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Introduction: Polymicrobial sepsis causes acute anorexia (loss of appetite),

leading to lipolysis in white adipose tissue and proteolysis in muscle, and thus

release of free fatty acids (FFAs), glycerol and gluconeogenic amino acids. Since

hepatic peroxisome proliferator-activated receptor alpha (PPARa) and

glucocorticoid receptor (GR) quickly lose function in sepsis, these metabolites

accumulate (causing toxicity) and fail to yield energy-rich molecules such as

ketone bodies (KBs) and glucose. The mechanism of PPARa and GR dysfunction

is not known.

Methods & results: We investigated the hypothesis that hypoxia and/or

activation of hypoxia inducible factors (HIFs) might play a role in these issues

with PPARa and GR. After cecal ligation and puncture (CLP) in mice, leading to

lethal polymicrobial sepsis, bulk liver RNA sequencing illustrated the induction of

the genes encoding HIF1a and HIF2a, and an enrichment of HIF-dependent

gene signatures. Therefore, we generated hepatocyte-specific knock-out mice

for HIF1a, HIF2a or both, and a new HRE-luciferase reporter mouse line. After

CLP, these HRE-luciferase reporter mice show signals in several tissues,

including the liver. Hydrodynamic injection of an HRE-luciferase reporter

plasmid also led to (liver-specific) signals in hypoxia and CLP. Despite these

encouraging data, however, hepatocyte-specific HIF1a and/or HIF2a knock-out

mice suggest that survival after CLP was not dependent on the hepatocyte-

specific presence of HIF proteins, which was supported by measuring blood
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levels of glucose, FFAs, and KBs. The HIF proteins were also irrelevant in the CLP-

induced glucocorticoid resistance, but we found indications that the absence of

HIF1a in hepatocytes causes less inactivation of PPARa transcriptional function.

Conclusion: We conclude that HIF1a and HIF2a are activated in hepatocytes in

sepsis, but their contribution to the mechanisms leading to lethality are minimal.
KEYWORDS

sepsis, hypoxia, detection, metabolism, glucocorticoids (GCs), PPARalpha
1 Introduction

Sepsis is defined as a life-threatening organ dysfunction caused

by a dysregulated host response to an infection. Despite intensive

research, increased awareness and medical improvement, sepsis and

septic shock remain an important cause of morbidity and mortality

in the intensive care units (ICUs) worldwide (1, 2). The annual

global incidence of sepsis is 48,9 million cases with 11 million

sepsis-related deaths (3). The current management of sepsis is

supportive rather than curative and focusses on controlling the

infection, fluid resuscitation, and vasopressor treatment and

mechanical support of failing organs (4). Although a lot of

clinical trials with immunomodulatory therapies have been

performed, none of these therapies have demonstrated survival

benefit. The lack of successful, innovative therapeutics might be

attributed to the fact that not only a dysregulated inflammatory

response, but other pathways, such as metabolic alterations, might

also play an important role (5, 6).

Sepsis pathogenesis is characterized by inflammation, immune

activation, the acute-phase response, fever, tachycardia and

tachypnea, complement activation, and coagulopathy, all of which

require a supraphysiological amount of energy (7). Regardless of

their increased energy needs, sepsis patients are often unable or

unwilling to eat leading to a negative energy balance. Therefore, it is

suggested that a starvation response (SR) is induced in sepsis

patients (8). When a SR is initiated, carbohydrate and fat reserves

are broken down in the liver and muscle, and white adipose tissue

(WAT), respectively, to generate ATP and release high-energy

metabolites e.g. lactate, free fatty acids (FFAs) and ketone bodies

(KBs) (9). These processes are mainly controlled by two

transcription factors, namely the glucocorticoid receptor (GR)

and the peroxisome proliferator-activated receptor alpha

(PPARa) on a transcriptional level (7). However, GR and PPARa
become dysfunctional during sepsis, and so the amounts of

glycogen, WAT, and muscle mass rapidly decline, while blood

levels of FFAs, glycerol, amino acids (AAs), and lactate increase

(10–12). This correlates with disease severity and lethality in sepsis

patients and animals (10, 11, 13, 14), and learns us that the SR in

sepsis might be failing.

On the one hand, a fast and progressive failure of GR

functioning leading to GC resistance (GCR) in the liver and in

other organs during sepsis contributes to the failing SR. This GCR is
02
strongly associated with a reduced GR DNA-binding capacity and

causes a dysfunctional gluconeogenesis in hepatocytes, which leads

to hypoglycemia and lactate accumulation in the blood. High lactate

levels are not toxic by themselves, but are highly lethal when GCR is

present (10). We have also demonstrated that TNF-mediated GCR

can be a result of the sequestration of co-factor p300 to NF-kB,
thereby preventing its accessibility to GR (15).

Sepsis is also characterized by a PPARa dysfunction in the liver.

This dysfunction can, in part, be explained by a rapid decline of

hepatic PPARa mRNA and protein levels, which lead to a reduced

expression of its target genes involved in FFA b-oxidation and

ketogenesis (11, 16). As a consequence of PPARa malfunctioning,

ectopic deposition of lipids in the liver and kidney occur during

sepsis and thereby cause lipotoxicity and tissue damage rather than

production of energy (11).

Besides GR and PPARa dysfunction, sepsis is also characterized

by fundamental shifts in tissue metabolism in combination with a

decreased tissue perfusion and edema. This might result in

decreased oxygen delivery to cells and tissue hypoxia during

sepsis (17, 18). The master regulators involved in oxygen

homeostasis are hypoxia-inducible factors (HIFs). HIFs are

heterodimeric transcription factors consisting of an a- and b-
subunit. Three a-subunits are known, namely HIF1a, HIF2a,
and HIF3a, of which its expression is known to be oxygen-

sensitive, while the b-subunit is constitutively expressed. Under

normal oxygen levels, HIFa subunits are hydroxylated by prolyl-4-

hydroxylases (PHDs) leading to the binding of the von Hippel-

Lindau protein (pVHL) and 26S proteasome degradation. Under

hypoxic conditions, or in the absence of its co-factors Fe2+, a-
ketoglutarate (a-KG) or vitamins, PHDs are inactivated and HIFa
hydroxylation is inhibited (19). Besides reduced oxygen availability,

inflammation also inhibits PHD activity and will promote the

transcription of HIF1a mRNA and HIF activity (20). Once HIF

proteins are stabilized, they will regulate the expression of genes

involved in glucose metabolism (21), lipid metabolism (22, 23), and

erythropoiesis (24). Furthermore, a clear crosstalk between the GR

and HIFs exists (25, 26), and hypoxia is associated with increased

lipolysis, increased FFA levels in the blood, and affects fatty acid b-
oxidation (22, 23, 26).

We hypothesize that cecal ligation and puncture (CLP)-induced

polymicrobial sepsis leads to a rapid metabolically changed

physiology, leading to an increase in metabolites with high
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tropism for hepatocytes (b-oxidation and gluconeogenesis) such as

FFAs, glycerol, gluconeogenic AAs and lactate. Since HIFs interfere

with the expression of multiple important metabolic enzymes, and

since HIFs use transcriptional co-factors, such as p300, which are

also essential for the function of GR and PPARa, we aimed to

investigate the role of HIF1a and HIF2a in more detail during

sepsis, in the liver. We have studied HIF activity in the liver of septic

mice using a newly generated HIF-luciferase reporter mouse in

combination with bulk liver RNA sequencing (RNA-SEQ) data.

Furthermore, we have investigated the functional role of HIF1a
and/or HIF2a during sepsis in more detail via hepatocyte-specific

HIF1a and/or HIF2a knock-out mice with a focus on their role in

the annihilation of the transcriptional function of GR and PPARa.
2 Materials and methods

2.1 Mice

Male C57BL/6J mice were purchased from Janvier (Le Genest-

St. Isle, France). HIF1afl/fl, HIF2afl/fl (provided by Prof. Dr. Ben

Wielockx) were crossed with Albumin Cre transgenic mice, and the

offspring was intercrossed to generate HIF1afl/fl Albumin CreTg/+

(HIF1aAlbKO), HIF2afl/fl Albumin CreTg/+ (HIF2aAlbKO), and

HIF1aHIF2afl/fl Albumin CreTg/+ (HIF1aHIF2aAlbKO) mice, all in a

C57BL/6J background. All offspring was genotyped by PCR on

genomic DNA isolated from toe biopsies. Mice were housed in a

temperature-controlled, specific pathogen free (SPF) air-

conditioned animal house with 14 and 10h light/dark cycles and

received food and water ad libitum. All mice were used at the age of

8 – 12 weeks, and all experiments were approved by the institutional

ethics committee for animal welfare of the Faculty of Sciences,

Ghent University, Belgium.
2.2 Plasmid and transgene construction

A hypoxia reporter plasmid was purchased from Addgene (plasmid

#26731). The plasmid contained a cassette containing three Hypoxia

Responsive Elements (HRE) derived from the mouse Pgk1 gene

(sequence HRE: TGTCACGTCCTGCACGACTCTAGT), followed by

a mini TK promoter (27), firefly luciferase cDNA and SV40 polyA,

flanked by 2 chicken beta-globin HS4 insulator core sequences (28) on

both sides. The reporter plasmid is considered to be specific for hypoxia

signals (27). The insulators were flanked with 800 bp homology arms to

the TIGRE locus (29) and by NotI restriction sites. The 5629 bp cassette

was made synthetically (Genscript) and cloned in a pUC57 backbone

vector. The cassette was removed from the vector by NotI digest, gel

extracted and purified using phenol-chloroform extraction and ethanol

precipitation. The fragment was dissolved in TE buffer pH 7.5.
2.3 Generation of transgenic mice

The purified fragment (1.5 ng/µl) was injected in C57BL/6J zygotes

together with Cas9 protein (60 ng/µl, VIB Protein Core) and cr/
Frontiers in Immunology 03
tracrRNA duplex to the TIGRE locus (5’ TAACTTTAATTCTAGC

GATC 3’, 40 ng/µl). Founders were identified by PCR amplification of

toe DNA with primers to the luciferase cDNA identifying integration

of the cassette in the genome: 5’ GGAAGACGCCAAAAACATAA 3’

and 5’ GGAAGACGCCAAAAACATAA 3’. Correct integration in the

TIGRE locus was identified with a PCR over the left homology region

with a primer in the TIGRE locus 5’ GCCTGGAACTCACTATACAA

3’ and a primer in the cassette 5’ TTAATATGCGAAGTGGACCT 3’

on the one hand and a PCR over the right homology region with a

primer in the cassette 5’ TAAAAAACCTCCCACACCTC 3’ and a

primer in the TIGRE locus 5’ AACTAAGAAGAAACGCCTCC 3’.
2.4 Cecal ligation and puncture

Polymicrobial sepsis was induced in mice by performing a CLP

procedure, as previously described by Rittirsch et al. (2009) (30).

Briefly, mice were anesthetized by isoflurane inhalation and a

midline incision was made in the abdomen. Then, the cecum was

exposed, 75% ligated, and a single through-and-through puncture

was made with a 21-Gauge needle. During the procedure, a small

amount of cecal content was extruded. The abdominal musculature

and skin were closed by applying simple running sutures and

metallic clips, respectively. During lethality experiments, mice

were injected intraperitoneally (i.p.) with broad-spectrum

antibiotics (25 mg/kg ceftriaxone and 12.5 mg/kg metronidazole,

Sigma) in 100 µl phosphate buffered saline (PBS) 8h and 24h after

CLP onset. For organ isolation experiments, a sham procedure was

also performed. Here, the cecum of mice was exposed but not

ligated or punctured. Mice were euthanized via cervical dislocation

at the indicated timepoints after sepsis initiation, and plasma and

organs were collected.
2.5 Reagents

LPS from Salmonella abortus equi was purchased from Sigma-

Aldrich N.V. (L-5886). For in vivo DEX injection, Rapidexon

(Medini N.V.) was used. LPS and DEX were diluted in PBS.

Luciferin (XenoLight™ D-Luciferin - K+ Salt) was purchased

from Caliper Life Sciences.
2.6 Injections and sampling

All injections were given i.p., except for the hydrodynamic

intravenous (i.v.) tail injection of the DNA plasmid. Injection

volumes were always adapted to the bodyweight of the mice. In

lethality experiments, mice were monitored by measuring rectal

body temperature. Mice with body temperature below 28°C were

euthanized using cervical dislocation. Blood was taken via cardiac

puncture after sedation of the mice with a ketamine/xylazine

solution (Sigma-Aldrich N.V.) or via retro-orbital eye bleeding

after sedation with isoflurane. To obtain mouse plasma, blood

samples were collected in EDTA-coated tubes, and samples were

centrifuged at 3.000 rpm for 15 minutes at 4°C. Plasma samples
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were stored at -20°C for biochemical analysis. For sampling of liver,

mice were killed by cervical dislocation at indicated time points.
2.7 Hypoxia treatment

Mice were randomly assigned to the normoxia group and

hypoxia group. The normoxia group was exposed to room air

(21% O2), whereas the hypoxia group was placed in a ventilated

hypoxic chamber with 7% O2 and 93% N2 for the indicated time

points. The oxygen levels were monitored with a Greisinger GOX

100 oxygen sensor (Conrad).
2.8 Detection of HIF activity

Mice were injected in the tail vein over five seconds with a

HRE-luciferase reporter plasmid solution (Addgene, #26731; 10

µg/ml in sterile, endotoxin-free PBS) or PBS (control) in a volume

equivalent to 10% of the body weight, as described by Van Bogaert

et al. (2011) (31). The HRE-luciferase plasmid contains three

hypoxia response elements (24-mers, TGTCACGTCCTG

CACGACTCTAGT) from the mouse Pgk1 gene upstream of

firefly luciferase. Five hours after transfection, mice were

subjected to a sham or CLP procedure, or injected with PBS or

LPS, and visualized at indicated time points. Briefly, mice were

injected with 200 ml of a 15 mg/ml potassium salt luciferin

solution. 10 minutes after injection, livers were isolated and

visualized via the imaging chamber of the IVIS Spectrum In

Vivo Imaging System (Caliper Life Sciences). Photon emission

was integrated over a period of 2 minutes and recorded as pseudo-

color images. Living Image (Caliper Life Sciences) was used for

image analysis. The regions of interest were selected based on the

luciferase signal (purple) detected over all images. To confirm the

specificity of the technique used for the injection of the HRE-

luciferase reporter plasmid, liver was also visualized. Data were

acquired as photons/cm2/s and log(Y) transformed before
Frontiers in Immunology 04
statistical analysis. Results are normalized to the PBS

control group.
2.9 RNA sequencing

2.9.1 Liver – CLP dataset
We used liver CLP datasets GSE160795 and GSE160830 that

were processed as described in Vandewalle et al. (2021) (10). Gene

level read counts were obtained with featureCounts (32), and

differential expressed genes were found by the DESeq2 R package

(33) with the false discovery rate (FDR) set at 5%.

2.9.2 Liver – Hypoxia dataset
We used liver hypoxia datasets GSE162100 and GSE162155 that

were processed as described in Vanderhaeghen et al. (2021) (26).

Gene level read counts were obtained with featureCounts (32), and

differential expressed genes were found by the DESeq2 R package

(33) with the false discovery rate (FDR) set at 5%.
2.10 Real-time quantitative PCR

Liver was isolated, put in RNA later (Life Technologies Europe),

and stored at -20°C before RNA was isolated. Total RNA was

isolated with the Aurum total RNA mini kit (Biorad) according to

manufaturer’s instructions. RNA concentration was measured with

the Nanodrop 8000 (Thermo Fisher Scientific), and 1000 ng RNA

was used to prepare cDNA with Sensifast cDNA Synthesis Kit

(Bioline). cDNA was diluted 20 times in ultrapure water for use in

RT-qPCR reactions. RT-qPCR primers for used targets are listed in

Table 1. RT-qPCR reaction was performed with sensiFast Sybr no-

ROX mix (Bioline) and was performed in duplicate in a Roche

LightCycler480 system (Applied Biosystems). The stability of the

housekeeping genes (HKGs) were determined by Genorm. Results

are given as relative expression values normalized to the geometric

mean of the HKGs, calculated in the qBase+ software (Biogazelle).
TABLE 1 Primer sequences used for RT-qPCR.

Gene Forward primer (5′‐3′) Reverse primer (5′‐3′)

Hprt AGTGTTGGATACAGGCCAGAC CGTGATTCAAATCCCTGAAGT

Rpl CCTGCTGCTCTCAAGGTT TGGTTGTCACTGCCTCGTACTT

Fam107a CAGACCAGAGTACAGAGAGTGG GTGGTTCATAAGCAGCTCACG

Fkbp5 TGAGGGCACCAGTAACAATGG CAACATCCCTTTGTAGTGGACAT

Tsc22d3 CCAGTGTGCTCCAGAAAGTGTAAG AGAAGGCTCATTTGGCTCAATCTC

Ppara AGAGCCCCATCTGTCCTCTC ACTGGTAGTCTGCAAAACCAAA

Slc25a20 GACGAGCCGAAACCCATCAG AGTCGGACCTTGACCGTGT

Cpt2 CAGCACAGCATCGTACCCA TCCCAATGCCGTTCTCAAAAT

Hmgcs2 GAAGAGAGCGATGCAGGAAAC GTCCACATATTGGGCTGGAAA

Hif1a CGGCGAAGCAAAGAGTCTGAAG GATGGTGAGCCTCATAACAGAAGC

Epas1 CTGAGGAAGGAGAAATCCCGT TGTGTCCGAAGGAAGCTGATG
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1124011
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Vanderhaeghen et al. 10.3389/fimmu.2023.1124011
2.11 Biochemical analysis

Blood glucose and ketone body levels were measured in tail

blood with the use of OneTouch Verio glucose meter (LifeScan) and

Freestyle Precision Neo meter (Abbott), respectively. Free fatty

acids (Abnova) were measured in mouse plasma with the use of

colorimetric assays according to manufacturer’s instructions.
2.12 Statistics

Data were expressed as means ± standard errors of the means

(SEM). Statistical significance was evaluated with a two-way

ANOVA in GraphPad Prism 9.0 software (GraphPad Software,

San Diego, CA). If applicable, two-way ANOVA analysis were

followed by post-hoc analysis to correct for multiple testing

during the pairwise multiple comparisons using the Šıd́ák’s

multiple comparisons test. Fold changes or ratios were log(Y)

transformed before statistical analysis. Survival curves were

subjected to the Log-Rank (Mantel-Cox) test to investigate

whether statistical significance could be observed during different

groups. Determining if two sets showed a significant overlap as

approached as a (gene) set enrichment analysis, the hypergeometric

test was used to obtain a p-value of the overlap. As the population

size for the test, we used the total number of genes (13.000 genes)

for which we can reliably obtain (normalized counts > 1 in 50% of

the samples or all samples of one condition) gene level counts in

the liver.
3 Results

3.1 HIF signaling is enriched in the liver
during CLP-induced polymicrobial sepsis

To investigate the presence of HIF signaling on a genome-wide

level in the liver of septic mice, bulk RNA-SEQ analysis was

performed on the livers of mice 6h and 24h after a CLP or sham

procedure, and 6h and 24h after hypoxia (7% oxygen) or normoxia

(Figure 1). After 6h, 896 and 2556 genes were significantly

upregulated (adjusted P-value (P) < 0.05, LFC > 0), while 910 and

2244 genes were significantly downregulated (P < 0.05, LFC < 0)

after hypoxia or CLP, respectively (Figure 1A). We identified the

upregulation of 2490 and 4183 genes (P < 0.05, LFC > 0), and the

downregulation of 2070 and 4169 genes (P < 0.05, LFC < 0) 24h

after hypoxia or CLP (Figure 1B). The overlap between the hypoxia

and CLP dataset demonstrates that there is a significant enrichment

of hypoxia signaling in the up- (6h: 253/2556, P = 3.68e-11 and 24h:

942/4183, P = 4.7e-12) and downregulated (6h: 223/2244, P = 2.28e-9

and 24h: 1081/4169, P = 2.01e-96) genes in CLP-induced

polymicrobial sepsis at both timepoints (Table 2). As expected,

Enrichr analysis of the shared upregulated genes shows a clear

enrichment in pro-inflammatory responses as well as hypoxia at

both timepoints (Table 3). The log fold changes (LFCs) of genes

significantly upregulated by CLP and hypoxia reported by the

Enrichr analysis, are shown in the heatmap of Figure 1C. When
Frontiers in Immunology 05
analyzing the pathways induced by these genes, Enrichr revealed

HIF signaling pathway, as expected, but also metabolic pathways

such as glycolysis. Furthermore, the mRNA expression levels of

Hif1a (Figure 1D) and Epas1 (Figure 1E), the genes encoding

HIF1a and HIF2a respectively, are significantly higher after CLP.

In contrast, the dominant-negative regulator of the HIF pathway

HIF3a (34), encoded by Hif3a, is hardly expressed in the liver of

mice isolated after CLP or sham (Figure 1F). In contrast, the impact

of deep hypoxia on the transcriptional levels of Hif1a, Epas1 and

Hif3a is quite minimal. After 6h and 24h of hypoxia, we detected a

small (but non-significant) increase in Hif1a mRNA expression

levels of 6% and 15%, respectively. Epas1 mRNA levels did not

increase at both time points. Also in the presence of hypoxia, Hif3a

is hardly expressed in the liver of these mice (data not shown).
3.2 HIF activity is detected in the liver of
transgenic HIF reporter mice in CLP

Based on the RNA-SEQ analysis, HIF signaling is present in the

liver of septic mice. We have generated an HRE-luciferase reporter

mouse. A hypoxia reporter plasmid was purchased from Addgene

(plasmid #26731). This cassette containing 3 HREs, followed by a

mini TK promotor (27), firefly luciferase cDNA, and SV40 polyA,

flanked by chicken insulator sequences (28) was injected in C57BL/

6J zygotes (1.5 ng/µl) and inserted via random integration (29).

Several founder lines were obtained in which the construct had

integrated. The function of the HRE-luciferase activity was

measured in the germline transgenic reporter mice via luciferin

injection and optical imaging using the IVIS SpectrumCT system as

a proof-of-concept (Figure 2A). Heterozygous HRE-luciferase

transgenic reporter (HRE-LucTg/+) mice were put in hypoxia (7%

oxygen) or normoxia, and visualized after 2h, 6h and 24h. We were

able to detect a clear luciferase signal under hypoxic conditions,

while only a limited amount of luciferase activity was observed in

normoxia (Figure 2B). Furthermore, the luciferase signal could be

detected in several organs such as the brain, the heart and lungs,

isolated from the mice after 24h of hypoxia (Figure 2C).

Next, using the HRE-LucTg/+ reporter mice, luciferase signals

were investigated after CLP-induced polymicrobial sepsis.

Therefore, a CLP or sham procedure was performed on HRE-

LucTg/+ mice and wild-type littermates (HRE-Luc+/+). In the latter

mice, no signal was observed (Figure 2D). A significant increase in

luciferase reporter activity was detected after 6h and 24h of CLP

when imaging the entire animals and their livers compared to

sham-operated mice (Figures 2D–F), strongly suggesting that

hypoxia signaling is present in the livers of septic mice and that

HIF proteins are transcriptionally active in sepsis.
3.3 Hepatocyte-specific knock-out of
HIF1a and HIF2a reduces HIF activity in the
liver of septic mice

In order to confirm whether HIF1a and/or HIF2a is/are

responsible for the luciferase signal detected in the liver after
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CLP, mice with a conditional knock-out of HIF1a (HIF1aAlbKO) or

HIF2a (HIF2aAlbKO), or both (HIF1aHIF2aAlbKO) in hepatocytes

were generated. To validate the hepatocyte specific knock-out mice

used in these experiments, Hif1a and Epas1 mRNA levels were

measured via RT-qPCR in the liver of HIF1aAlbKO, HIF2aAlbKO,

HIF1aHIF2aAlbKO mice and wild-type littermates (Supplementary

Figure 1). As expected, Hif1a and Epas1 mRNA levels were
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significantly downregulated in the respective knock-out mice

(Supplementary Figures 1A, B). Both genes were significantly

downregulated in the liver of HIF1aHIF2aAlbKO mice

(Supplementary Figure 1C). We also detected a downregulation of

Epas1 mRNA in the liver of HIF1aAlbKO mice (Supplementary

Figure 1A), suggesting that HIF1a depletion also causes some

HIF2a reduction under normoxic conditions.
A
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FIGURE 1

HIF signaling is enriched during sepsis. (A, B) C57BL/6J mice were put in normoxia or hypoxia and sham or CLP, and livers were isolated after 6h (A)
and 24h (B) for genome-wide transcriptomics via RNA-SEQ. Venn diagram depicting the overlap between genes that are upregulated (up, P < 0.05 &
LFC > 0) and downregulated (down, P < 0.05 & LFC < 0) by hypoxia and CLP at the indicated timepoints. (C) Heatmap based on the genes identified
via Enrichr pathway analysis (MSigDB Hallmark 2020) significantly upregulated by CLP and by hypoxia. Log fold changes (LFCs) are depicted. (D-F)
C57BL/6J mice were subjected to a sham or CLP procedure and the liver was isolated at the indicated timepoints. RNA-SEQ mRNA counts are
shown for Hif1a (D), Epas1 (E) and Hif3a (F). All bars represent mean ± SEM. P-values were calculated using two-way ANOVA. ****P < 0.0001,
** P ≤ 0.01; * P ≤ 0.05. ns, non-significant.
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First, we confirmed the presence of hepatic HIF activity in

septic mice by injecting the HRE-luciferase reporter plasmid

(which was used to generate the transgenic reporter mice) or

PBS (control) via the tail vein under high pressure, leading to

hepatocyte-specific transfection. These mice were randomly

assigned to a sham or CLP procedure. Luciferase activity was

measured at the indicated timepoints (Figure 3A). In sham mice,

low luciferase signals were detected in mice injected with the

reporter plasmid. As soon as 6h after CLP, the luciferase activity

strongly increased and remained high until 24h post-surgery

(Figures 3B, C), suggesting strong HIF transcriptional activity.

Furthermore, we compared HRE-luciferase activity between CLP

and LPS-induced endotoxemia. Mice were injected with the

reporter plasmid via the tail vein followed by an LPS injection

or a CLP procedure. A sham operation or PBS injection was

performed as a control. The luciferase activity tended to increase
Frontiers in Immunology 07
to the same extent in both mouse models of systemic

inflammatory response syndrome (SIRS) and seps i s

(Supplementary Figure 2). Finally, we studied if the HRE-

luciferase activity induced by sepsis is comparable with mice in

hypoxia (7% oxygen). Therefore, mice were put in normoxic or

hypoxic conditions, or were subjected to a sham or CLP procedure

after high-pressure injection of the HRE-luciferase reporter

plasmid. 6h after CLP, the HRE-luciferase signal was

significantly increased compared to sham, remained high until

24h, and was comparable to the signal induced by hypoxia

(Figures 3D, E). In contrast to their mRNA expression levels,

HIF proteins do accumulate in hypoxic conditions.

To investigate which HIF protein is involved in the HRE-

luciferase activity observed during sepsis, we measured the

reporter activity in the liver of HIF1aAlbKO, HIF2aAlbKO and

HIF1aHIF2aAlbKO 24h after CLP-induced polymicrobial sepsis
TABLE 2 The presence of hypoxia signaling after CLP-induced polymicrobial sepsis.

% H genes present in CLP
6h

P-value % H genes present in CLP
24h

P-value

UPREGULATED 253/896 (28.2%) 3.68e-11 942/2490 (37.8%) 4.7e-12

% of these genes in CLP % of these genes in CLP

253/2556 (9.9%) 942/4183 (22.5%)

% H genes present in CLP % H genes present in CLP

DOWNREGULATED 223/910 (24.5%) 2.28e-9 1081/2070 (52.2%) 2.01e-96

% of these genes in CLP % of these genes in CLP

223/2244 (9.9%) 1081/4169 (25.9%)
Table 2 displays the amount of genes that are upregulated (adjusted P-value (P) < 0.05 and LFC > 0) or downregulated (P < 0.05 and LFC < 0) by hypoxia and howmany of these genes are induced
(P < 0.05 and LFC > 0) or repressed (P < 0.05 and LFC < 0) by CLP polymicrobial sepsis. Determining if two sets showed a significant overlap as approached as a (gene) set enrichment analysis,
the hypergeometric test was used to obtain a p-value of the overlap. As the population size for the test, we used the total number of genes (13.000 genes) for which we can reliably obtain
(normalized counts > 1 in 50% of the samples or all samples of one condition) gene level counts in the liver. By using a hypergeometric test, a significant enrichment of hypoxia signaling is present
during CLP-induced sepsis.
TABLE 3 Enrichr analysis of upregulated genes shared between hypoxia and CLP.

Hypoxia vs CLP 6h Hypoxia vs CLP 24h

Name P-value Name P-value

TNFa Signalling via NFkB 3.967e-9 Myc Targets V1 8.887e-15

Unfolded Protein Response 0.002106 Unfolded Protein Response 4.334e-11

Hypoxia 0.002657 mTORC1 Signalling 4.807e-9

Estrogen Response Early 0.002657 Protein Secretion 0.00002675

TGF-beta Signalling 0.002657 Adipogenesis 0.00008132

Inflammatory Response 0.007646 Hypoxia 0.02021

Myogenesis 0.01975 p53 Pathway 0.02021

mTORC1 Signalling 0.01975 Myc Targets V2 0.02859

p53 Pathway 0.01975 TNFa Signalling via NFkB 0.02859

Myc Targets V2 0.02735 Oxidative Phosphorylation 0.02859
MSigDB Hallmark 2020 analysis of the genes that are upregulated both by hypoxia and CLP after 6h and 24h. P-values shown are the adjusted p-values provided via Enrichr.
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FIGURE 2

HIF activity is detected in the liver of transgenic HIF reporter mice in CLP. (A) A hypoxia reporter plasmid was purchased from Addgene (plasmid
#26731). The plasmid contained a cassette containing three Hypoxia Responsive Elements (HRE) derived from the Pgk1 gene (sequence HRE:
TGTCACGTCCTGCACGACTCTAGT), followed by a mini TK promoter (27), firefly luciferase cDNA and SV40 polyA was flanked by 2 chicken beta-
globin HS4 insulator core sequences (28) on both sides. The reporter plasmid is reported to be specific for hypoxia signals (27). The purified
fragment (1.5 ng/µl) was injected in C57BL/6J zygotes and randomly integrated. Luciferase activity can be measured via optical imaging using the
IVIS SpectrumCT system after i.p. injection of germline transgenic reporter mice and wild-type littermates with luciferin. (B, C) Imaging of the
luciferase activity (purple signal) of HRE-LucTg/+ mice (B) and their organs (C) in normoxia and hypoxia at indicated timepoints. (D) Experimental set-
up and imaging of the luciferase activity of HRE-LucTg/+ mice and wild-type littermates and their livers subjected to a sham or CLP procedure at the
indicated timepoints. (E, F) Log10 of the bioluminescent photon counts of HRE-LucTg/+ mice (E) and their liver (F) 6h and 24h after sham or CLP
(n=6/group). All bars represent mean ± SEM. Each individual data point represents individual mice. P-values were calculated using two-way ANOVA.
****P < 0.0001, ***P < 0.001, *P ≤ 0.05.
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using the reporter plasmid (Figure 4). The HRE-luciferase

activity increased in HIF1aAlbKO (Figures 4A, D) and

HIF2aAlbKO (Figures 4B, E) 24h after CLP, to the same extent

as in wild-type mice. However, when both HIF proteins are

absent in hepatocytes, we were no longer able to detect a
Frontiers in Immunology 09
significant increase in the HRE-luciferase activity in sepsis

(Figures 4C, F), suggesting that both HIF1a and HIF2a are

responsible for the HIF activity in sepsis and that perhaps both

proteins can functionally compensate for the loss of the other

in hepatocytes.
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FIGURE 3

HIF activity in mouse liver during sepsis using high-pressure injections. (A-C) The effect of CLP on HIF activity was estimated in C57BL/6J mice by a
HRE-luciferase reporter plasmid at indicated time points. All mice were injected according to body weight. (A) Experimental set-up and imaging of the
luciferase activity (purple signal) in the liver of PBS control mice and mice after a sham or CLP procedure at the indicated time points. Log10 of the
bioluminescent photon counts normalized to the PBS control group of C57BL/6J mice (B) and their livers (C) subjected to a sham or CLP procedure at
the indicated timepoints (n=3-5/group). Log10 of the bioluminescent photon counts of mice (D) and their livers (E) subjected to normoxia (black circles)
or hypoxia (black squares) and sham (white circles) or CLP (white squares) at the indicated time points (n=3-5/group). All bars represent mean ± SEM.
Each individual data point represents individual mice. P-values were calculated using two-way ANOVA. **P ≤ 0.01; *P ≤ 0.05; ***P <0.001;
****P <0.0001. ns, non-significant.
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3.4 Survival of hepatocyte-specific
knockouts of HIF1a, HIF2a or both in
CLP-induced polymicrobial sepsis or LPS-
induced endotoxemia

Several studies have shown that a conditional HIF1a or HIF2a
knock-out in myeloid cells protects against LPS-induced
Frontiers in Immunology 10
endotoxemia (35–37). However, the role of hepatic HIF proteins

in polymicrobial sepsis has been poorly studied. Therefore, we first

investigated whether HIF1a and/or HIF2a expression in the liver

contribute to sepsis mortality. Mice with a conditional knock-out of

HIF1a (HIF1aAlbKO) or HIF2a (HIF2aAlbKO), or HIF1a and HIF2a
(HIF1aHIF2aAlbKO) in hepatocytes and wild-type littermates were

subjected to a CLP procedure. However, no survival benefit was
A
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FIGURE 4

HIF activity in hepatocyte-specific knock-out mice of HIF1a and/HIF2a in sepsis. HIF1aAlbKO, HIF2aAlbKO and HIF1aHIF2aAlbKO mice and wild-type
littermates were injected with the HRE-luciferase reporter mice via high pressure injection at the tail vein. Then, mice were subjected to a sham or
CLP procedure and the luciferase activity was measured 24h post-surgery. (A-C) Imaging of the luciferase activity (purple signal) of HIF1aAlbKO (A),
HIF2aAlbKO (B) and HIF1aHIF2aAlbKO (C) mice and wild-type littermates 24h after sham or CLP procedure. (D-F) Log10 of the bioluminescent photon
counts of HIF1aAlbKO (D), HIF2aAlbKO (E) and HIF1aHIF2aAlbKO (F) mice and wild-type littermates 24h after sham or CLP procedure (n=4-8/group). All
bars represent mean ± SEM. Each individual data point represents individual mice. P-values were calculated using two-way ANOVA. ****P < 0.0001,
***P < 0.001, *P ≤ 0.05. ns, non-significant.
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observed in the absence of HIF1a and/or HIF2a in hepatocytes

after CLP (Figure 5A). Furthermore, when these mice were injected

with a lethal dose of LPS (11.25 mg/kg), no significant impact on

survival between hepatocyte-specific HIFaAlbKO mutant and wild-

type mice was observed (Figure 5B).

As mentioned before, sepsis is characterized by a (failing) SR

with hypoglycemia and increased levels of FFAs and KBs as a

consequence (7, 8). Furthermore, HIF proteins are involved in

regulating the expression of genes involved in glucose and lipid

metabolism (21–23) in a direct way, or by reducing the function of

PPARa and/or GR in hepatocytes (hypothesis investigated in this

study). Therefore, we investigated whether the absence of HIF1a
and/or HIF2a in hepatocytes has an influence on the hypoglycemia

and increased FFA and KB levels during sepsis. HIF1aAlbKO,

HIF2aAlbKO and HIF1aHIF2aAlbKO mice and wild-type littermates

were subjected to a CLP or sham procedure and glucose, FFAs and

KBs were measured in the blood of these mice 24h post-surgery. As

expected (10), hypoglycemia was detected in wild-type mice 24h

after CLP. The degree of hypoglycemia was similar in all three

mutant mice (Figure 5C). We could also detect a significant increase

in both FFA and KB levels in the blood of wild-type mice and all

three HIFaAlbKO mice, 24h after polymicrobial sepsis was induced

(Figures 5D, E). Although some differences in the degree of

hypoglycemia, and FFA and KB increases were detected in the

different groups, we conclude that, by and large, no major effects of

HIF absence were found on biological effects of CLP-induced

hypoglycemia and increase in FFA and KB levels.
3.5 Hepatic HIF1a and HIF2a are not
involved in the GCR present in
polymicrobial sepsis

Once polymicrobial sepsis via CLP is induced, mice develop a

persistent and genome-wide GCR in the liver as well as

hypoglycemia and hyperlactatemia (10). Furthermore, since HIFs

are thought to be involved in increased glycolysis thereby

contributing to the higher blood lactate levels during sepsis (7),

and a clear crosstalk exists between GR and HIF (25), we

investigated if HIF1a and/or HIF2a are involved in the GCR

induced in the liver during sepsis. Therefore, HIF1aAlbKO,

HIF2aAlbKO or HIF1aHIF2aAlbKO mice and wild-type littermates

were subjected to a CLP procedure. After 6h, a timepoint at which

GCR is already present in mice (10), mice were injected i.p. with

PBS or DEX (10 mg/kg), and liver was isolated 2h later (Figure 6A).

The expression of typical GR-responsive genes was measured via

RT-qPCR. In sham mice, a significant increase in the mRNA

expression levels of Fam107a, Fkbp5 and Tsc22d3 after DEX

stimulation was detected. As previously shown (10), these genes

no longer responded to DEX after CLP. Furthermore, we were

unable to detect any significant difference in gene expression levels

after DEX stimulation in the liver of HIF1aAlbKO, HIF2aAlbKO and

HIF1aHIF2aAlbKO mice 6h after CLP (Figures 6B–D). These results

show that the absence of HIF1a and/or HIF2a in hepatocytes of

septic mice is not able to prevent GCR during sepsis.
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3.6 Effect of HIF1a and HIF2a on PPARa
functioning in sepsis

Sepsis is also associated with a rapid decline in hepatic PPARa
mRNA and protein levels, and hence a reduced hepatic FFA b-
oxidation catabolism. In combination with increased lipolytic

activity of WAT, this reduced b-oxidation causes lipotoxicity in

liver and kidney after sepsis (11). Since hypoxia is associated with

increased lipolysis, increased FFA levels in the blood (26), and

impaired FFA b-oxidation (22, 23), and p300 functions as a co-

activator for PPARa (38), hepatic HIF1a and/or HIF2a might be

involved in the declined PPARa signaling during sepsis. Therefore

HIF1aAlbKO, HIF2aAlbKO, and HIF1aHIF2aAlbKO mice and wild-

type littermates were subjected to CLP and livers were isolated 6h

later (Figure 7A). In wild-type mice, a rapid decline of Ppara and

several PPARa responsive genes was observed 6h after CLP

(Figures 7B–D). In the absence of HIF1a in hepatocytes, the

mRNA expression levels of Ppara and its responsive genes were

decreased, although less pronounced than in wild-type littermates

(Figure 7B). This might indicate that HIF1a contributes to the

decline in PPARa and its signaling in sepsis. In the absence of

HIF2a in hepatocytes, no major effect was observed on the

expression of Ppara and PPARa responsive genes 6h after a CLP

procedure in comparison to wild-type mice (Figure 7C). In line with

the results obtained in HIF1aAlbKO mice, the expression levels of

Ppara and PPARa responsive genes were significantly reduced in

the liver of HIF1aHIF2aAlbKO mice and its wild-type littermates 6h

after sepsis. However, the downregulation of Ppara and its targets

genes is also less pronounced in the liver of HIF1aHIF2aAlbKO

mice (Figure 7D).

Altogether, we conclude that HIF proteins are not involved in

the appearance of GCR in liver during sepsis and that HIF1a in

hepatocytes of septic animals might be involved in the reduced

PPARa signaling (Figure 7E).
4 Discussion

Polymicrobial sepsis is a systemic disease, affecting several

organ systems. Nevertheless, certain organs are crucial in the

progression of sepsis. Within the context of the lack of food

intake in sepsis and the consequent SR, the liver is confronted

with high levels of FFAs, glycerol and gluconeogenic AAs, which

require PPARa and GR, respectively, to be properly transformed

into acetyl-CoA, KBs, and glucose (8). The acute lack of PPARa and

GR function during sepsis makes the liver key in sepsis (10, 11), not

only because this organ produces acute phase proteins (39–41). So,

the investigation of the mechanistic aspects of these failures of

transcription factors is really essential. Because crosstalk of

transcription factors in physiology and pathology is a commonly

observed phenomenon, we hypothesized that HIF1a and/or HIF2a
might play a role in the PPARa and GR dysfunction during sepsis.

To show, unambiguously that HIF factors are activated in liver in

sepsis, we applied the CLP model, considered as being the best

validated model of polymicrobial (peritoneal) sepsis in mice.
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Furthermore, we have generated a transgenic HIF-luciferase

reporter mouse by using the commercial HRE-luciferase reporter

construct, which has been validated as being a tool specific for HIF

factors (27).

Inflammation and hypoxia are unequivocally linked (42). Just as

hypoxia causes inflammation, inflamed tissue can become severely

hypoxic (43). Dynamic changes in (protein) HIF expression occur

during sepsis and therefore studies have proposed HIFs as potential

biomarkers or important players in sepsis, however results are often
Frontiers in Immunology 12
controversial. Transcriptome data from peripheral blood

mononuclear cells (PBMCs) obtained from sepsis and septic

shock patients have shown that hypoxia and glycolysis were

among the top scored molecular signatures. Furthermore, the

expression of HIF1a and its target genes were higher in non-

survivors sepsis patients compared to survivors (44). In

experimental models, HIF1a plays an important role in the

bactericidal capacity of macrophages to prevent systemic

spreading of an infection (45–47), and conditional knock-out of
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FIGURE 5

Lack of survival benefit in CLP-induced polymicrobial sepsis or LPS-induced endotoxemia in the absence of HIF1a and/or HIF2a in hepatocytes.
HIF1aAlbKO, HIF2aAlbKO, and HIF1aHIF2aAlbKO mice and wild-type littermates were subjected to CLP (A) or injected with 11.25 mg/kg LPS (B). Survival
was monitored over time. N-values are indicated in the figure. Survival curves were analyzed with Log-Rank test. (C-E) HIF1aAlbKO, HIF2aAlbKO, and
HIF1aHIF2aAlbKO mice and wild-type littermates were subjected to a sham or CLP procedure. After 24h, glucose (C) and ketone bodies (E) were
measured via the tail vein. FFA levels (D) were determined in the plasma of these mice. Fold inductions are shown on the figures. All bars represent
mean ± SEM. P-values were analyzed with two-way ANOVA. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P ≤ 0.05. ns, non-significant.
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HIF1a or HIF2a in myeloid cells protects mice against LPS-

induced endotoxemia by reducing the pro-inflammatory cytokine

production, hypothermia, and hypotension (35–37). Also

dimethyloxalylglycine (DMOG), a PHD inhibitor leading to

HIF1a stabilization, increased the survival of mice against LPS-

induced endotoxemia, however it exacerbated disease severity in

polymicrobial sepsis (48). HIF1a also has a vital role in the initial

metabolic shift from oxidative phosphorylation to glycolysis during

sepsis (49), and attenuates the pro-inflammatory response by

inducing IRAKM production, a negative regulator of TLR

signaling (50). Taken together, these studies suggest an important

role for HIF1a during various stages of sepsis, despite most animal

experiments applied suboptimal sepsis model systems, like the LPS-

induced endotoxemia mouse model.

Besides this (controversial and incomplete) information from

literature, data from our research group urged us to study the role of

HIF proteins in hepatocytes during sepsis. Next to a reduced GR

DNA-binding profile in CLP mice, we have demonstrated that

TNF-mediated GCR could be a result of the sequestration of co-

factor p300 to NF-kB, thereby preventing its accessibility to GR

(15). P300 is known as a histone acetyltransferase (HAT) essential

for GR-mediated transcription (51), but also for other transcription

factors such as NF-kB and HIF (52). For example, lysine

acetyltransferase 5 (KAT5) and cAMP response element binding

protein (CBP)/p300 acetylate histones at HIF bound loci and are
Frontiers in Immunology 13
required for the transcriptional activation of a subset of HIF target

genes (53, 54). Recently, it has been shown that hypoxia

differentially regulates H3K27 acetylation at GR binding sites

(55). The p300 co-activator is responsible for the increased

histone acetylation and the increased recruitment of GR to its

DNA binding sites (15, 56). Moreover, we and others have shown

that there is a clear interaction between HIF and GR (26, 57, 58).

Therefore, a competition between GR and HIF for the p300 co-

activator might thus be responsible for the alterations in the gene

expression profile. Next to GCR, sepsis is also characterized by a

PPARa dysfunction in the liver (11, 16). Following ligand binding,

the AF-2 domain of PPARa undergoes conformational changes,

which allows the interaction of several co-factors such as CBP/p300

(38, 59). Therefore, we wanted to investigate whether HIF1a and

HIF2a expression in hepatocytes contributes to the GCR and

PPARa failure present in sepsis, as this has not been studied before.

In our studies, bulk RNA-SEQ performed 6h and 24h after

onset of a lethal polymicrobial sepsis in mice, convincingly proved

that HIF transcription factors are upregulated on the mRNA level,

and also lead to a significant accumulation of HIF-dependent

transcripts. Using the HRE-luciferase transgenic reporter mice

that were generated for this study, HIF activity was detected in

the livers of CLP mice 6h post-surgery and remained high until 24h

after surgery. Based on the HRE-luciferase reporter activity

measured in HIFaAlbKO mice, both HIF1a and HIF2a appear
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FIGURE 6

No role for HIF1a and/or HIF2a in hepatocytes in mediating GCR during sepsis. (A) HIF1aAlbKO, HIF2aAlbKO or HIF1aHIF2aAlbKO mice and wild-type
littermates were randomly assigned to a sham or CLP procedure. 6h post-surgery, mice were injected i.p. with PBS or DEX (10 mg/kg) and the livers
were isolated 2h later. The mRNA expression levels of Fam107a (B), Fkbp5 (C) and Tsc22d3 (D) were measured via RT-qPCR. One experiment (n=3/
group). Data is pooled for the wild-type mice. All bars represent mean ± SEM. P-values were analyzed via two-way ANOVA. ****P < 0.0001, ***P <
0.001. ns, non-significant.
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responsible for the HIF activity, the signals of which are only

annihilated when both HIF1a and HIF2a are knocked out in the

hepatocytes. Based on the reporter plasmid (27), HIF activity was

similar in mouse models for endotoxemia and sepsis, and could be

compared to the amount of activity observed in hypoxia.

Unfortunately, although we were able to detect HIF activity in the

liver during sepsis, we were unable to observe a survival benefit in
Frontiers in Immunology 14
LPS-induced endotoxemia and CLP polymicrobial sepsis in mice

lacking HIF1a and/or HIF2a in hepatocytes. There are two possible

explanations for this observation. Either, HIF factors are activated

in hepatocytes, but play no mechanistic role in sepsis, or the

transcriptional signals and reporter activities that were observed

in the liver were from cells other that hepatocytes. Next to

hepatocytes, which form 70% of the cells in the liver, 10% of the
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FIGURE 7

Absence of HIF1a in hepatocytes might affect impaired PPARa signaling during sepsis. HIF1aAlbKO, HIF2aAlbKO or HIF1aHIF2aAlbKO mice and wild-type
littermates were randomly assigned to a sham or CLP procedure. 6h post-surgery, livers were isolated. (A) Experimental set-up. (B-D) The expression
levels of Ppara and PPARa responsive genes were measured in the liver of HIF1aAlbKO (n=8/group) (B), HIF2aAlbKO (n=8-9/group) (C), or
HIF1aHIF2aAlbKO (n=6-7/group) (D) mice and wild-type littermates via RT-qPCR. (E) Graphical abstract. Fold inductions are displayed on the graphs.
All bars represent mean ± SEM. P-values were analyzed with two-way ANOVA. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P ≤ 0.05. ns, non-
significant.
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liver cells are Kupffer cells (KCs) (60). Also liver sinusoidal

endothelial cells (LSECs, 15%) and hepatic stellate cells (HSCs,

5%) cooperate to shape and maintain liver function (61) and could

thus be involved in the HIF activity observed in the liver during

sepsis. For follow-up studies, it might also be considered to test the

effect of the absence of HIF proteins in hepatocytes in more slowly

progressive models of sepsis such as a systemic Staphylococcus

aureus or Klebsiella pneumoniae infection (62).

As mentioned earlier, the two main transcription factors

involved in the metabolic reprogramming during sepsis in the

liver are the GR and PPARa, associated with hypoglycemia and

hyperlactatemia (10), and increased levels of FFAs and glycerol in

the blood (7, 11). Upon an infection, the immune system will

protect the host by eradicating the pathogen. This is often

associated with inflammation and tissue damage, which could

harm the host. In order to maintain homeostasis and survive

excessive inflammation, cytokines produced by the immune cells

will activate the hypothalamus-pituitary-adrenal (HPA) axis and

induce GC synthesis as a disease tolerance mechanism (63, 64). We

have shown that hypoxia is able to stabilize HIF1a and HIF2a at the

hypothalamus and stimulates the HPA axis leading to GC

production (26). Furthermore, this HPA axis activation is

essential for sepsis survival, since surgical removal of the pituitary

or adrenal glands (65), or pharmacological inhibition of GR by

RU486 (66) sensitizes mice to sepsis. The GCs produced regulate

the disease severity by dampening the inflammatory responses via

monomeric GR-mediated tethering to transcriptional factors NF-

kB and AP-1 (67). Also the GR dimer is important, because GRdim/

dim mice are more sensitive and are unable to induce a proper

inflammatory response in the absence of proper GR dimerization

(68–71). In vivo studies using zebrafish and mice have shown that

the upregulation of HIF signaling alters the GR activity and

dampens its responsiveness to GR agonists such as DEX and

betamethasone (26, 55, 58). Furthermore, GCs are essential for

hepatic gluconeogenesis to provide sufficient glucose levels (72).

Increased glycolytic activity is associated with an increased

conversion of pyruvate into lactate during sepsis (73). Due to

GCR, lactate-based gluconeogenesis in the liver, also known as

the Cori cycle, is inhibited in sepsis (10). In addition, HIF1a also

stimulates the expression of glycolytic genes, which further

contributes to the conversion of pyruvate into lactate (74).

Therefore, we wanted to investigate the involvement of

hepatocyte-specific expression of HIF1a and/or HIF2a in the

GCR observed during sepsis, however without any positive results.

Next to GCR, sepsis is also characterized by a PPARa
dysfunction in the liver. This PPARa dysfunction can, in part, be

explained by rapid decline of hepatic PPARa mRNA and protein

levels and activity, which leads to a reduced expression of its target

genes involved in FFA b-oxidation (11, 16). Since sepsis acutely

activates lipolysis in WAT, increased FFA and glycerol levels are

present in the blood of sepsis patients (75–77). As a consequence of

PPARa malfunction, FFAs are no longer oxidized which leads to the

ectopic deposition of lipid storages in liver and kidney after sepsis and

thereby causes lipotoxicity and tissue damage (11, 78). Hypoxia

stimulates the release of FFAs in the blood of mice in a GC/GR-

dependent way (26). Since FA catabolism is altered under hypoxia, an
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excess of intracellularly accumulated FFAs could cause lipotoxicity.

Cells try to avoid this by converting FFAs into neutral triacylglycerols

(TAGs), which can be stored in lipid droplets and form the main

energy depots (79, 80). HIF1a directly upregulates the expression of

acylglycerol-3-phosphate acyltransferase 2 (AGPAT2) (81) and lipin-

1 (82), both important for the formation of lipid droplets.

Furthermore, HIF2a has been shown as a master regulator in

hepatic lipid metabolism during hepatosteatosis. The absence of

HIF2a, and not HIF1a, in Vhl knock-out mice protected against

hepatic lipid accumulation (83, 84). Moreover, Rey et al. (2020) have

demonstrated that HIF2a induces the expression of CD36, the major

driver of FFA uptake, which triggers lipid accumulation in

hepatocytes both in vitro and in vivo (85). In addition, HIF2a also

increases the expression of the adipose differentiation-related protein

(ADRP) in the liver (86), also involved in FFA uptake, and reduced

FA b-oxidation (87). When oxygen therapy is provided, hepatic

steatosis induced by high-fat diet (HFD) is ameliorated via the

reduction of hepatic HIF2a and lipogenic gene expression (88). In

general, the abovementioned studies suggest that HIF2a increases

FFA uptake and de novo lipogenesis as well as decreases b-oxidation.
Regarding HIF1a, it has been shown that systemic or hepatic Hif1a

deletion or HIF1a antisense oligonucleotides reduces hepatosteatosis

(89, 90). On the contrary, other studies revealed HIF1a mediated

protection against alcohol-induced fatty liver disease (91, 92).

It has been shown that PPARa is essential for sepsis survival.

PPARa knock-out mice are more susceptible to a lethal dose of LPS

(93) and bacterial infections (16, 94), which is associated with increased

kidney failure and heart injury (94, 95). Also, mice treated with the

PPARa antagonist GW6471 are more prone to CLP-induced

polymicrobial sepsis. Although hepatic PPARa plays an essential role

during sepsis survival, a genome-wide disturbance of PPARa function

is observed in mouse septic livers upon stimulation with the PPARa
agonist GW7647 (11). Since HIF1a and HIF2a are involved in the

regulation of lipid metabolism in the liver (22, 23), and the effect of

hepatic HIF protein expression on the PPARa dysfunction has not

been studied in sepsis, we have investigated whether the absence of

HIF1a and/or HIF2a in hepatocytes of septic animals influences

PPARa function. We were able to identify some promising results in

the absence of HIF1a expression in hepatocytes. It would thus be of

great interest to investigate whether hepatic PPARa stimulation with

pemafibrate or GW7647, well known PPARa agonists, in the absence

of HIF1a in hepatocytes during sepsis might be able to restore PPARa
functioning and reduce lipotoxicity.

In summary, we have shown the presence of HIF signaling in the

liver during CLP-induced polymicrobial sepsis using RNA-SEQ data

and the HRE-luciferase reporter mice. However, hepatocyte-specific

knock-out mice for HIF1a and/or HIF2a did not yield any survival

benefit against LPS-induced endotoxemia and CLP polymicrobial

sepsis. Since a conditional knock-out of HIF1a or HIF2a in myeloid

cells protects against LPS (35, 36), it might be of interest to study

whether KC specific knock-out mice for HIF1a and/or HIF2a are

protected against LPS-induced endotoxemia and CLP polymicrobial

sepsis. Another option could be to revisit the RNA-SEQ data in single

cell populations, or in FACS-separated cell types of the liver, and

equally so revisit the luciferase reporter data. Unfortunately, the

absence of HIF proteins in hepatocytes is not able to prevent GCR
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in sepsis. Finally, we were able to identify a potential role for HIF1a in

hepatocytes of septic animals in the reduced PPARa signaling.
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SUPPLEMENTARY FIGURE 1

Hif mRNA and HIF proteins levels in hepatocyte-specific HIF1a and/or HIF2a
knock-out mice. (A-C) Livers of HIF1aAlbKO (A), HIF2aAlbKO (B), or

HIF1aHIF2aAlbKO (C) mice and wild-type littermates were isolated and the
expression levels of Hif1a and Epas1 were measured via RT-qPCR. All bars

represent mean ± SEM. P-values were analyzed with two-way ANOVA.
****P<0.0001, **P<0.01, *P ≤ 0.05.

SUPPLEMENTARY FIGURE 2

HRE-luciferase activity detected in LPS-induced endotoxemia versus CLP

polymicrobial sepsis. (A) C57BL/6J mice were injected with the HRE-
luciferase reporter plasmid via the tail vein using high-pressure injections.

After incubation, mice were injected with PBS or LPS, or were subjected to a
sham or CLP procedure. 6h later, livers were visualized using the IVIS

SpectrumCT system. Log10 of the bioluminescent photon counts in liver of
mice subjected to LPS or CLP and PBS and sham as control (n=3/group). All

bars represent mean ± SEM. P-values were analyzed with two-way

ANOVA. **P<0.01.
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