q and amplifications in

chromosomes 12q were frequent in NPC (Figure 2C), which were
A

B D

E F

G

C

FIGURE 1

The landscape profiling of single cells in EBV DNA Sero- and Sero+ NPCs. (A) Schematic representation of the overall study design. (B) Classical cell
markers were used to annotate major cell types as represented in the heatmap plot. (C) UMAP plot of single cells was classified into four major cell
types. (D) UMAP plot of the above single cells was colored according to sample origin. (E) The fraction of each major cell type across 11 samples, along
with clinical characteristics of each sample as indicated. (F) The fraction of each major cell type according to their origins from normal tissue, EBV DNA
Sero- or Sero+ samples. (G) Quantification of differences in transcriptional profiles between cell types in EBV DNA Sero- and Sero+ samples using the
Bhattacharyya distance. Each dot is a sub-sampling of 300 cells in principal component analysis space for EBV DNA Sero- and Sero+ samples or a
random sampling of 300 cells independent of sample type. The height of the bar represents the mean of the sub-samples. P values are calculated with
100 replicates using a Wilcoxon rank-sum test comparing the EBV DNA Sero- vs. Sero+ cell types against the random selection for each cell type.
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consistent with previously reported whole-exome sequencing results

(31, 32). The clonality analysis revealed the complexity of typical and

atypical CNV events in NPC (Figure 2D). Typical CNV events

dominate the chromosomal landscape. Interestingly, we also
Frontiers in Immunology 06
observed multiple subclonal typical and atypical CNV events in

some samples. This result indicated that canonical CNV events do

not constantly occur in a single CNV event but can be generated in an

evolving genome. Several previous studies have reported that tumors
A

B

D

C

FIGURE 2

Single-cell copy-number variation (CNV) and clonality analysis. (A) Heatmap showed the large-scale CNVs of epithelial cells from one non-tumor tissue and
eight NPC tumors. CNVs were inferred based on scRNA-seq data. (B) K-means clustering analysis was performed on epithelial cells derived from tumor
samples (e.g., P12) and the non-tumor sample according to CNV scores (top panel). Violin plot showed the CNV scores for each cluster derived from
K-means clustering (bottom panel). Epithelial cells of the tumor samples in the cluster (cluster 1) that predominantly contained cells from the normal sample
were regarded as non-malignant cells. In contrast, the cells with high CNV scores in other clusters were identified as malignant cells. (C) The summary CNV
profiles of malignant epithelial cells from each of the eight patients. CNVs were categorized by the chromosome arm and labeled as gain or loss in single
cells. Color in the heatmap represented the ratio of the corresponding CNV events in the single cells from each individual sample. (D) Evolutionary trees of
the single cells from each of the eight tumor samples. The tree branches are delineated according to the percentage of cells in the subclone containing the
corresponding CNVs. The typical CNVs in each sample were labeled in the clonality tree. These trees were further modified manually using Adobe Illustrator
for better layout following the developer’s suggestion.
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can evolve with the development of unknown atypical CNV

subclones, which may contribute to tumor progression (24, 33).
3.3 Heterogeneity and differentiation
trajectory of malignant cells from EBV DNA
Sero- and Sero+ NPCs

We next investigated the intertumor and intratumor

heterogeneity of malignant NPC cells. We first used cNMF to

identify a total of 50 gene expression programs that were

preferentially co-expressed by subpopulations of malignant cells

within each tumor across all samples (Figure 3A). Correlation

clustering combined with GSEA was used to characterize these

meta-programs into underlying co-expressed gene modules. We

identified six co-expression modules (Figure 3B). We then analyzed

the relationship between gene signatures of the modules and survival

outcomes in bulk RNA-seq data of an NPC cohort (GSE102349, n =

88). Cell cycle signature, Epi-Diff 1 signature, and immune-related

signature were significantly associated with progression-free survival

(Figure 3C). The co-expressed gene modules were differentially

expressed in EBV DNA Sero- and Sero+ NPC cells (Figure 3D).

Specifically, NPC cells from EBV DNA Sero+ samples have higher cell

cycle scores indicating higher proliferative capacity. Differential gene

expression analysis showed that CDKN2A, ATF3, CXCL10, and

interferon (IFN) stimulated genes (IFI6, IFIT3, IFI44L, IFITM1,

etc.) were significantly upregulated in EBV DNA Sero+ NPC cells

(Figure S2), suggesting more active EBV viral activity. We further

used GSVA to reveal cancer hallmarks pathways. Notably, the results

exhibited more cancer hallmarks pathways enriched in EBV DNA

Sero+ samples, including IFN a/g response, hypoxia, p53, and TNF-a
signaling via NFk-b pathways (Figure 3E). Nevertheless, a set of

transcription factors (TFs) was upregulated in EBV DNA Sero+

tumor cells, evidenced by SCENIC analysis (Figure 3F). Among

them, the expression of genes regulated by ATF3, JUN, IRF7, MYC,

and JUNB showed highest regulon activity (Figure 3G).

We next explored the dynamic transitions of NPC cells by

inferring the developmental trajectories using Monocle2

(Figure 4A). The pseudotime analysis showed that EBV-associated

NPC cells experienced three potential differentiation states. The

distribution of cell states in tumor cells with different EBV DNA

statuses varied significantly, that the EBV DNA Sero- tumor cells

predominated at the beginning of the trajectory path (state 1),

whereas most EBV DNA Sero+ tumor cells were at a terminal state

(state 3) (Figures 4B, C). In addition, we used the CytoTRACE

algorithm and OCLR algorithm to quantify the developmental

potential and stemness index of tumor cells, respectively

(Figures 4D, E). EBV DNA Sero+ NPC cells showed low-

differentiation potential and higher stemness index than EBV DNA

Sero- NPC cells (Figure 4F), which indicated the high aggressiveness

of EBV DNA Sero+ NPC. Next, we visualized modules of genes that

shared similar lineage-dependent expression patterns using the

radiation heatmap (Figure 4G). The result indicated that cell states

2 and 3 had more such genes related to ribonucleoprotein complex,

mitochondrial translation, and translational termination pathways.

Besides, neutrophil and T cell-mediated immunity pathways were

upregulated in the differentiation trajectory of cell state 3.
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Furthermore, the SCENIC analysis revealed that STAT1/2, ATF4,

JUNB, IRF1/7, and other TFs related to cell signal transduction and

IFN response pathways were highly activated in cell state 2, while cell

state 3 had upregulated TFs of THAP11, MYC, ATF3, and JUN that

related to cellular stemness, stress response, and cellular senescence

pathways (Figure 4H).

The above data revealed significant alterations in transcriptomics

and differentiation between EBV DNA Sero- and Sero+ NPC

malignant cells, suggesting EBV seropositivity is strongly associated

with NPC malignant cell development.
3.4 Transcriptional heterogeneity and
dynamics in T cells are linked to EBV DNA
seropositivity status

A total of 10,039 T/NK cells were analyzed and grouped into 16

clusters. Based on the DEGs (Figure S3A) and function-related

markers (Figure S3B), the 16 clusters were classified into four CD8+

T cell subtypes (Cluster 12/13: proliferating T cells; Cluster 1/14:

effector memory T cells [Tem cells]; Cluster 7/10: granzyme K-positive

[GZMK+] exhausted T cells [Tex cells]; Cluster 6: IFN-stimulated

genes-positive [ISG+] T cells), five CD4+ T cell subtypes (Cluster 3/5:

naive T cells [Tn cells]; Cluster 4: ISG
+ T helper cells [Th cells]; Cluster

9: proliferating regulatory T cells [Treg cells]; Cluster 2: resting Treg

cells; Cluster 8/11: suppressive Treg cells), and two natural-killer T

(NKT) cell subtypes (Cluster 15: cytotoxic NKT cells; Cluster 16:

resting NKT cells) (Figure 5A). The proportion of T cell subtypes

differed among patients (Figure S3C) and patients with different EBV

seropositivity status (Figure 5B).

The overall pathway analysis in CD8+ T cells with GSVA revealed

that pathways of cytotoxicity, NK cell functions, antigen processing,

and Toll-like receptors were upregulated in EBV DNA Sero+ CD8+ T

cells, which is consistent with activated immune defendant machinery

to fight against EBV activation (Figure 5C). Remarkably, cytotoxic

and IFN-g signatures were elevated in EBV DNA Sero+ samples,

while naïve, effector memory, and exhaustion signatures were elevated

in EBV DNA Sero- samples (Figure 5D). According to the cytotoxic

and exhausted signatures (Figure 5E), CD8+ T cells were further

grouped into four functional subtypes (CytLowExhLow, CytLowExhHigh,

CytHighExhLow, and CytHighExhHigh). EBV DNA Sero+ group had

more CytLowExhHigh CD8+ T cells and fewer CytHighExhLow CD8+ T

cells (Figure 5F), suggesting immunosuppressive TME associated

with EBV DNA seropositivity status. In addition, certain classical

inhibitory markers, such as CTLA4, LAG3, and HAVCR2 were

upregulated EBV DNA Sero- CD8+ T cells, whereas other

inhibitory markers, such as PDCD1, TIGHT, ENTPD1, and TOX

were upregulated in EBV DNA Sero- CD8+ T cells (Figure 5G). These

indicated different immunoinhibitory mechanisms employed by

malignant cells depending on EBV DNA seropositivity status and

may be helpful to guide the future development of immunotherapy

strategy based on EBV seropositivity status.

In comparing cell composition, ISG+ CD8+ T and CD8+ Tem

levels were elevated in EBV DNA Sero+ samples, whereas GZMK+

CD8+ Tex and proliferating CD8+ T levels were elevated in EBV DNA

Sero- samples (Figure S3D). We further explored the dynamic

differentiation lineages and cell transitions of these CD8+ T cell
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subtypes by inferring the pseudotime trajectories (Figure 5H). This

analysis showed a developmental trajectory that mainly began with

the ISG+ CD8+ T cells, bifurcated into either the CD8+ Tem cells or the

GZMK+ CD8+ Tex, and ended with proliferating CD8+ T cells

(Figure 5I). CD8+ T cell subtypes showed relatively similar
Frontiers in Immunology 08
distribution patterns along with the pseudotime in samples with

different EBV DNA statuses, except that ISG+ CD8+ T cells

exhibited a peaked distribution at the very beginning (Figure 5J).

Overall, EBV DNA Sero+ CD8+ T cells presented a lower pseudotime

score compared with EBV DNA Sero- CD8+ T cells (Figure 5K).
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FIGURE 3

Malignant cells profiles between EBV DNA Sero- and Sero+ NPCs. (A) Heatmap shows the six gene expression programs decoded from a representative
tumor (P01) using non-negative matrix factorization algorithm, along with the top 5 genes marked. (B) Heatmap depicts the pairwise correlations of 50
intra-tumor gene expression programs derived from 8 tumors. The correlation clustering identified six co-expression modules across the tumors. (C)
Associations of the six co-expression modules and progression-free survival were evaluated in an NPC cohort (GSE102349, n = 88) and summarized in
the forest plot. (D) Comparisons in gene expression for the six co-expression modules according to the EBV DNA status. P values were calculated using
the Wilcoxon rank-sum test. (E) GSVA analysis reveals enriched hallmark pathways in EBV DNA Sero- vs. Sero+ malignant cells. (F) Heatmap shows the
activity of transcription factors (TFs) in malignant cells derived from EBV DNA Sero- vs. Sero+ samples. (G) EBV DNA Sero+ sample-specific TFs were
ranked by the Regulon Specificity Score. The top 5 activated TFs were indicated.
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These results indicated that the cytotoxic T-lymphocyte response may

be triggered early in EBV DNA Sero+ NPC. We next examined the

transcriptional changes related to the differentiation process and

found that the CD8+ T cell differentiation lineages could be

classified into four major phases with distinct enriched GO

pathways (Figure 5L).

We next examined the cell composition and transcriptome

heterogeneity of CD4+ T cells driven by EBV DNA status. Overall,
Frontiers in Immunology 09
the EBV DNA Sero+ group had a higher proportion of Treg cells (53.3

vs. 35.0%) than the EBV DNA Sero- samples. The EBV DNA Sero+

group had more ISG+ Th cells (17.3% vs. 3.4%) and resting Treg cells

(22.4% vs. 9.8%) but fewer proliferating Treg cells (8.7% vs. 45.1%)

than that in EBV DNA Sero- group. A recent report suggested that

ISG+ Th cells might represent a fraction of Treg cells that responded to

type I IFNs in TME during activation (34). The total IL2R, inhibitory,

and costimulatory signatures were all elevated in the EBV DNA Sero-
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FIGURE 4

Development trajectory of malignant cells from EBV DNA Sero- and Sero+ NPCs. (A) Development trajectory of malignant cells colored by EBV DNA
status (upper panel). Each cell was colored from blue to red and scaled by pseudotime scores (inlet panel). The cell density distribution of the
pseudotime-ordered malignant cells from EBV DNA Sero- and Sero+ samples (lower panel). (B) Development trajectory of malignant cells derived from
EBV DNA Sero- samples (left panel) and Sero+ samples (right panel). Cells were colored by cell states. (C) Bar graph shows the percentages of EBV DNA
Sero- and Sero+ malignant cells across different cell states. P value was calculated by the Cochran-Armitage Test. (D) Development trajectory of
malignant cells colored by the CytoTRACE scores. (E) Development trajectory of malignant cells colored by the mRNAsi scores. (F) Violin plot shows the
expression levels of the CytoTRACE and mRNAsi scores between EBV DNA Sero- and Sero+ malignant cells. P values were calculated using the
Wilcoxon rank-sum test. (G) Radiation heatmap shows the lineage-dependent gene expression patterns along the transformation of cell fate. (H)
Heatmap showing the activated transcription factors in malignant cells across different cell states.
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FIGURE 5

Transcriptional heterogeneity and dynamics in T cells are linked to EBV DNA status. (A) UMAP plot of T cells was grouped into 11 cell subtypes and
indicated by color. (B) The proportion of 11 T cell subtypes in different sample origins. (C) GSVA analysis of enriched cancer immune pathways in CD8+ T
cells derived from EBV DNA Sero- vs. Sero+ samples. (D) Violin plots shows the expression levels of the naïve, cytotoxic, effector memory, exhaustion,
and IFN-g signatures in EBV DNA Sero- and Sero+ CD8+ T cells. (E) Two-dimension density plot of the cytotoxicity and exhaustion states in EBV DNA
Sero- and Sero+ CD8+ T cells. Cells are partitioned into four functional subtypes, including CytLowExhLow, CytLowExhHigh, CytHighExhLow, and
CytHighExhHigh stats. (F) Violin plots shows the ratios of the four functional CD8+ T cell subtypes in EBV DNA Sero- and Sero+ CD8+ T cells. (G) Violin
plot shows the expression levels of inhibitory markers in EBV DNA Sero- and Sero+ CD8+ T cells. (H) Development trajectory of CD8+ T cell subtypes.
Each cell was colored from blue to red, scaled by pseudotime score (inlet panel). (I) The cell density distribution of the pseudotime-ordered CD8+ T cell
subtypes. The area under the density curves was colored from blue to red and scaled by pseudotime scores. (J) The cell density distribution of the
pseudotime-ordered CD8+ T cell subtypes in EBV DNA Sero- and Sero+ samples. (K) Cumulative distribution function shows the distribution of
pseudotime-ordered CD8+ T cell subtypes in EBV DNA Sero- and Sero+ samples. A rightward shift of the curve indicates increased pseudotime scores.
(L) The differentially expressed gene along the pseudotime were hierarchically clustered into four subclusters. The enriched GO terms in each cluster
were indicated. (M) Violin plot shows the expression levels of IL2R, inhibitory, and costimulatory signatures in EBV DNA Sero- and Sero+ CD4+ T cells.
(N) GSEA shows that the significantly up-regulated pathways in the EBV DNA Sero+ CD4+ T cells. (O) GSEA shows that the significantly down-regulated
pathways in the EBV DNA Sero+ CD4+ T cells.
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CD4+ T cells (Figure 5M). The result suggested that Treg cells were

more activated in EBV DNA Sero- NPC and had a more

immunosuppressive context than the EBV DNA Sero+ NPC. GSEA

showed that the hypoxia, IFN-a response, and KRAS signaling were

significantly upregulated in the EBV DNA Sero+ samples

(Figure 5N), whereas E2F targets, epithelial-mesenchymal

transition, and G2M checkpoint were upregulated in the EBV DNA

Sero- samples (Figure 5O).
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3.5 Diversity and transcriptional
heterogeneity in B cells

In total, 8592 B cells were identified and grouped into seven

subsets according to the DEGs and classic markers (Figures S4A, B,

Figure 6A), including memory B cells (cluster 1), follicular B cells

(cluster 2), IFN-induced B Cells (cluster 3), plasmablasts (cluster 4/7),

FCRL4+ B cells (cluster 5), proliferating B cells (cluster 6), and
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FIGURE 6

Diversity and transcriptional heterogeneity in B and Myeloid cells. (A) UMAP plot of B cells was grouped into 7 cell subtypes and indicated by color. (B) UMAP plot
of B cells colored by EBV DNA status. (C) The proportion of 7 B cell subtypes in different sample origins. (D) GSEA analysis reveals up-regulated GO terms in EBV
DNA Sero+ B cells. (E) GSEA analysis reveals up-regulated KEGG pathways in EBV DNA Sero+ B cells. (F) Heatmap shows the activated transcription factors in
EBV DNA Sero- and Sero+ B cells. (G) UMAP plot of myeloid cells was grouped into eight cell subtypes and indicated by color. (H) UMAP plot of myeloid cells
colored by EBV DNA status. (I) The proportion of eight myeloid cell subtypes in different sample origins. (J) Violin plot shows the expression levels of M1 and M2
polarization scores in EBV DNA Sero+ macrophages. (K) GSVA analysis reveals enriched myeloid innate immunity pathways in EBV DNA Sero- vs. Sero+ myeloid
cells. (L) Heatmap shows the activated transcription factors in EBV DNA Sero- and Sero+ myeloid cells.
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germinal center B cells (cluster 8). The proportion of B cell subtypes

showed variation across patients (Figure S4C) and between groups

with different EBV DNA statuses (Figures 6B, C). The proportions of

FCRL4+ B cells and memory B cells were higher in the EBV DNA

Sero+ samples, whereas that of the proliferating B cells and germinal

center B cells were higher in the EBV DNA Sero- samples, indicating a

strong immunoregulatory potential in EBV DNA Sero+ NPC. GO

enrichment analysis showed that the antiviral response, IFN response,

antigen processing and presentation, and ribosome assembly were

activated in the EBV DNA Sero+ group (Figure 6D). KEGG pathway

enrichment analysis revealed strong activation of T-cell

differentiation, antigen processing and presentation, and EBV

infection among EBV DNA Sero+ samples (Figure 6E). SCENIC

analysis revealed that TFs of JUN/JUNB, FOS/FOSB, IRF7/9, ELF1,

STAT1 were upregulated in EBV DNA Sero+ samples (Figure 6F).

These observations indicate that B cells in EBV DNA Sero+ NPC

exhibit an inflammation-dominant antiviral immune response.
3.6 Diversity and transcriptional
heterogeneity in myeloid cells

The re-clustering of 2,902 myeloid cells revealed eight

populations (Figure 6G), including four subsets of macrophages

and four subsets of dendritic cells (DCs) (Figures S5A, B). We

could not distinguish M1 and M2 macrophages based on curated

marker genes, however, we examined the expression of M1 and M2

polarization signatures of macrophages subsets (Figure S5C). Macro1

was a classic activated M1 macrophage with high activation of IL1B,

IL8, LYZ, and IFI30 genes, characterized by intermediate M1

polarization score and low M2 polarization score. Macro2 was a

proliferating macrophage marked with high expression of cell cycle-

related genes and low M1 and M2 polarization scores. Macro3

showed high M1 and M2 polarization signals, consistent with

previous reports on M1/M2 couple-activated macrophages in NPC

(16, 35). Macro4 showed a high M2 polarization signal, which may be

a selectively activated M2 macrophage. DC1 was plasmacytoid DCs

(pDCs) characterized by increased expression of CLEC4 and IGJ

genes. DC2 was a mature DC that showed high expression levels of

LAMP3 and CCR7, yielding a high potential for migration, activation,

and maturation (Figure S5D). DC3 represented the classical DCs that

were characterized by overexpression of CLEC9A. DC4 showed

increased expression of CD1A, CD207, and ID2, suggesting that

these cells were Langerhans cells (LCs). The myeloid cell

compositions differed among patients (Figure S5E) and between

EBV DNA Sero- and EBV DNA Sero+ samples (Figures 6H, I).

Notably, Macro3 (99.4%) and Macro4 (98.9%) were almost all from

EBV DNA Sero+ samples, suggesting predominant macrophage

activation and M2 polarization. In the meanwhile, the M1 and M2

polarization scores were significantly upgraded in EBV DNA Sero+

NPC (Figure 6J). GSVA suggested different patterns of enriched

pathways in the myeloid compartment between different EBV DNA

statuses. Several pathways involved in myeloid innate immunity were

upregulated in EBV DNA Sero+ myeloid cells, including

angiogenesis, Fc receptor signaling, cell cycle and apoptosis,

cytokine signaling, and IFN signaling pathway (Figure 6K). In

contrast, T cell activation and immune checkpoint signaling, cell
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migration adhesion, and antigen presentation signaling pathways

were activated in EBV DNA Sero- myeloid cells. SCENIC analysis

revealed that TFs of JUN/JUNB, FOS/FOSB/FOSL2, IRF1/2/4/7/8,

and STAT1/2 were upregulated in EBV DNA Sero+ samples

(Figure 6L). These observations indicated that the ability to shape

the immune environment was enhanced in EBV DNA Sero+ NPC.
3.7 Global up-regulation of IFN responses
and enhanced cell communication in EBV
DNA Sero+ NPC

Previous studies have reported that IFN responses were

significantly upregulated in the TME of NPC, especially in

recurrent NPC (16, 35). Our DEG analysis suggested that genes

related to IFN responses were upregulated in most cell types of

EBV seropositive NPC (Figure 7A). We further calculated type I

IFN response and type II IFN response scores for each major cell type

using well-defined gene markers. The results showed that type I IFN

response and type II IFN response scores were significantly upgraded

in almost all cell types from EBV DNA Sero+ samples (Figure 7B).

These observations suggest that the IFN responses are globally

upregulated in the TME of EBV DNA Sero+ NPC, exhibiting an

antiviral immune response-dominated context.

We next used the CellChat package (version 1.1.3) to

explore the cellular communication network in NPC immune

microenvironment. We detected complex communications between

immune cells (Figure 7C). Memory B cells, macrophages, and DCs

showed the highest intercellular interactions. Overall, the number and

intensity of cell-cell interactions in EBV DNA Sero+ NPC were higher

than those in EBV DNA Sero- NPC (Figures 7D, E). Macrophages

represented the cell type with the most incoming and outgoing

signalings, regardless of EBV DNA status (Figure 7F). Surprisingly,

we did not observe incoming and outgoing signalings in memory B

cells from EBV DNA Sero- samples, while memory B cells from EBV

DNA Sero+ samples showed strong incoming signalings, indicating a

stronger immunoregulatory potential. We further identified and

ranked the essential signaling pathways (Figures 7G, H). Several

signaling pathways that induce inflammatory responses and are

involved in immune regulation were significantly upregulated in

EBV DNA Sero+ NPC, such as SPP1, BTLA, TNFSF12, and IL6.

SPP1, as a cytokine, plays a vital role in the type-I immune response

by enhancing the production of IFN-g and IL12 and reducing the

production of IL10.
4 Discussion

Our previous work has suggested that EBV DNA Sero- and Sero+

NPCs are distinctly different disease subtypes (8). Here, we move

forward to compare the tumor ecosystems of EBV DNA Sero- and

Sero+ NPCs at single-cell resolution. Our data revealed a complex

multicellular ecosystem in EBV-associated NPC, including

intratumoral and intertumor heterogeneity, diversity and dynamics

of immune lineages, and potential cellular interaction network.

Tumor cells from EBV DNA Sero+ NPC exhibited low-

differentiation potential, stronger stemness, and upregulated
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FIGURE 7

Global up-regulation of IFN responses and enhanced cell communication in EBV DNA Sero+ NPC. (A) Differentially expressed gene analysis reveals
significantly up-regulated and down-regulated genes in six major cell types in EBV DNA Sero- and Sero+ samples. (B) Violin plot shows the type I IFN
response and type II IFN response scores across cell subtypes in in EBV DNA Sero- and Sero+ samples. (C) Circle plot shows the differential number of
interactions or interaction strength in the cell-cell communication network between EBV DNA Sero- and Sero+ samples. Red (or blue) colored edges
represent increased (or decreased) signaling in the EBV DNA Sero+ samples compared to EBV DNA Sero- samples. (D) Heatmap shows differential
number of interactions or interaction strength. The colored bar plot at top represents the total incoming signaling across different cell types. The right
colored bar plot represents the total incoming signaling across different cell types. In the color bar, red (or blue) represents increased (or decreased)
signaling in EBV DNA Sero+ samples compared to EBV DNA Sero- samples. (E) The bar plot shows the total number of interactions and interaction
strength in EBV DNA Sero- and Sero+ samples. (F) Scatter plot shows the outgoing and incoming interaction strength across different cell types in 2D
space between EBV DNA Sero- and Sero+ samples. (G) Bar graph shows significant signaling pathways ranked based on differences in the overall
information flow within the inferred networks between EBV DNA Sero- and Sero+ samples. The left bar graph was plotted in a stacked mode while the
right one was not. The top signaling pathways colored red were enriched in EBV DNA Sero- samples, and these colored greens were enriched in the EBV
DNA Sero+ samples.
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signaling pathways associated with cancer hallmarks than that of EBV

DNA Sero- NPC. The low expression of classical immune checkpoint,

early-triggered cytotoxic T-lymphocyte response, global activation of

IFN-mediated signatures, and enhanced cell-cell interplays

cooperatively tend to form a specific immune context in EBV DNA

Sero+ NPC.

EBV infection is closely related to malignant transformation and

tumorigenesis of EBV-associated NPC (36). B cells and epithelial cells

are generally considered to be the primary host of EBV (37). In this

study, we found that pathways of EBV infection, antigen presentation,

and antiviral response were significantly enriched in B cells from EBV

DNA Sero+ samples, suggesting an active antiviral immune response.

Previous studies have reported that EBV infection status can affect the

transcriptions in NPC tumor cells. Pathways associated with EBV

infection are activated explicitly in EBV-related NPC cells, such as

NFk-B and Notch pathways (38). Our data revealed that tumor cells

with different EBV DNA seropositivity statuses had distinct

transcriptional profiles and trajectories. Most cancer hallmark

signaling pathways were significantly activated in tumor cells from

EBV DNA Sero+ samples, such as IFN-mediated immune responses,

P53 pathway, hypoxia, and inflammation-related pathways. Tumor

cells derived from EBV DNA Sero+ samples also had low-

differentiation potential and higher tumor stemness features, which

have been proven to be poor prognostic features in various tumors

(29, 30). Our trajectory analysis revealed signaling pathways activated

differentially along with pseudotime, suggesting that the antiviral

immune response may be gradually activated during the

transdifferentiation of tumor cells.

In chronic infection and tumor microenvironment, CD8+ T cells

gradually become exhausted due to long-term antigenic exposure and

inflammatory stimulation (39). CD8+ T cell exhaustion is a gradual

process characterized by decreased cytotoxicity and proliferation and

increased expression of inhibitory markers (40). Preventing or

reversing CD8+ T cell exhaustion and restoring its cytotoxicity are

the key to improving the efficacy of immunotherapy in clinical

practice (41). In this study, we observed a significant difference in

the transcriptions and dynamics of T cells between EBV DNA Sero-

and Sero+ NPCs. CD8+ T cells from EBV DNA Sero+ samples had

higher cytotoxic activity and lower exhaustion levels, indicating a

more robust immune response. We identified a CD8+ T

subpopulation (GZMK+ CD8+ Tex) characterized by fair

cytotoxicity and certain level of exhaustion, which seemed to be

precursors of exhausted T cells (40). Previous studies have reported

that elevated expression of cytotoxicity markers and inhibitory

receptors in CD8+ T cells is positively associated with potential

clinical benefits of anti-PD-1 therapy (42). These observations

suggested that CD8+ T cells from EBV DNA Sero- samples, with

certain exhaustion signatures while maintaining fair cytotoxicity, may

respond better to anti-PD-1 treatment. Reversing the exhaustion state

of CD8+ T cells and restoring their killing effect will be the key to

improving the efficacy of immunotherapy further. Our data also

showed that CTLA4, LAG3, and HAVCR2 were upregulated EBV

DNA Sero- CD8+ T cells, while PDCD1, TIGHT, and ENTPD1 were

upregulated in EBV DNA Sero- CD8+ T cells, which further supports

the rationale of individualized immunotherapy targeting on NPC

with different EBV DNA seropositivity status. Notably, combined
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immunotherapy targeting multiple inhibitory receptors has been

investigated to enhance the efficacy, such as anti-PD-1 combined

with anti-CTLA4 and anti-TIM3 combined with anti-LAG3 (40).

Therefore, anti-PD-1 therapy combined with anti-CTLA4 or anti-

LAG3 treatment may be a potential immunotherapy strategy for EBV

DNA Sero+ NPC, which is expected to further improve the response

rate in this high-risk population.

In the current study, we observed that IFN responses were

upregulated in almost all cell types from EBV DNA Sero+ NPC. In

addition to antiviral immune responses, IFN responses also play an

essential role in adjusting cancer-related immune function. However,

the IFN response is a double-edged sword in terms of the antitumor

immune response (43–45). On the one hand, IFN response can drive

immune activation, including inducing direct cell killing, stimulating

antigen-presenting cells to improve tumor immunogenicity, and

enhancing the cytotoxicity of CTL. On the other hand, IFN

response promotes immunosuppressive effects, including mediating

the inactivation of B cells to block antibody protective mechanisms

(46, 47), inducing the expression of inhibitors and co-simulators to

mediate tumor-promoting effects (45, 48, 49), and downregulating the

expression of MHC class I molecules to evade immune surveillance

(50). Whether IFN-induced signaling produces antitumor or pro-

tumor effects depends mainly on the duration and intensity of the IFN

response (43). However, the duration and intensity of IFN signaling is

often controlled by tumor burden and immune cell infiltration status

in TME. Therefore, we hypothesized that the sustained IFN responses

in the TME of EBV DNA Sero+ NPC render tumor-driven adaptive

immunity resistant, enhance the immunosuppressive capacity of

tumor cells, and ultimately lead to malignant transformation and

therapeutic resistance. Although IFN responses are the original

mechanism to fight against EBV infection, consistent IFN responses

after the malignant transformation of epithelial cells can result in

shaping TME into a more tolerant state, promoting tumoral signal,

facilitating tumor cell survival, and leading to adverse outcomes (51).

Therefore, modulating IFN response in combination with ICIs may

be a promising treatment strategy for EBV DNA Sero+ NPC. To date,

several studies have reported preliminary results of improving the

efficacy of tumor immunotherapy by modulating the IFN response

(43, 44, 52–56). However, we still need to address several key

questions, including which IFN-producing cells are the most

important in fighting tumors, which IFN-producing cells mediate

adaptive immune resistance, and how to fine tune the IFN response to

enhance the efficacy of immunotherapy. Future studies must explore

additional pathways to modulate IFN-mediated proinflammatory and

anti-inflammatory effects to develop better therapeutic strategies to

promote its antitumor capabilities and prevent immune escape (43).

We acknowledge that the current study has several limitations.

First, regarding the limited sample size, a large patient cohort may

help to validate our results further and reduce potential selection bias.

Second, the only non-tumor nasopharyngeal tissue is not matched to

these tumor samples but from a patient with chronic nasopharyngitis.

A paired normal tissue can be the ideal control sample and minimizes

the individual difference other than tumor itself. However, the paired

non-tumor tissue is not easily accessible due to the primary treatment

of NPC is radiotherapy but not surgery. There is still much

uncertainty in obtaining the normal tissue during biopsy. Besides,
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in consideration of humanistic care, multi-site biopsy is not routine

performed unless upon the clinical requirements. Third, although we

have identified complex molecular compositions and close cellular

interactions in TME through bioinformatic analysis, further cell

function experiments and animal experiments will help elucidate

the underlying biological mechanisms and draw more robust

conclusions. Lastly, further integrated analyses of single-cell multi-

omics, such as TCR/BCR analysis, single-cell DNA sequencing,

single-cell proteomics, and spatial transcriptomics will help deepen

our understanding of TME heterogeneity between NPC with different

EBV DNA seropositivity status.
5 Conclusion

Taken together, the current scRNA-seq analysis deepened our

understanding of TME heterogeneity in EBV-associated NPC and

identified the potential cell lineages and interacting molecules that

may contribute to immunosuppression and tumor progression. These

findings provide important clues to elucidate the mechanisms of NPC

tumorigenesis and to develop more effective immunotherapy

strategies. Further experiments in vitro and in vivo are needed to

explore the underlying biological mechanisms in the future.
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