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QC, Canada, 6QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia, 7Department of
Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark, 8Victorian Infectious Diseases
Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity,
Melbourne, VIC, Australia
Introduction: In people with HIV (PWH) both off and on antiretroviral therapy

(ART), the expression of immune checkpoint (IC) proteins is elevated on the

surface of total and HIV-specific T-cells, indicating T-cell exhaustion. Soluble IC

proteins and their ligands can also be detected in plasma, but have not been

systematically examined in PWH. Since T-cell exhaustion is associated with HIV

persistence on ART, we aimed to determine if soluble IC proteins and their

ligands also correlated with the size of the HIV reservoir and HIV-specific T-cell

function.

Methods: We used multiplex bead-based immunoassay to quantify soluble

programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), T cell

immunoglobulin domain and mucin domain 3 (TIM-3), PD-1 Ligand 1 (PD-L1)

and PD-1 Ligand 2 (PD-L2) in plasma from PWH off ART (n=20), on suppressive

ART (n=75) and uninfected controls (n=20). We also quantified expression of

membrane-bound IC and frequencies of functional T-cells to Gag and Nef

peptide stimulation on CD4+ and CD8+ T-cells using flow cytometry. The HIV

reservoir was quantified in circulating CD4+ T-cells using qPCR for total and

integrated HIV DNA, cell-associated unspliced HIV RNA and 2LTR circles.

Results: Soluble (s) PD-L2 level was higher in PWH off and on ART compared to

uninfected controls. Higher levels of sPD-L2 correlated with lower levels of HIV

total DNA and higher frequencies of gag-specific CD8+ T-cells expressing

CD107a, IFNg or TNFa. In contrast, the concentration of sLAG-3 was similar in

uninfected individuals and PWH on ART, but was significantly elevated in PWH off
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ART. Higher levels of sLAG-3 correlated with higher levels of HIV total and

integrated DNA, and lower frequency of gag-specific CD4+ T cells expressing

CD107a. Similar to sLAG-3, levels of sPD-1 were elevated in PWH off ART and

normalized in PWH on ART. sPD-1 was positively correlated with the frequency

of gag-specific CD4+ T cells expressing TNF-a and the expression of

membrane-bound PD-1 on total CD8+ T-cells in PWH on ART.

Discussion: Plasma soluble IC proteins and their ligands correlate with markers

of the HIV reservoir and HIV-specific T-cell function and should be investigated

further in in large population-based studies of the HIV reservoir or cure

interventions in PWH on ART.
KEYWORDS

HIV, soluble immune checkpoint, immunotherapy, immune checkpoint blockade, HIV
reservoir, HIV-specific T-cell function
1 Introduction

Antiretroviral therapy (ART) in people with HIV (PWH) has

dramatically reduced HIV-related morbidity and mortality,

however lifelong ART is required due to the persistence of long

lived and proliferating latently infected cells (1, 2). PWH on ART

also exhibit persistent immune dysfunction, including elevated

expression of multiple immune checkpoint (IC) proteins on both

total and HIV-specific T-cells (3–7). One approach to eliminating

HIV persistence on ART is to enhance HIV-specific immunity

through reversing T-cell exhaustion [reviewed in (2, 8)]. A simpler

high throughput plasma-based biomarker that quantifies T-cell

exhaustion could be of benefit for large population based studies

of the HIV reservoir and/or HIV cure interventions. Here, we

investigated whether the soluble forms of ICs correlated with their

membrane bound expression, markers of the HIV reservoir, HIV-

specific T-cell immunity and/or T-cell activation.

Soluble IC are generally derived from the translation of

alternatively spliced mRNA that lack the exons for the

transmembrane domain. This leads to generation of several

soluble ICs, including soluble cytotoxic T-lymphocyte-associated

protein 4 (sCTLA4) (9), programmed death -1 (sPD-1) (10), T cell

immunoglobulin domain and mucin domain 3 (sTIM-3) (11),

lymphocyte activation gene-3 (sLAG-3) (12), programmed cell

death protein ligand 1 (sPD-L1) (13) and sPD-L2 (14). However,

some soluble ICs can also be derived through other pathways. This

includes the shedding or cleavage of membrane bound IC by

transmembrane proteases such as Matrix Metalloproteinases

(MMP) and A Disintegrin and Metalloproteinase (ADAM)

expressed on the cell. Inhibitors to MMP, ADAM10 and

ADAM17 have been shown to decrease the levels of membrane-

bound PD-L1 (15), TIM-3 (16), LAG-3 (17) and PD-L2 (18), but

not PD-1 or CTLA-4. In addition, antigen stimulation to immune

cells can trigger cleavage of membrane-bound IC by

transmembrane metalloproteinases and alter the pattern of
02
alternatively spliced mRNA for sIC as has been demonstrated

with sLAG-3 and sTIM-3 (17) (19). Finally, soluble ICs can also

be detected in the form of exosomes which retain the intact

transmembrane domain of PD-1 (20), CTLA-4 (21), TIM-3 (22),

PD-L1 (23) and PD-L2 (24).

In PWH off ART compared to uninfected individuals, prior

work has demonstrated elevated levels of sPD-1 and sTIM-3 in

primary HIV infection (25) and elevated sPD-L1 in chronic

infection (26, 27), consistent with prior findings of elevated

membrane bound ICs in PWH (4, 6, 28, 29). Levels of sTIM-3

were positively correlated with HIV viral load and inversely

correlated with CD4 counts in PWH off ART (16). Furthermore,

in a prospective study, sPD-1, and sTIM-3 decreased on ART and

correlated with membrane bound expression of the same ICs (25).

To date, a systematic examination of all soluble immune

checkpoints in PWH on and off ART has not been performed.

We hypothesized that in PWH treated during chronic infection

and on ART, soluble IC would correlate with levels of membrane

bound ICs and would also be correlated with the size of the HIV

reservoir and the frequency of HIV-specific T cells. The overall goal

of the study was to determine if soluble IC proteins could serve as a

simpler high throughput marker of the reservoir and HIV-specific

T-cell function.
2 Methods

2.1 Study subjects

Inclusion criteria were being an adult (>18 years) with HIV and

either naïve to ART (off ART) or on suppressive ART (on ART) for

at least three years. Clinical characteristics of all participants are

summarized in Table S1. Off ART participants and age-matched

uninfected individuals were recruited from the Observational study

of the consequence of the Protease Inhibitor Era (SCOPE) cohort
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https://doi.org/10.3389/fimmu.2023.1123342
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chiu et al. 10.3389/fimmu.2023.1123342
(NCT: NCT00187512), an observational, prospective study of PWH

at the San Francisco General Hospital and University of California

San Francisco (UCSF), California. PWH on suppressive ART for at

least three years were recruited in San Francisco [as part of the

SCOPE study and previously described in (30)] or in Melbourne,

Australia (Alfred Hospital and Melbourne Sexual Health Centre)

using baseline samples from participants in the Dolutegravir impact

on residual replication (DIORR) study (NCT: NCT02500446), a

randomized, placebo-controlled, double-blind trial of PWH

receiving combination ART for at least 3 years (31). Use of all

samples for this study was approved by the ethics committees at

UCSF, Alfred Hospital and University of Melbourne.
2.2 Measurement of soluble immune
checkpoint proteins

We used a custom ProcartaPlex 6-plex panel (ThermoFisher

Cat # PPX-06) to detect soluble PD-1, LAG-3, TIM-3, CTLA-4, PD-

L1 and PD-L2 in a 96-well plate format. The assay was performed

according to manufacturer’s instruction. Soluble TIGIT was not

included as this was not available as an analyte in the panel. Briefly,

4-fold serial dilution of the assay standard was performed, followed

by washing magnetic beads with the supplied washing buffer. The

reaction volume of 50 µL consisted of 25 µL of plasma or assay

standards and 25 µL of Universal Assay Buffer. These solutions were

added to wells and incubated for 120 minutes. After two washes, 25

µL of Detection Antibody Mixture was added to each well for 30

minutes on a shaker at 500 rpm. After two washes, 50 µL of

Streptavidin-PE was added to each well for 30 minutes on a

shaker at 500 rpm. After two washes, 120 µL of Reading Buffer

was added to each well for 5 minutes on a shaker at 500rpm. All

incubation steps were performed at ambient temperature. The levels

of soluble IC were measured by MAGPIX (Millipore, MA, USA).

Five parameter log-logistic model was used to generate a standard

curve for each analyte using the R package beadplexr (32).
2.3 Expression of membrane bound IC and
cellular activation markers

Expression of membrane bound IC and cellular activation

markers in CD4+ and CD8+ T cells were measured by flow
Frontiers in Immunology 03
cytometry with cryopreserved peripheral blood mononuclear cells

(PBMC) from participants on ART (SCOPE) (Table 1,

Supplementary Table 1) as previously described (30). In brief,

cryopreserved PBMC were thawed and stained with surface

phenotypic markers (CD3 [Clone UCHT1], CD4 [clone S3.5,

Invitrogen], CD8 [Clone RPA-T8], CD14 [Clone M5E2], CD19

[Clone SJ25C1], CD45RA [HI100], CD27 [Clone O323], CCR7

[Clone 3D12]) and immune checkpoints (PD-1 [Clone EH12.1],

CTLA-4 [Clone BNI3], LAG-3 [Clone FAB2319F, R&D], TIGIT

[Clone MBSA43, eBioscience], TIM-3 [Clone F38-2E2, BioLegend],

CD160 [Clone By55, eBioscience], 2B4 [Clone C1.7]). All

antibodies were purchased from BD Bioscience unless indicated

otherwise. LSR II cytometer (BD Bioscience) was used for

acquisition. FlowJo 9 was used for analysis.
2.4 Intracellular cytokine staining

PBMC were isolated by leukapheresis and cryopreserved prior

to assessment of intracellular cytokine staining as previously

described (7). In brief, cryopreserved PBMC were thawed and

incubated at 37 °C and 5% CO2 overnight. PBMC stimulation

was performed in a 96-well plate for 6 hours at 37°C with 5% CO2,

of which each well contained 1 x 106 PBMC, a cytokine secretion

inhibitor cocktail (5 µg/mL Brefeldin A and 5 µg/mL Monensin),

anti-CD107a and antiretrovirals (18 µM azidothymidine, 10 µM

efavirenz and 20 µM raltegravir) to inhibit further rounds of viral

replication following stimulation ex vivo. The cells were stimulated

with either 0.4% DMSO, 2 µg/mL Gag, Nef or 1 µg/mL

staphylococcal enterotoxin B (SEB;S4881, Sigma). After

stimulation, cells were stained for the live/dead marker (Cat #

L34957, Invitrogen), and with antibodies to the following surface

markers (CD4 [Clone RPA-T4], CD14 [Clone M5E2], CD19 [Clone

HIB19], CD45RA [Clone HI100] and CCR7 [Clone 3D12]) at

ambient temperature in the dark for 30 minutes. After cell

fixation and permeabilization, staining with antibodies to CD3

[Clone UCHT1], CD8 [Clone RPA-T8], IFNg [Clone B27], TNFa
[Clone MAb11] and IL-2 [Clone MQ1-17H12] was performed at

ambient temperature in the dark for 30 minutes. After washing cells

with perm/wash buffer twice, cells were fixed in 100 µL of 1%

formaldehyde at ambient temperature in the dark for 15 minutes.

All staining antibodies were obtained from BD Bioscience unless

indicated otherwise. LSRFortessa cytometer (BD Bioscience) was
TABLE 1 Clinical characteristics of participants.

Group SCOPE SCOPE - Aviremic DIORR

HIV Status Neg Pos Pos Pos

Sex, male/total number 19/20 19/20 47/48 31/34

ART duration NA NA 7.8 (5.1 - 12.2) NA

Age, years 55.0 (50.5 - 59.5) 56.0 (50.5 - 61.5) 56.5 (50.5 - 61.5) 47.0 (43.0 - 53.0)

CD4 Count, cells/µL 808.0 (628.5 - 1065.0) 362.0 (212.5 - 527.5) 683.5 (533.0 - 858.0) 676.5 (597.0 - 1010.0)
Participants were recruited through the SCOPE cohort (San Francisco) and DIORR clinical trial (baseline samples only, Melbourne). Unless otherwise stated, all data shows median (interquartile
range). NA, not applicable.
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used for acquisition. Anti-mouse and anti-rat compensation beads

(Cat # 552843 & 552844, BD Bioscience) were used for

compensation. The analysis of the cytometric data was performed

with FlowJo 10.8.1.
2.5 Quantification of the HIV reservoir

We quantified total, integrated HIV DNA, 2-LTR circles as well

as cell-associated unspliced HIV RNA in purified CD4+ T-cells

from blood by real-time nested PCR as previously described

(30, 31).
2.6 Statistical analysis

Statistical differences of soluble IC between the three participant

groups were determined using unpaired non-parametric two-

sample Wilcoxon test with a cut-off set for statistical significance

of p < 0.05. A heatmap representing Spearman correlation

coefficients was generated using R package corrplot (Version

0.92), where missing values are removed during the calculation of

each pairwise correlation. Construction of multivariable regression

models included soluble IC as the primary exposure and total/

integrated HIV DNA as the outcome variables. Other variables that

associated with outcome variables with statistical significance

defined as p < 0.10 in the univariate analysis were considered as

additional exposure variables. Forward stepwise construction of the

linear multivariable regression model and the base model were

compared using likelihood tests. R package ggplot2 (Version 3.3.6)

was used for figures. RStudio Desktop (Version 2022.07.1 + 554)

and R (Version 4.2.1) were used for statistical analyses.
Frontiers in Immunology 04
3 Results

3.1 Levels of soluble IC in PWH off
and on ART

We first quantified the concentration of six soluble ICs in

plasma from three groups of participants — HIV uninfected,

PWH naïve to ART (off ART) and PWH on suppressive ART (on

ART) (Figure 1). The median levels of most soluble ICs in the off

ART participants were higher than in the HIV-uninfected

participants, with the difference in median levels of sLAG-3, sPD-

1 and sPD-L2 reaching statistical significance (Figure 1). Levels of

sLAG-3 and sPD-1 were significantly lower in participants on ART

compared to off ART, and were similar to HIV uninfected

participants. Strikingly, sPD-L2 was the only soluble protein that

was elevated in participants on ART compared to both HIV

uninfected and off ART participants (Figure 1). These results

demonstrated soluble IC levels differ in PWH on and off ART

and sPDL2 is significantly elevated in PWH on ART.
3.2 Correlations of soluble IC with clinical,
immunological and virological parameters
in PWH on ART

Given that the overall goal of the study was to identify a simpler

high throughput marker of the reservoir and HIV-specific T-cell

function, we next analysed whether soluble IC correlated with these

parameters in participants on ART (n=75, Tables 1, 2). We assessed

the correlation of soluble ICs with membrane bound ICs as well as

virological, clinical, and cellular activation parameters (Figure 2,

Supplementary Figure 1). The level of soluble PD-1 was positively
FIGURE 1

Concentration of soluble immune checkpoint proteins in HIV-uninfected participants and people with HIV off antiretroviral therapy (Off ART) and on
suppressive antiretroviral therapy (On ART). Box plots show the median, 25th and 75th percentiles within the box and 10th and 90th percentiles in the
error bars. The two-sample Wilcoxon test was used for comparisons between groups. *p < 0.05, **p < 0.01, ***p < 0.001. Soluble (s), Programmed
Cell Death protein 1 (PD-1), Lymphocyte Activation Gene-3 (LAG-3), T cell Immunoglobulin domain and Mucin domain 3 (TIM-3), Cytotoxic T-
Lymphocyte-Associated protein 4 (CTLA-4), PD-1 Ligand 1 (PD-L1) and PD-1 Ligand 2 (PD-L2).
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correlated with membrane bound expression of PD-1 on CD8+ but

not CD4+ T-cells (Figure 2, Supplementary Figure 1). No other

soluble IC correlated with membrane bound IC.

When we examined the relationship to reservoir size and activity,

we found that higher levels of sLAG-3 correlated with higher levels of

both total and integrated HIV DNA, whereas the opposite was

observed for sTIM-3 and sPD-L2, where lower plasma

concentrations correlated with higher levels of total HIV DNA

(Figure 2, Supplementary Figure 1). Soluble TIM-3 was also
Frontiers in Immunology 05
negatively correlated with the levels of integrated HIV DNA

(Figure 2, Supplementary Figure 1). There were no significant

associations between either cell associated unspliced HIV RNA or

2LTR circles and the soluble ICs. CD4 count was weakly positively

correlated with sTIM-3, contrasting to the previously reported negative

correlation between sTIM-3 and CD4 count (16, 33). There was a

modest positive correlation between the frequency of activated CD38

single positive or HLA-DR/CD38 double positive CD8+ T-cells and

sPD-L2 (Figure 2, Supplementary Figure 1). Together, these data

demonstrated that the size of the reservoir measured as either total

or integrated HIV DNA correlated inversely with sTIM-3 and sPD-L2

and positively with levels of sLAG-3.

To better understand the relationships of the statistically

significant correlations observed in the Spearman correlations

(Figure 2, Supplementary Figure 1), we next used a linear

regression model with sLAG-3, sTIM-3 and sPD-L2 as independent

variables, as well as total and integrated HIV DNA as dependent

variables. Using forward stepwise regression to construct a

multivariable linear regression model, the base model with only the

soluble IC as independent variables showed a similar fit to the

observed counts of total and integrated HIV DNA. Therefore,

univariable linear regression models were used for the subsequent

analysis. sLAG-3 was identified as a positive predictor for total and

integrated HIV DNA, where one unit (pg/mL) increase in sLAG-3

resulted in 1.40 and 0.55 increase in total and integrated HIV DNA

respectively (copies per million CD4 cells, Table 2). In contrast, the

level of sTIM-3 was a negative predictor where one unit (pg/ml)

increase in sTIM-3 resulted in a reduction of 0.18 and 0.07 for total

and integrated HIV DNA respectively (copies per million CD4 cells,

Table 2). Similar to sTIM-3, a one unit (pg/mL) increase of sPD-L2

predicted a decrease in total HIV DNA of 0.16 copies per million CD4

cells (Table 2). In summary, the findings from the linear regression

model supported correlations observed using Spearman correlations.
3.3 Correlates of soluble IC with
HIV-specific T-cells in PWH on ART

We next sought to determine whether there was a correlation

between soluble IC and HIV-specific T cell function in a subset of

participants on ART (n=48, SCOPE, Tables 1, 2). We measured the
FIGURE 2

Correlation between soluble and membrane bound immune
checkpoint proteins and clinical and laboratory markers in
participants on antiretroviral therapy. Soluble (s) immune checkpoint
proteins, reservoir size and clinical markers (n=75, SCOPE (n=48)
and DIORR (n=27)), as well as membrane bound (m) immune
checkpoint proteins and markers of immune activation (n = 48,
SCOPE) were quantified in participants on antiretroviral therapy.
Dots represent statistical significance of a given Spearman
correlation with p < 0.05, and colour gradient indicates the
coefficient and the directionality of the correlation. Unspliced HIV
RNA (usRNA), HIV integrated DNA (intDNA), 2 LTR circles (LTR),
antiretroviral duration (ARV), soluble (s) or membrane bound (m)
Programmed Cell Death protein 1 (PD-1), Lymphocyte Activation
Gene-3 (LAG-3), T cell Immunoglobulin domain and Mucin domain
3 (TIM-3), Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4),
PD-1 Ligand 1 (PD-L1) and PD-1 Ligand 2 (PD-L2).
TABLE 2 Relationship between reservoir size and soluble immune checkpoint proteins in participants on antiretroviral therapy.

Total HIV DNA Integrated HIV DNA

Estimate Std. Error p value Estimate Std. Error p value

sPD1 -1.6578 0.9883 0.0980 -0.6464 0.5415 0.2370

sLAG3 1.4031 0.4441 0.0024 0.5546 0.2390 0.0233

sTIM3 -0.1765 0.0600 0.0044 -0.0721 0.0332 0.0331

sCTLA4 11.5560 7.0580 0.1064 1.4750 3.6470 0.6871

sPDL1 -0.1059 0.7046 0.8825 -0.0339 0.1912 0.8614

sPDL2 -0.1613 0.0765 0.0386 -0.0658 0.0419 0.1210
fron
A univariable linear regression model was used to determine the relationship between soluble immune checkpoint proteins and total or integrated HIV DNA in participants on suppressive
antiretroviral therapy (n=75, SCOPE (n=48) and DIORR (n=27)). Soluble (s) Programmed Cell Death protein 1 (PD-1), Lymphocyte Activation Gene-3 (LAG-3), T cell Immunoglobulin domain
and Mucin domain 3 (TIM-3), Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4), PD-1 Ligand 1 (PD-L1) and PD-1 Ligand 2 (PD-L2).
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frequency of CD4+ and CD8+ T cells that produced either IFNg,

TNFa, IL-2 or CD107a in response to overlapping Gag and Nef

peptides. We did not observe any correlation between total and

integrated HIV DNA and either gag or nef-specific T-cell responses

(Figure 3, Supplementary Figure 1), in contrast to previous reports

(34). Soluble PD-L2 was the only soluble IC that showed statistically

significant positive correlations with the frequency of Gag-specific

CD8+ T cells that express either CD107a, IFNg or TNFa (Figure 3,

Supplementary Figure 1). While sLAG-3 was determined as a positive

predictor for total and integrated HIV DNA (Figure 2; Table 2),

sLAG-3 was negatively correlated with the frequency of Gag-specific

CD4+ T-cells expressing CD107a (Figure 3, Supplementary Figure 1).

sPD-1 was positively correlated with the frequency of Gag-specific

CD4+ T cells expressing TNFa (Figure 3, Supplementary Figure 1).

There was no significant correlations between the expression of

soluble IC and IL-2. These data demonstrate a relationship between

sLAG-3, sPD-L2 and sPD1 and HIV-specific T-cell functions and

these relationships differed for HIV-specific CD4+ and CD8+ T-cells.
4 Discussion

Soluble IC can be easily measured in plasma and therefore could

be a relatively simple assay to quantify changes in the HIV reservoir
Frontiers in Immunology 06
or HIV-specific immune function in PWH on ART. In the first

comprehensive analysis of six soluble IC in PWH both off and on

ART, we showed i) elevated levels of sLAG-3, sPD-1 and sPD-L2 in

PWH off ART consistent with some but not all prior reports (16, 25,

35); ii) sPD-L2 was the only soluble IC that remained elevated in

PWH both on and off ART; iii) HIV total and integrated DNA was

predicted by the levels of several soluble ICs with a negative

association with sTIM-3 and sPD-L2 and a positive association

with sLAG-3; iv) Gag-specific CD4+ T-cells were associated with

sLAG-3 (CD107a) and sPD-1 (TNFa) while Gag-specific CD8+ T-

cells that express IFNg, TNFa and CD107a were all associated with

sPD-L2.

Although the full function of soluble IC is unknown, multiple

reports have demonstrated that many soluble IC retain the ability to

bind their specific receptor or ligand and are bioactive (9, 13, 36–

39), including sPD-1 (40), sTIM-3 (37, 38), sPD-L1 (13) and sPD-

L2 (39). This has been demonstrated directly by the administration

of sTIM-3 and sPD-1 ex vivo leading to an increased production of

IFNg and TNFa by mice splenocytes stimulated with peptides

designed for simian immunodeficiency virus (38). Presumably,

sTIM-3 and sPD-1 can compete with the ligand of both ICs and

will inhibit signalling through these proteins leading to enhanced T-

cell function. Compared to their membrane-bound counterparts,

there are contradictory reports on whether the monomeric soluble

CTLA-4 and LAG-3 remain bioactive. For example, monomeric

soluble CTLA-4 on its own was shown to have less binding affinity

for CD80/CD86 than the dimeric membrane-bound CTLA-4 (9).

However, a recent report demonstrated that repulsive guidance

molecule B (RGMB)-bound soluble CTLA-4 had a higher binding

affinity to CD80 than monomeric soluble CTLA-4, and could also

inhibit CD80-CD28 co-stimulation on T cells (41). Finally, there are

contradictory reports on whether monomeric soluble LAG-3 retains

the ability to bind to MHC-II (17, 36).

No prior studies have investigated the role of sPD-L2 in PWH.

First, we found that sPDL-2 was the only soluble IC that remained

elevated on ART. Second, sPD-L2 was a predictor of reduced total

HIV DNA as well as increased frequency of activated and functional

HIV-specific CD8+ T cells. PD-L2 is expressed on multiple immune

cells, including macrophages, dendritic cells and activated CD4+

and CD8+ T cells and is a ligand for PD-1, together with PD-L1 (42,

43). sPD-L2 can compete with PD-L1 for binding to PD-1,

potentially resulting in activation rather than repression of the T-

cell. This is similar to the formation of a PD-L1/CD80 heterodimer

on antigen presenting cells that can then impair binding to CTLA-4

while retaining the capacity to bind to CD28 (44). In fact, sPDL-2 in

a multimeric form has been shown to activate T-cells, i.e., it can

enhance antigen-specific T-cell function in vivo (39).

Administration of multimeric sPD-L2 in a mouse model of

malaria resulted in enhanced malaria specific CD4+ T-cells and

improved clinical outcomes, but similar effects to malaria-specific

CD8+ T-cells were not observed (39). Finally, since correlations do

not necessarily equate to causation, it is certainly possible for the

higher observed level of sPD-L2 to be an effect from, rather than a

cause of, more effective HIV-specific T cells. Therefore further in

vitro studies need to be performed to address the mechanism of this

relationship. However, taken together, elevated sPD-L2 was clearly
FIGURE 3

Correlation between soluble immune checkpoint proteins, reservoir
size and the frequency of Gag or Nef-specific CD4+ and CD8+ T
cells. Intracellular cytokine staining was performed using peripheral
blood mononuclear cells from participants on antiretroviral therapy
(SCOPE (n=48)) and expression of interferon-gamma (IFN-g), tumor
necrosis factor-alpha (TNF-a), interleukin-2 (IL-2) and the
degranulation marker CD107a was quantified using flow cytometry in
both CD4 and CD8 T-cells. Soluble (s) immune checkpoint proteins
were quantified in plasma as previously described. Dots represent
statistical significance of a Spearman correlation with p < 0.05, and
colour gradient indicates the coefficient and the directionality of the
correlation. Programmed Cell Death protein 1 (PD-1), Lymphocyte
Activation Gene-3 (LAG-3), T cell Immunoglobulin domain and Mucin
domain 3 (TIM-3), Cytotoxic T-Lymphocyte-Associated protein 4
(CTLA-4), PD-1 Ligand 1 (PD-L1) and PD-1 Ligand 2 (PD-L2). Total
DNA, total HIV DNA; intDNA, integrated HIV DNA.
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associated with a smaller reservoir and enhanced HIV-specific T-

cell function.

Our group has previously demonstrated that CD4+ T-cells

expressing multiple ICs, including PD-1, TIGIT and LAG-3 were

enriched for HIV-infected cells (30). In addition, we have shown that

CD4+ T-cells expressing both PD-1 and CTLA-4 are enriched for

latent HIV in PWH on ART (45, 46) and for latent SIV infection in

animal models (47). We had therefore hypothesized that soluble

forms of each of these ICs would correlate negatively with the size of

the HIV reservoir for soluble IC that are generated by cleavage of

membrane-bound IC. In this study, we did not measure soluble

TIGIT, but we demonstrated a positive relationship between the HIV

reservoir and sLAG3, but found no correlation between the size of the

HIV reservoir and sPD1 nor sCTLA-4. It is possible that the

directional differences in the relationship between the size of the

HIV reservoir and membrane and soluble forms of ICs is dependent

upon how the soluble ICs are generated. Membrane-bound LAG-3

can be cleaved by a surface protease following activation of the T-cell

receptor leading to the production of sLAG-3 (17). In contrast, this is

not a pathway shared with the formation of either sPD-1 or sCTLA-4.

Levels of sTIM-3 have been previously reported as significantly

increased in PWHwith primary infection and reduced following ART

(25), consistent with our findings. Here, we also observed a negative

correlation between sTIM-3 and reservoir size on ART. Together

these studies highlight a potential role of sTIM-3 as a surrogate for

virus replication as well as reservoir size. It is now well known that

most virus persists on ART in a defective form (48). It will be

important in future studies to examine the relationship between

sTIM-3 and other soluble ICs and the frequency of cells with either

intact or defective virus using the intact proviral DNA assay (48).

This study is the first comprehensive analysis of soluble IC in

PWH on and off ART, however, we recognize several limitations.

First, this was a cross sectional study and therefore cannot infer

causality. However, our findings of lower sPD-1 and sTIM-3 in

PWH on ART compared to off ART, are consistent with prior

publications using matched samples (25). Future studies should

examine the changes in all six soluble ICs in a prospective study of

PWH following initiation of ART. Second, we used proprietary

capture antibodies to soluble IC as part of a commercial bead-based

multiplex assay. We cannot exclude the possibility that certain

forms of soluble IC escaped detection. For example, if the epitopes

targeted by the capture antibodies were in an exon which was

deleted as a result of alternative splicing of mRNA or from

proteolytic cleavage, they would not be detected. Third, it is

possible that the detected soluble ICs were on exosomes with our

method as we did not perform ultracentrifugation on the plasma

samples. It is clear that ICs can persist in exosomes in studies of

malignancy (20–24) and this may also be relevant in PWH. Lastly,

we restricted our regression analysis on virological/immunological

parameters to a single soluble IC to avoid over-fitting and over-

interpretation. Using multiple soluble IC as predictors could have

some advantages such as better accuracy to predict the observed

reservoir size, while also accounting for potential interactions

between multiple soluble IC.

In conclusion, we detected elevated levels of multiple soluble IC

in plasma from PWH off ART. The levels of soluble IC declined on
Frontiers in Immunology 07
suppressive ART to levels similar to HIV-uninfected participants,

except for sPD-L2 which remained persistently elevated. In PWH

on ART, levels of soluble ICs were associated with total and

integrated HIV DNA, as well as Gag-specific CD4+ and CD8+

HIV-specific T cell function. This study provides the basis for

soluble IC to be further explored as a plasma based biomarker in

studies aimed at understanding and/or targeting HIV persistence on

ART. Further mechanistic studies on the interaction of sLAG-3,

sPD-1 and sPD-L2 with both CD4+ and CD8+ T-cells from PWH

may also provide novel insights into HIV persistence and immune

dysfunction on ART.
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