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implications for the analysis of
immune repertoires
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The adaptive immune system has the extraordinary ability to produce a broad range

of immunoglobulins that can bind a wide variety of antigens. During adaptive

immune responses, activated B cells duplicate and undergo somatic

hypermutation in their B-cell receptor (BCR) genes, resulting in clonal families of

diversified B cells that can be related back to a common ancestor. Advances in high-

throughput sequencing technologies have enabled the high-throughput

characterization of B-cell repertoires, however, the accurate identification of

clonally related BCR sequences remains a major challenge. In this study, we

compare three different clone identification methods on both simulated and

experimental data, and investigate their impact on the characterization of B-cell

diversity. We observe that different methods lead to different clonal definitions,

which affects the quantification of clonal diversity in repertoire data. Our analyses

show that direct comparisons between clonal clusterings and clonal diversity of

different repertoires should be avoided if different clone identificationmethods were

used to define the clones. Despite this variability, the diversity indices inferred from

the repertoires’ clonal characterization across samples show similar patterns of

variation regardless of the clonal identification method used. We find the Shannon

entropy to be the most robust in terms of the variability of diversity rank across

samples. Our analysis also suggests that the traditional germline gene alignment-

based method for clonal identification remains the most accurate when the

complete information about the sequence is known, but that alignment-free

methods may be preferred for shorter sequencing read lengths. We make our

implementation freely available as a Python library cdiversity.
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1 Introduction

Antibodies are protective proteins produced by B cells in

response to the presence of foreign pathogens, they have an

exceptional ability to recognize a wide variety of target antigens

and can display exquisite binding specificity (1). To ensure broad

antigen recognition, antibodies undergo several rounds of

maturation where selected B cells gain increased affinity, avidity,

and anti-pathogen activity, while the rest are eliminated

through apoptosis.

Briefly, B cell receptors (BCRs) are assembled through the

rearrangement of the V, D, and J gene segments, coupled with

stochastic insertions and deletions of nucleotides at the gene

boundaries, i.e. at the V and D, and the D and J gene junctions

(2). The junctions between the V, D, and J gene segments are known

as the complementary determining region 3 (CDR3). This region is

the most diverse part of the BCR sequence and plays a crucial role in

determining the binding specificity to foreign antigens (3).

Once a BCR has been formed, B cells are exposed to antigens in

the secondary lymphoid organs and undergo affinity maturation in

microanatomical structures known as Germinal Centers (GCs) (4).

Through antigen-driven competition, selected B cells receive

secondary signals that direct them to undergo further rounds of

cellular replication and BCR diversification through somatic

hypermutation (SHM). Through this process, B cells with higher

affinity to the target antigen are preferentially selected to further

multiply, while the ones with lower affinity undergo programmed

apoptosis. This process results in the progressive expansion and

evolution of the initial pool of founder cells into distinct groups of

clonally related B cells (referred to as B-cell clones) that compete

against each other for antigen-mediated survival signals. Through

an accelerated Darwinian process of diversification and selection,

some of these clones expand significantly and can become

dominant, while others disappear (5).

Because of the stochastic nature underlying clonal selection

coupled with the randomness associated with experimental BCR

sampling and sequencing, it is common to observe a fraction of B

cells without any clonally related B-cell in a repertoire. In this

manuscript, we refer to this group of B cells as singletons, and use

the term non-singletons to refer to B cells that have other clonally

related B cells. Of course, the distinction between singletons and

non-singletons depends not only on the random experimental cell

sampling and repertoire sequencing depth, but also depends

crucially on the user-defined threshold to define and separate

clonally related and unrelated cells, as will be discussed in

Section 2.2.

The rapid change and adaptation of B-cell repertoires in

response to antigen stimulation driven by internal and external

immune insults makes the sequencing and analysis of BCRs a

valuable tool to characterize the immune status of an individual.

Furthermore, as memory B cells produced during short-lived

immune episodes can survive for a very long time, sometimes for

the entire lifetime of a person, their analysis can also reveal

information about the past and current pathogens encountered by

an individual (6, 7). Beyond infections, the analysis of B-cell

repertoires can provide valuable fingerprints of an individual’s
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immunological status, and enable the diagnosis of complex

diseases, chronic inflammatory conditions, allergies, responses to

vaccination, etc (8–15).

Advances in Adaptive Immune Receptor Repertoire Sequencing

(AIRR-Seq) technologies have considerably increased the amount

of repertoire data that is available for analysis and improved our

understanding of the dynamics of B-cell repertoires in both

individuals and populations. Typical B-cell repertoire analyses

start by grouping BCR sequences into clones of related B cells.

The reconstruction of phylogenetic lineages of clonally related B

cells provides information about the evolutionary paths that led to

the development of functional antibodies and it is also useful to

understand the progression of diseases such as chronic infections,

autoimmune diseases or cancer. In most cases, however, immune

repertoire data show significant differences in clonal composition

across individuals in humans and mice (16), and even, between

identical twins (17). This variability makes the direct comparison of

sequence repertoires across individuals inadequate to identify

robust immune repertoire-based signatures.

A more promising approach to comparing immune

repertoires across individuals focuses on the investigation of

sequence-independent quantifiers such as clonal diversity

indices. These quantifiers offer the possibility of correlating

immune repertoire diversity to immunological status and, in

doing so, readi ly al low for immune-repertoire-based

comparisons across individuals. Nevertheless, there is still

substantial ambiguity and a lack of quantitative understanding

of the effectiveness of the diversity metrics to reliably capture

status-specific information from immune repertoires. Realistic

measures of diversity should reflect not only the relative

abundances of clones, but also the main differences between

them (18, 19). Furthermore, the use of specific diversity indices,

such as the Shannon (20) or Simpson (21) diversity indices may

yield qualitatively different results in different contexts (18, 19).

Intuitively, that is because these indices do not put the same

weights on the clone abundances in the repertoire. For example,

the richness score is most sensitive to the rarest clones, while the

Simpson index (probability that two randomly selected

individuals belong to different species) and the dominance score

are affected mainly by the most common clones.

The limitations associated with individual metrics have

supported the practice of aggregating multiple indices for

immunological classification. An example of such aggregation is

the Hill-based diversity profile, which integrates a continuum of

single diversity indices and can facilitate a global quantification of

the immunological information contained in immune repertoires

(22, 23). Nevertheless, the estimation of these indices and profiles is

heavily influenced by the sequencing depth of the experiment. For

example, species richness quantifies the number of species in a

sample, and not surprisingly, shows strong correlations with the

number of BCR sequences available in the repertoire. Several bias

estimators have been proposed to correct for incomplete sample

information such as the Chaos estimator (24, 25). However, these

estimators present vulnerabilities that limit their applicability to

immune repertoires with variable sequencing depth (26). For

instance, the Chaos estimator relies heavily on the correct
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quantification of singletons and doubletons, which is often prone to

error in the context of B-cell repertoires.

In fact, another challenge in the analysis of B-cell repertoire data

is the grouping of BCR into clones. Theoretically, a group of

clonally related B cells represents a group of B cells descending

from the same common ancestor (aka founder cell). In an

experimental context, the founder cell has long disappeared, being

replaced by better-adapted descendants. Therefore, in most cases

reconstructing phylogenetic trees amounts to inferring trees where

the founder cell is unknown. In practice, B cells with similar

characteristics, such as the same gene segments and similar

CDR3, are grouped together in the same clone. This empirical

definition of clone poses several challenges, the first being the

arbitrariness of the choice of BCR properties used to define a

clone, and second, the subjective choice of metric and threshold

used to separate clonally related and unrelated B cells. Importantly,

the optimal way to group clones may differ depending on

the dataset.

In this context, a variety of methods has been proposed to

(semi-)automatically identify clones from a set of BCR sequences.

Some are based on probabilistic models that infer a hypothetical

unmutated common ancestor to be used as tree root, which enables

the inference of rooted trees interpreted as clones (27, 28). The most

common techniques rely on CDR3 sequence similarities as well as

the alignment of BCRs to reference V and J gene germline sequences

(29–33). As these alignments are prone to error, some recent

approaches leverage natural language processing (NLP)

techniques to define similarity indicators independent of these

gene alignments (34).

Our contribution: Each method for clonal identification

depends on arbitrary choices of BCR sequence features, sequence-

based distances and thresholds, and therefore, may lead to

substantially different clonal groupings – besides displaying high

variability in computational complexity and robustness. This

variability might affect the estimation of clonal diversity which, as

we discussed earlier, is crucial for the global analysis of B-cell

repertoire data. In this work, we consider different definitions of

clones and investigate the consistency and robustness of commonly

used diversity indices at different sequencing depths and across

different samples and technical replicates. By objectively comparing

the performance and consistency of both clone definitions and

diversity indices in various experimental contexts, we aim to

investigate how the different empirical clone definitions affect

diversity analyses and the biological conclusions extracted from

them. Finally, to facilitate the use of the different clonal

identification methods and diversity metrics, we make our

implementation freely available as a python library (Section 4.4.3).
2 Results

2.1 B cell repertoire data

To characterize the influence of the different metric and clone

definition choices on repertoire diversity analyses, we collected
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three different B-cell repertoire datasets from three different

biological contexts:
• Simulated data. We collected artificial repertoires with

known clonal relationships (34), generated by randomly

adding mutations based on learned lineage tree topologies

from a multiple sclerosis (MS) study (35). Thus, the

repertoires exhibit wide variability in terms of sequence

diversity, junction lengths, and clone sizes. While the

artificial generation may bias the repertoire towards

certain patterns used for its generation, they provide

essential information about both the B cells clonal

relationships and their lineage history. From this ground

truth information, we can compute exact diversity indices,

which is fundamental to quantitatively assess the accuracy

of each clonal definition method and metric. This

information is inaccessible in experimental datasets.

• Germinal center data. The second dataset is a collection of

B-cell repertoires from 10 individual GCs extracted from

the same lymph node of a patient with chronic sialadenitis

(36). Two replicates per GCs are available. Importantly, the

first 70 nucleotides of the V gene segments are missing due

to the experimental design. Primers were designed to bind

within the FR1 region, and were thus removed during the

read processing to avoid PCR or sequencing errors (37).

This limitation makes this dataset particularly interesting

for our study, as it enables us to assess the impact of an

uncertain V gene assignment on diversity estimations.

Furthermore, as GCs can be considered semi-independent

evolutionary structures with limited cell exchanges, they

exhibit high variability in B-cell diversities even within the

same lymph node (29). Therefore, the comparisons of

technical replicates from the same GC allow us to

establish confidence values for our inferred diversity

estimators, as samples extracted from the same GC are

expected to exhibit a similar degree of diversity compared to

samples from other GCs.

• Vaccination data. Our third dataset comes from a study of

hepatitis B-associated chronic infection and vaccination

responses (8). This dataset characterizes the different B-

cell repertoire landscapes of individuals shortly after

vaccination and/or infection compared to controls (non-

vaccinated and non-infected individuals). The dataset

contains 27 samples from controls, infected individuals, as

well as pre- and post- (2 weeks) vaccinated individuals.
Figure 1 provides a visualization of these three datasets. For this

initial data exploration, we followed previous conventions (29, 30).

Namely, we grouped B-cells sequences into clones if they share the

same V and J gene segments as well as exhibit more than 90% CDR3

sequence similarity. As these datasets involve repertoires of different

sizes (Figure 1A), we performed the comparative analysis after

subsampling all the repertoires to the same size (30k sequences) to

remove any potential bias due to sample size in the comparison. A

dominance stacked histogram (Figure 1B) shows that the 3 datasets
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display very different clonal compositions. This is more evident in

the abundance density plot (Figure 1C), where the GC data exhibits

a plateau of clones with similar abundance, while still including

highly dominant clones ( > 10%). Contrary to this pattern, the

simulated data does not have any dominant clone, and the most

abundant clone reaches only 0:5% abundance. These differences are

corroborated by commonly used diversity indices such as richness

(38), Shannon entropy (20) or evenness tephill1973diversity

(Figure 1D), thus highlighting the relevance of these metrics to

inform about the clonal composition of these datasets.
2.2 Different clonal identification methods
yield inconsistent B-cell groups

The first step in the analysis of B-cell repertoire data is the

grouping (or clustering) of BCRs into clonal families. In this work,

we focus on three clonal identification approaches previously

described in the literature.
Fron
• Junction-based methods: In this method, B cells are

assigned to the same clone if and only if their receptors

share the same CDR3 sequence. This has the advantage of

being computationally simple and eliminating any

ambiguity when setting arbitrary clustering thresholds.

On the other hand, since the junctions of clonally related

B cells typically exhibit small sequence differences due to

SHM, this approach tends to split branches of the same

lineage into different clones, leading to an inflation of the

diversity metrics. Sequencing errors further contribute

towards artificially increasing the number of clones.
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• Alignment-based methods: A more commonly used

approach relies on the junction sequence and the V and J

assignments (39). We refer to this method as VJ & Junction.

Namely, B cells are assigned to the same clone if their

receptors share the same V and J gene segments and their

CDR3 sequence similarity is above a predefined threshold.

CDR3 similarity is typically assessed with the Levenshtein

distance (40) and the threshold is set around 90%, with

some variability depending on the dataset. Hence, this

method allows for small sequence divergences in clonally

related cells due to potential insertions and deletions

through the subsequent rounds of B-cell diversification

through SHM and sequencing errors.
In practice, the similarity threshold is adjusted for each dataset

independently. There are several ways of doing so. A first, intuitive

approach consists in computing the distances between pairs of

junctions from B cells with the same V and J gene segments

(Figure 2A). The distribution of pairwise distances is expected to

be the mixture of two distributions, one corresponding to distances

between members of the same clone (non-singleton sequences) and

the second corresponding to distances between clonally unrelated

sequences (singletons). The value that separates the two modes of

the distribution can then be used as a threshold to separate both

clonally-related and unrelated sequences (41) (Figure 2A).

The bi-modality-based threshold has however a high

computational cost. An alternative method assumes that clones

do not span multiple individuals. Hence, sequences randomly

sampled from multiple unrelated individuals, i.e. negation

sequences, can be introduced and used to define a threshold by

computing the distribution of distances between negation
A CB

D

FIGURE 1

Visualization of the B-cell repertoires dataset used in our study, including a germinal center (GC) [36], hepatitis B (Heb.B) [5] and simulated [27]
datasets. In this figure, clones have been identified according to previous conventions [50, 19] (shared V, J gene segments and similar CDR3s).
(A) Average sample size of the three datasets, where the error bar represents one standard deviation. (B) Stacked histogram depicting the proportion
of sequences belonging to the dominant clone, expanded clones (dominance > 1% excluding the dominant one), and non-expanded clones
(dominance < 1%) in each sample of each dataset. Replicate samples in the GC repertoire dataset are grouped together. (C) Clonal abundance
distribution in the three repertoires after normalizing the 3 datasets to account for sample differences. The solid line represents the distribution
averaged over all samples and the shaded area indicates one standard deviation. (D) Computed diversity indices for each dataset of the previous
figure. The error bar represents one standard deviation.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1123968
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pelissier et al. 10.3389/fimmu.2023.1123968
sequences and their closest counterparts within the considered

individual (42) (Figure 2A). In practice, a threshold is chosen that

allows a fraction of false-positive sequences roughly equal to a

tolerance d to be below the chosen threshold. This heuristic aims for

high specificity, which is approximately 1 − d . In this work, the

threshold was set using a tolerance of d = 1%. a tolerance set to 1%.

Finally, the threshold and the computed CDR3 pairwise

Levenshtein distances are used together with the Hierarchical

Agglomerative Clustering (HAC) algorithm (43) to further split

BCRs with the same V and J gene segments into different clonal

groups (39).
Fron
1. Alignment free methods: As germline gene alignments are

error-prone, alignment-based methods might fail to identify

clonal relatives accurately, especially when part of the

nucleotides are missing in the sequences (as in the GC

dataset described in section 2.3). To overcome this

limitation, an alignment-free method that leverages NLP

techniques has been recently introduced (34). In brief, the

method decomposes each BCRs into k-mers (substrings of

length k) and uses the term frequency-inverse document

frequency(tf-idf) as a weighting scheme that increases

proportionally to the number of times a k-mer term

appears in the document but is offset by the frequency of

the term in the corpus. The logic behind this is to emphasize

rare and hopefully meaningful terms while reducing the

influence of common and uninformative terms.
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Once a vectorized representation of each BCR has been built,

BCR similarities are computed with the cosine distance, which

allows for a very fast computation of similarities among text strings.

The pairwise distances are then fed into the HAC algorithm to

compute the final clusters, with a distance threshold defined from

the negation sequences in the same way as with the alignment-based

method (Figure 2B).

A straightforward way to visualize the consistency and

performance of the different clonal identification methods is

through the classification of singletons. As mentioned earlier,

singletons are clonally unrelated sequences, and thus, we expect

them to exhibit larger distances to their nearest repertoire neighbors

than non-singletons sequences. We first run a comparative analysis

in the simulated dataset, as we have ground truth information about

clonal relationships. Figures 2A, B displays the distance to the

nearest neighbors of each B cell in the simulated data, for both

singletons (blue) and non-singletons sequences (orange). We

observe that both methods fail to identify accurately some of the

singletons in the simulated dataset (8% for alignment-free, and 1%

for VJ & Junction). These inaccuracies can be visualized with the (i)

blue sequences to the left of the vertical line and (ii) orange

sequences to the right of the vertical line (note the log-scale on

the y-axis). Overall, our analysis suggests that the VJ & Junction

method (alignment based) performs the best at classifying

singletons in the simulated data.

While we do not know the true clonal assignment of the

experimental datasets, we observe that all methods disagree
D

A B

E
C

FIGURE 2

(A, B) Distance to the nearest neighbor sequence distribution, both within the same repertoire (blue and orange) and to the negation sequences (green). The
distances to nearest neighbors are labeled according to the ground truth (singleton or non-singletons), i.e. the clonal groups in the simulated data. Results
are shown for both the (A) alignment-based method, i.e. based on common V-J segments and junction similarity, and (B) alignment-free method, based on
the cosine distance between k-mers frequency vectors of each BCR (in the plot, k=7). The choice between alignment-based and alignment-free methods
results in clearly different distributions of pairwise distances. The distance threshold used to define separate clusters is displayed for each clonal identification
method (dashed vertical line). (C–E) Adjusted mutual information comparing the clustering partitions obtained from the three methods: Junction-only (JO),
VJ & Junction (VJJ), Alignment-free (AF) and Ground-truth (G0). Results are averaged over all samples and provided for the (C) simulated, (D) germinal
center, and (E) hepatitis B dataset. Each cell shows the average adjusted mutual information and the standard deviation. The ground truth of clonal
assignment is only available for the simulated dataset (Subplot C).
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within their respective classification of singletons (SI section 1). To

better quantify the similarity of the inferred clonal group across

methods, we computed the adjusted mutual information (AMI)

(44) between the clusters inferred with each method and for each

dataset (Figures 2C–E). AMI is a variation of mutual information

that compares the partitions produced by different clustering

schemes. Furthermore, AMI also corrects for the effect of the

agreement between clusters solely due to chance. A value close to

0 indicates no overlap, while a value of 1 corresponds to identical

cluster partitions. As expected from the differences in clonal

definitions used by the three methods, we observe differences in

the clusters inferred by each method. Focusing first on the synthetic

dataset for which the ground truth is known (Figure 2C), the VJ &

Junction method performs best and achieves an AMI with the

ground truth of 0.9, while the junction-only method has the lowest

performance with an AMI of 0.67. This is an illustration of how a

small sequence dissimilarity tolerance in the CDR3 is beneficial to

faithfully reconstruct clonal families. Interestingly, the AMI

between the three methods is higher in the GC and Hepatitis B

dataset (AMI > 0:92). That is likely because in these datasets, there

are a few abundant clones with many identical junctions, thus

inflating slightly the AMI between the three methods (dominance

∼ 10% vs ∼ 1% for the simulated dataset).

Importantly, additional analysis revealed that these differences

are not due to chance or subsampling, as the three methods were

found to be giving similar clonal relationships after subsampling

even across different sample sizes and shuffling (Figure S2 in SI

section 2). In fact, because of the HAC algorithm and tf-idf k-mer

representations used for the clonal identification, the same two

sequences may or may not be in the same cluster depending on the

rest of repertoire sequences. This supports our hypothesis that

diversity quantification significantly depends on the method used

for clonal identification.
Frontiers in Immunology 06
2.3 V and J gene segments may be
misaligned, impacting the clonal
identification accuracy in
alignment-based methods

Alignment-based methods for clonal identification rely on the

correct calling of the germline V and J gene segments to the BCR

sequences. Unfortunately, V gene assignments can be ambigious,

especially for shorter read lengths (45). More concretely, in the GC

dataset, thefirst 70nucleotides ofVgene segments aremissingdue to the

experimental design. Therefore, it is possible that a non-negligible

portion of V genes is incorrectly called, and this could bias the clonal

characterization of this dataset when using the VJ & Junction

(alignment-based) method. Such limitations, originating from the use

ofFR1-bindingprimers (37), lead to sequencingerrors in that region that

are common in next-generation sequencing experiments (36, 37). To

further investigate this hypothesis, we looked for sequences with

ambiguous V and J gene annotations in the IgBlast output (46),

whereby ambiguity was defined as having multiple gene matches with

equivalent alignment scores. We found that 13% of assigned V genes

were ambiguous, as compared to only 0.05% of J genes (Figure 3A).

To further test for the impact of these potential V gene

misalignments, we considered the singleton sequences of the GC

dataset. For each singleton identified in our repertoire, we looked at

the top 6 V and J gene annotations, and checked how often one of

these annotations reassigned the sequence to an existing cluster. We

refer to these singletons as potential false negatives, because the

alignment-based method has labeled them as singletons, while there

is significant likelihood that they belong to an existing clone.

Strikingly, we found that 8.8% of singletons inferred by the VJ &

Junction method in the GC dataset were potential false negative

(depicted in purple on Figure 3B, note the log-scale in the y axis).

Interestingly, the alignment-free correctly classified 83% of the 8.8%
D

A B

C

FIGURE 3

(A) Occurrence rate of B-cell sequence with multiple V and J gene segment annotations of equivalent alignment score after the IgBlast query in the
GC dataset. (B) Distance to nearest distribution for B-cell sequences in the alignment-based (VJ& Junction method) clonal identification method in
the GC dataset. False negative singletons originating from V or J gene misalignment are depicted in purple. (C) Proportion of matched and
mismatched V gene assignment between the original and truncated simulated dataset (where the first 70 nucleotides were artificially removed). (D)
Correctly and wrongly assigned singletons by the VJJ and AF method on the simulated dataset.
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identified false negatives (depicted in purple in Figure S3). This

suggests that, while the VJ & Junction method results in better

clustering assignments when the full sequence information is

available, the alignment-free method might be preferable for

shorter sequences and especially, when the germline V gene

alignment is ambiguous.

To further investigate this, we artificially removed the 70 first

nucleotides of the V region in each sequence of the simulated

dataset. In this way, we replicated the experimental sequencing

limitations of the GC dataset, while still having ground truth labels

to accurately identify false negatives. Averaging across samples, 16%

of the sequences were assigned to an incorrect V gene (Figure 3C),

which led to a significant decrease in the average sample AMI

between the VJJ method and the ground truth (from 0:90 ± 0:3 to

0:79 ± 0:05, while the AFmethod resulted in an AMI of 0:84 ± 0:03),

thus confirming the negative impact of wrong V gene assignment on

clone identification. Regarding singletons (Figure 3D), we observed

that 27% of the singletons identified by the VJ & Junction method on

the truncated data were actually false negatives (while this rate is less

than 1% with the correct gene assignments). Among these false

negatives, the AF method correctly assigned 72% as non-singletons,

thus also supporting the use of alignment-free methods with

ambiguous V gene calls.
2.4 Sensitivity of diversity indices to clonal
identification methods

In the previous section, we showed how inferring clonal

relationships in B-cell repertoires markedly depends on the
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method used. We now investigate how these variabilities affect

repertoire comparisons when characterized by different diversity

indices. We calculated sample diversity using various diversity

metrics for all samples and all three clonal identification methods.

As diversity metrics, we considered dominance (47), richness (38),

Simpson index (21), Shannon entropy (20), Hill’s diversity (22)

profiles. We also used Chao statistical estimators for richness and

Shannon entropy (24, 25, 48) which account for incomplete sample

information (see Methods Section 4.4.3).

Our analyses showed that the three clone identification methods

result in differences in the diversity indices larger than one standard

deviation (Figure 4A, SI section 5). Metrics such as dominance or

Simpson index, which put less weight on rare species, were less

affected by the clonal identification method than those sensitive to

rare clones such as richness. This is logical, as these metrics pay less

attention to low frequency clones that might be the result of

incorrect sequence assignment to larger clones. In general,

however, one should exert caution when comparing diversity

indices of B-cell clone repertoires if different diversity indices

were used.

Interestingly, although the indices differ in value, they show

similar patterns of variation across samples and across clonal

identification methods. Figure S3A shows the Shannon entropy

profiles across different samples when clones are computed with the

three different clonal identification methods, and Figure 4A shows

the Shannon entropy with replicates grouped together to quantify

the variability across both samples and replicates. These figures

clearly illustrate that, although the Shannon entropy values are

numerically different depending on the method used to identify the

clones, the rank of entropy values across samples follows similar
D

A B

C

FIGURE 4

Agreement analysis of diversity indices across different clone identification methods. (A) Shannon entropy diversity index for each GC, listed from
least to most diverse. As there are two replicates for each GC, the solid line represent the mean value between the two replicates, and the shaded
area highlights the min and max values. (B) Spearman correlation between the diversity indices obtained with the three clonal identification methods.
The computed correlation is shown for the three datasets analyzed in our study. The figure shows the average correlation across the three datasets.
(C) Hill’s Diversity profiles of each GC (averaged over the two replicated) with clones obtained from the alignment free method (the x-axis has been
transformed with an exponential tangent function for visual clarity). (D) Mean Spearman correlation between the diversity indices obtained with the
three clonal identification methods.
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trends. In the case of the GC dataset, the variability across GCs

seems higher than the variability across replicates (Figure 4A). This

implies that some underlying patterns of the repertoire clonal

structure are captured by all clone identification methods, and are

thus reflected in the diversity indices. We quantified this trend by

computing the Spearman correlation coefficient of the diversity

indices. A Spearman value close to 1 indicates that the two tested

methods lead to highly similar diversity-based sample ranks. To

quantify rank similarity in different biological contexts, we

computed the correlation across methods and across GC

replicates for all diversity indices (Supplementary Table S1). We

perform similar cross-method analyses on the other two datasets

and provide all the computed correlation values in the

Supplementary Table S1.

Interestingly, the correlation scores vary drastically depending

on the dataset and evaluation method. These differences are partly

explained by the variability of the diversity indices across samples,

where the mean/std ranging ranges from 1 to 80 (SI section 5).

Intuitively, it is more difficult to rank confidently the samples when

their diversity index values are closer to each other. Still, we found

that the Chao estimator for Shannon entropy yields the best

performance with a Spearman correlation ≥ 0:8 for all tested

comparisons. This is depicted Figure 4B, where we averaged the

Spearman correlation across each pair of clonal identification

methods. It shows that the Chao estimator for Shannon entropy

yields the highest averaged correlation over the three datasets

(r = 0:910). Other metrics also reveal high levels of correlation

with the exception of the evenness, which only exhibits a correlation

of ∼ 0.7 (0.756 and 0.617 for the Chao estimator). Evenness being

the ratio of two quantities, it is more sensitive to variability in the

richness and entropy estimation. Also, the Chao estimator for

richness showed lower correlation than the richness itself. As the

Chao correction formula relies heavily on the number of identified

singletons, a potential cause behind this low performance is the

unreliable detection of singletons during clonal identification.

Rather than a single diversity index, the B-cell repertoire

landscape may also be characterized in terms of diversity profiles

(23) (Figures 4C, S4). Under Hill’s unified diversity framework (22),

the diversity index of order a is defined as:

 aD = oS
i=1p

a
i  

� �1=(1−a)
(1)

where pi is the relative abundance of species i andopi = 1. Values

of a < 1 tend to favor rare species, while values of a > 1 favor the

most common species. The advantage of the Hill’s unified diversity

index is that it provides a unified representation of the most

common diversity indices, which can be recovered for different

values of a , including richness ( 0D), dominance (1=∞D), Shannon

entropy ( log  ½1D�) and the Simpson index (1=2D).

We computed the Spearman correlation of the a diversity

indices across the different clonal identification methods and

investigated how the choice of a affects the correlation of the

diversity indices by setting values of a between 0 and 100 with steps

of 0.01. We also investigated whether there is an optimal a that

leads to a maximum value of correlation (Figure 4D). Interestingly,

the optimal a parameter is different for the three datasets studied:
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aopt = 0:58 for GC data, aopt = 0:85 for Hepatitis B, and aopt = 1:47

for the simulated data. Overall, we found that the value of a that

maximizes the Spearman correlation averaged over the three

datasets to be aopt = 0:97. This is in good agreement with

Figure 4B, which indicates that among all the diversity metrics

tested, the Shannon entropy and its Chao corrected variant are the

optimal indicators. As a reminder, the Shannon entropy (H) is

closely related to the Hill’s diversity of parameter a = 1

(H = log  ½1D�), while other computed indicators are related to  0

D,  2D and  yD.

Finally, we observe a substantial drop in the correlation in

Figure 4D for the simulated data. Computing the diversity profile of

the simulated repertoires revealed that Hill’s diversity values are

near equal across all samples ( ± 1%) for values of a ∈ ½0:1, 0:9�
(Figure S3B). This low variability, possibly coming from an

unrealistic simulated environment (not enough variability for the

low abundance clones), could potentially explain why the

correlation is lower for these values of a .
2.5 Sensitivity of clonal identification and
diversity metrics to sequencing depth

Another interesting question is the influence of sequencing

depth (i.e. sample size) in clonal identification and diversity

characterization. It is also worth investigating how effective

traditional statistical estimators are, as the Chao estimators for

richness and Shannon entropy to minimize the bias associated with

sample size variability. To investigate these aspects, we sub-sampled

repertoire sequences with sampling ratios from 1% to 100%, and

evaluated the changes in clonal identification performance for

different subsampling fractions on the simulated data.

Interestingly, the clustering performances were not affected by the

subsampling, with the AMI between the inferred clusters and the

ground truth staying roughly constant for subsampling fractions

higher than 2% (SI section 6).

Next, we evaluated the change in diversity indices for different

samples sizes when different clonal identification methods are used.

For that, we computed the fold change between the diversity index

values with and without sub-sampling. Figures 5A, B) show the

changes in Hill’s diversity indices for different levels of sub-

sampling. As seen in the figures, changes are consequential for

values a < 1, which puts more weight on rare clonal populations.

This finding confirms our expectations, i.e. lower sequencing depths

fail to detect rare clonal clusters and result in lower estimations of

diversity. On the other hand, no significant change is observed for

common clusters, a > 1, which are detected even at low sequencing

depths. We repeated the analysis using 2 clonal identification

methods, the VJ & Junction and the alignment-free method

(Figures 5A, B respectively). The same pattern is observed with

both methods, with the alignment-free method resulting in a

smaller change between the different sub-sampling ratios.

Figures 5C, D shows the fold changes between Hill’s diversity

index computed with a 10% sub-sampling and 100% sampling,

repeated 100 times and averaged over repetitions. a = 0 shows the

highest variability, which is expected as this metric places equal
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weight on all clones regardless of their frequency. Singletons, whose

detection strongly depends on sequencing depth, contribute to the

observed high standard deviation associated with this metric.

Similar to the previous figures, Figures 5C, D indicate that

diversity metrics associated with a > 1, e.g. dominance, Shannon

entropy, Simpson diversity index, etc., are only weakly affected by

the sequencing depth.

The figures also indicate fold changes for the Chao estimators of

richness and Shannon entropy (its exponential is shown in

Figures 5C, D for consistency with the Hill’s framework, see

Method Section 4.4.1). As these indicators aim to correct for

sample size variability, we expect them to be less sensitive to

changes in sequencing depth than their uncorrected equivalent

(richness and Shannon entropy, respectively). However, this is not

what we observe. For instance, the Chao estimator for richness

shows more sensitivity to sequencing depth (fold change of 1.4)

than richness itself (fold change 1.2), while the Chao estimator for

Shannon entropy only yields moderate improvements of the

sensitivity to sequencing depth. As the same pattern was observed

on the other two datasets, we conclude that the Chao estimators for

diversity indices results in minor improvements at best, and in some

cases, might even reduce the accuracy of diversity estimation. As we

discussed in the previous section, this is likely a consequence of the

unreliable estimation of the number of singletons, which heavily

affects the Chao estimators.
3 Discussion

B cells play a crucial role in the adaptive immune system, and

their characterization can provide important clues about the

immune status of an individual as well as about past and current

infections or immune conditions. The advent of efficient

experimental approaches for the high-throughput sequencing of
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BCR repertoires has generated unprecedented opportunities to

unravel the dynamical changes that accompany complex B cell

responses. However, with these new experimental opportunities

have come significant challenges associated with the development of

robust analytical approaches to characterize these data which can

accurately shed light onto the underlying biological phenomena. In

this paper we have investigated how the choice of different clonal

identification methods and diversity metrics can bias the estimation

of sample diversity.

The first step in the analysis of B-cell repertoires is the grouping

of BCR sequences into B-cell clones that are expected to descend

from a common ancestor cell, and therefore, share high sequence

similarity. In this study, we compared the performance and

potential biases associated with different clone identification

methods and highlighted the potential drawbacks of methods that

rely on germline gene alignments. We found that these methods can

become unreliable for short read lengths, which can make the

calling of the V gene inaccurate (Section 2.3). More importantly,

we showed that the choice of the method can greatly impact the

inferred clonal structure, especially for low-frequency and singleton

clones (Section 2.4). This in turns might bias the analysis of

immune repertoires in specific biological contexts.

Our analysis suggests that the VJ & Junction method remains

the most accurate to identify clonal groups and singletons, while the

junction-only performed worst on the simulated data. However, the

choice of the clonal identification method should be made taking

into consideration the experimental design and constraints of each

dataset. For instance, we observed that if the V gene assignment is

ambiguous, the alignment-free method proposed by Lindenbaum

et al. (34) was a better choice to alleviate experimental limitations

that result in incorrect V/J assignments. That is because this

alignment-free method does not rely on the V/J assignments but

rather compares the sequence similarity of the whole VDJ sequence

with the help of vectorized representations of the BCRs. Overall, our
D
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FIGURE 5

Sensitivity of diversity metrics to sequencing depth for the GC dataset. (A, B) Hill’s diversity profile calculated at different sub-sampling ratios varying
from 1% to 100%. (C, D) Fold changes between Hill’s diversity index computed respectively at 10% sub-sampling and 100% sampling. The mean
(read line) and one standard deviation (grey shaded area) across the 100 sub-sampling repetitions are shown in both figures. Similarly, the mean and
standard deviation of the Chao estimator for richness and entropy are shown.
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results suggest that alignment-free strategies are a promising

approach for B-cel l c lone identificat ion and deserve

further investigation.

Another important aspect we explored in this article is the

impact of sequencing depth on the quantification of diversity. As

clonal compositions across individual repertoires are highly

variable, the analysis of repertoires by means of diversity indices

offers the unique advantage of extracting biological information

without directly comparing sequences across repertoires. We

performed subsampling experiments and characterized the

variability of different diversity metrics with sequencing depth

and clonal identification methods. We analyzed the change in

these metrics when different clonal identification methods were

used and found that, while the absolute values were different, the

main patterns of variation were conserved. In particular, the

analysis of individual samples through diversity indices such as

dominance, Shannon entropy, and richness led to high sample rank

similarity. Shannon entropy was the most robust index

(maximizing the Spearman sample rank correlation across

methods) in the datasets and clonal identification methods we

analyzed, which might be due to its weighting rare and abundant

species similarly. Nevertheless, as different diversity indices provide

different information, the best practice remains to combine several

indices to gain a global view of diversity. In that respect, Hill’s

diversity profiles already encompass information about many

different indices, and therefore, already provides a more global

understanding of B-cell repertoires than any given index. Finally,

the use of Chao statistical estimators did not significantly lower the

variability of the diversity estimation, both in terms of sub-sampling

and clonal identification methods. As these estimators rely heavily

on singletons and doubletons estimation, a potential cause behind

these inefficiencies could be the unreliable detection of singletons

during the process of clonal identification.

Considering the widespread variability we observed across

datasets, methods and metrics, we can expect that the

characterization of B-cell repertoire diversity will also show great

variability in other applications. For instance, repertoires derived

from blood or tissues samples typically showcase a high B-cell

diversity, which is mostly composed of non-expanded B-cell clones.

However, we can expect that more targeted applications, such as for

the study of the immune responses induced by a foreign antigen

(29) or the development of antibody libraries using phage display

from a few starting B-cells (49, 50), exhibit lower diversity, as these

systems are likely to result in a few dominant and highly expanded

clones. Nevertheless, in these cases, where a repertoire is composed

only by a handful of clones, identifying subclones (51) and

characterizing the intraclonal diversity (52) may provide

additional insight to the analysis.

In summary, we presented a quantitative comparison of

different diversity metrics for the analysis of B-cell repertoires.

We characterized the variability of these metrics when different

clonal identification methods were used and for different

sequencing depths. One of the main limitations of our analysis is

the lack of ground truth in experimental datasets. To partially

address this limitation, we included a synthetic dataset for which the

ground truth is known by construction, which has enabled us to test
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the accuracy the different methods. However, addressing this

limitation in an experimental context is much more difficult, and

cannot be addressed in a fully satisfying manner yet. Rather, we

leveraged negation sequences to estimate the specificity of the clone

identification methods, i.e. random sequences extracted from

different experimental studies, that are very unlikely to be clonally

related to sequences in the considered study. However, negation

only helps to set up the threshold between singletons and non-

singletons. Quantifying the accuracy of the identified clones still

remains a subjective endeavor. Nevertheless, we presented an

overview of the different methods’ performances by evaluating the

agreement between them (AMI). In particular, we investigated

whether different methods agreed in the identification of

singletons and found that the agreement was between 80% and

90% for the three datasets (SI section 1).

In future work, we aim to investigate whether additional

improvements to the alignment-free method (34) can further

boost its accuracy. For instance, the current alignment- free

approach uses BCR vectorized representations based on k-mer

frequency vectors, as posited by the tf-idf metric. This

representation does not exploit potential semantic similarities

between k-mers and assumes that the counts of different k-mers

provide independent evidence of similarity. An important

limitation of this approach is that the order of the k-mers in the

sequence is not taken into consideration. Furthermore, the

frequency vector is dataset-dependent, as the tf-idf metric

computes frequencies across a corpus. Changing the dataset, i.e.

the corpus, might result in changes in k-mers frequencies, and

therefore in different clonal groupings. This limits the applicability

of this metric across different repertoires. An alternative and

attractive possibility to obtain vectorized representations of BCRs

might be to leverage recent neural network and deep learning

models for protein tasks, such as Immune2vec (53), ESM (54),

TAPE (55), ProGen (56) or ProtBERT (57). The latent space of

these pre-trained models can be used to readily extract a vector

representing each BCR sequence. Given the more modest

performance of the alignment-free method on the simulated

dataset (AMI = 0:84) compared to the VJ & Junction method

(AMI = 0:90), this could be a powerful tool to further improve the

accuracy and scalability of current alignment-free clonal

identification techniques.

In conclusion, the study of immune repertoires, particularly B

cell repertoires, is critical for understanding the pathogenesis of

various diseases and for the development of new diagnostic and

therapeutic strategies. Our contribution in defining clonal diversity

and diversity indices is an important step towards a better

understanding of the immune system and its role in health

and disease.
4 Methods

4.1 B cell repertoire preprocessing

Here, we detail here the preprocessing steps that we performed

on all 3 datasets included in our study.
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1. Data were downloaded from their original study: GC Data

(36) hepatitis B vaccination data (8) and simulated

repertoire data (42). Additionally, a set of the negation

sequences was generated by randomly sampling sequences

from multiple unrelated individuals.

2. For each sequence, the V and J genes were located and

annotated based on the alignment to the germline genes

downloaded from the IMGT reference directory sets (58),

using IgBlast (46).

3. For the V and J gene assignments, we kept only the

germline gene with the highest confidence from IgBlast.

In the rare case where a sequence had multiple V and J

genes identified with same confidence, we chose the first in

alphabetical order.

4. Sequences were only retained if they were classified as

productive by IgBlast.

5. Sequences with the same junction sequences were grouped

together and represented by a single sequence randomly

selected among them. Sequences within this group were

considered to be clonally related because it is very unlikely

that two sequences from the different clonal groups have

exactly the same junction sequence (SHMs can occur in any

part of the sequence and are not limited to the junction

region). This assumption greatly reduces the computational

workload.
4.2 Metrics

4.2.1 Levenshtein distance
The Levenshtein distance (59) is defined as the minimum

number of edits required to transform one sequence into another

and is a common metric to quantify sequence similarity. To reduce

the bias caused by length differences, we used the normalized

Levenshtein distance (40) that incorporates the length of both

sequences in the following manner:

Levnorm(s1, s2) =
2 · Lev(s1, s2)

s1j j + s2j j + Lev(s1, s2)
; (2)

where js1j and js2j are the lengths of strings s1 and s2, and Lev(s1, s2)
is the Levenshtein distance between these two strings.

4.2.2 Cosine similarity
The cosine similarity is a measure of similarity between two

vectors. Namely, given vectors A and B, the cosine similarity is

defined as:

Cosine(A,B) =
A · B
Ak k Bk k = on

i=1AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1A
2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1B
2
i

q   : (3)

To apply this similarity measure to BCR sequences, we first

need to encode them. In this paper, we use the term frequency-

inverse document frequency (tf-idf) weighting scheme. In brief, we

first compute a k-mer representation of each BCR (substrings of
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length k)). Then, for each k-mer, the frequency term tf (k) is

reweighted with the inverse document frequency, which is defined

as idf (k) = log  ð jSj
jk∈s,  s∈Sj Þ, where jSj is the total number of

sequences and the denominator is the total occurence of a specific

k-mer k across all the S sequences. The final tf-idf representation is

then computed as tf−idf (k) = tf (k) · idf (k). The logic behind this is

to emphasize rare and hopefully meaningful terms while reducing

the influence of common and uninformative terms.

4.2.3 Adjusted mutual information
The mutual information (MI) of two random variables is a

measure of the mutual dependence between these two variables.

More specifically, it quantifies the “amount of information”

obtained about one random variable by observing the other

random variable. The mutual information of two jointly discrete

random variables X and Y is calculated as:

MI(X,Y) = o
y∈Y

o
x∈X

P(X,Y)(x, y) log  
P(X,Y)(x, y)

PX(x)PY (y)
, (4)

where P(X,Y) is the joint probability mass function of X and Y , and

PX and PY are the marginal probability mass functions of X and Y ;

respectively (44).

MI can also be used to compare clusters, for instance, bymeasuring

the information shared by the two clustering partitions. In practice, this

is done by counting the number of sequences that are shared by each

pair of clusters, Ai and Bj, where Ai comes from the first clustering

partition A and Bj from the second B:

MI(A,B) = o
i∈A
o
j∈B

P(A,B)(i, j) log  
P(A,B)(i, j)
PA(i)PB(j)

, (5)

The adjusted mutual information (AMI) is a modified version

of the MI to compare two random clusters.

One limitation of the MI to compare partitions is that

the baseline value of MI becomes larger when the number of

clusters in both partitions increases. To address this limitation,

the adjusted mutual information (AMI) can be used instead (44).

Defining EfMI(U ,V)g as the expected mutual information between

two random clusters, the AMI is computed as:

AMI(A,B) = MI(A,B) − E MI(A,B)f g
max   H(A),H(B)f g − E MI(A,B)f g , (6)

where H(A) and H(B) are the entropies associated with the

partitioning A and B, respectively. With this transformation, the

AMI takes a value of 1 when the two partitions are identical and 0

when the MI between the two partitions equals the value expected

due to chance alone. We used the python implementation from

sklearn to compute the AMI.
4.3 Identifying clones

We implemented three clonal identification methods in

this article.
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• Baseline: B cells were assigned to the same clone if and only

if their receptors shared exactly the same CDR3 sequence.

• VJ & Junction:We first grouped B cells together if they had

the same V and J gene. For each obtained group, we then

computed the pairwise normalized Levenshtein distance

between each junction in that group, and applied the

Hierarchical Agglomerative Clustering (HAC) algorithm

(39, 43) to cluster the BCRs into different clonal groups.

We used the complete-linkage clustering criterion, which

begins by clustering each sequence into its own cluster, and

then sequentially combines smaller clusters into larger ones

until all elements are in the same cluster. The complete

scheme uses the maximum distances between all

observations of the two sets to decide which clusters to

merge next. This method results in a dendrogram that shows

the sequence of cluster fusion and the distance at which each

fusion took place. By setting an appropriate threshold, we

can define individual clusters as all the clusters that have not

been fused up to that distance. In this study, we chose as

threshold the distance to the nearest distribution of negation

sequences with a tolerance of 1%. In brief, the threshold is

chosen such that it allows a fraction of false-positive

sequences that is roughly equal to a tolerance d to be

below the chosen threshold. This heuristic aims for high

specificity, which is approximately 1 − d .
• Alignment-free: All B cells sequences were first truncated

from their 30 end to a fixed number of nucleotides (L), and

then encoded into a numerical vector using their k-mer

representation reweighted with the term frequency-inverse

document frequency (tf-idf) weighting scheme (see section

4.2.2). Following on from previous work (42), we set k = 7

and L = 130 as this combination was found to yield optimal

performance in terms of clonal identification.
Next, we computed a distance matrix for all sequences in the

repertoire using the cosine distance. Cosine distance has the

advantage of being very fast to compute for sparse vectors,

especially when compared to other alternatives, such as the

Euclidean metric. Finally, the threshold definition and clustering

into clonal groups were performed using HAC in the same way as in

the VJ & Junction method.
4.4 Quantifying species diversity

4.4.1 Diversity indices
Various indices, such as Shannon entropy (20), Simpson index

(21), and species richness (38), are commonly used to quantify the

diversity of an ecosystem. However, the choice of a universal index

to objectively quantify and compare species diversity remains a

topic of debate (60). Starting from the simple assumption that,

when all species are equally common, diversity should be

proportional to the number of species, Hill’s unified diversity

framework (22) defines a general formula for the species diversity

index that depends on an index a as follows:
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 aD = oS
i=1p

a
i

� �1=(1−a)
(7)

where pi is the relative abundance of species i, andopi = 1. For a

given number of species S > 0, one can prove that 1 ≤a D ≤ S.

The choice of a plays a role in the weighting of species of

different frequencies. a < 1 favors rare species, while a > 1 favors

common species. The most interesting aspect of Hill’s unified

diversity index is that one can recover the most common

diversity indices used in the literature for particular values of a ,
such as:
• Species richness (a = 0). The diversity of order zero is

insensitive to species abundances and simply corresponds

to the number of species:  0D = S

• Dominance (a = ∞). Diversity is sometimes represented as

the proportion of its most abundant species imax,

corresponding to the inverse of the infinite order diversity

index.
Dominance =
1

 ∞D
= pimax(8) (8)
• Shannon entropy (a = 1). The Shannon entropy (H)

weighs all species by the log   of their frequency.

Although Eq. 7 is not defined when a = 1, its limit exists

and converges to the exponential of the Shannon entropy

(60).
 1D = exp   o
S

i=1
− pi log  (pi)

 !
= exp  (H)  : (9)
• Simpson index (a = 2). The Simpson index is defined as:
l =o
S

i=1
p2i  , (10)

and represents the probability that two entities randomly

selected from the dataset are of the same type (21). The Simpson

index is directly related to the diversity of order two with l = 1
 2D.
• Evenness. Rather than quantifying the diversity of species,

the evenness (E) represents the homogeneity of abundances

in a sample or a community (22). The evenness E(a, b) with

orders a and b, a > b, is defined as
E(a, b) =
 aD

 bD
(11)

In practice, E(1, 0) = exp   (H)
S is the most commonly used metric

for quantifying evenness. Note that from this definition we always

have 1S ≤ E(a, b) ≤ 1. In the case where the number of species is

infinite, other values of (a, b) should be considered in order to

obtain a non-zero evenness (22). Additionally, the E(1, 0) evenness

can be biased when the sample size is small, because it is sensitive to

unobserved species. In this case, E(2, 1) is preferred.
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4.4.2 Hill’s Diversity profile
Because Hill’s diversity profiles encompass the information

contained in several diversity indices, its use is becoming

increasingly common to obtain fingerprints of the immune

repertoire (22, 23).

In this paper, we treated the diversity profiles as an N

dimensional vector, where each element of the vector is the Hill’s

diversity index  aD for a different value of a ∈ ½0,∞�. Starting from
a vector A with N elements in the range ½−1, 1�, we obtain the values

of a = ½a1 ⋯aN � for our diversity profile with the transformation

a = exp  ( tan  ½A p
2
�) (12)

Then, the diversity profile  aD is computed as

 aD = ½ a1D  ⋯  aN D�       where      ak D = oS
i=1p

ak
i

� �1=(1−ak)  : (13)

We introduced that transformation to (i) be able to include both

the Richness ( 0D) and Dominance (1=∞D) in a finite vector, and

(ii) to respect the symmetry between the weighting of species of

different frequencies (where a < 1 favors rare species, while a > 1

favors common species).

4.4.3 Estimating diversity with incomplete
sample information

Complete knowledge about a system is often not available.

Partial knowledge often results in the underestimation of a sample’s

diversity, as some species might not have been observed. Specialized

statistical tools have been developed to estimate the true richness

Strue, i.e. the true number of species, of a sample. One of the most

common is the bias-corrected Chao1 species richness estimator

(24, 25).

SChao = Sobs  +
f1(f1 − 1)
2(f2 + 1)

 , (14)

where Sobs is the total number of species detected, f1 is the number

of species detected exactly once, and f2 the number of species

detected exactly twice. The intuition behind this indicator is that if

many species are detected only once, there is likely a large number

of species that have not yet been detected. On the other hand, when

all species have been detected at least twice, it is unlikely that new

undetected species exist.

In addition to the Chao1 estimator for species richness, a

similar approach can be used to estimate the Shannon entropy

with incomplete sample information (48). Defining n as the

number of observations, we can estimate the sample coverage as

C = 1 − f1
n - , which represents a first order approximation based

only on singletons, and adjust the relative species abundance withepi = piC. The Chao estimator for Shannon entropy can then be

defined as:

HChao = −o
Sobs

i=1

epilog   epið Þ
1 − 1 − epið Þn · (15)
Frontiers in Immunology 13
Estimators can also be computed for higher orders of diversity, for

instance, by using the general Horvitz-Thompson estimator (61) or

other Chao estimators such as diversity rarefaction curves (26).
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