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in innate immunity
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The innate immune system in vertebrates and invertebrates relies on conserved

receptors and ligands, and pathways that can rapidly initiate the host response

againstmicrobial infection and other sources of stress and danger. Research into the

family of NOD-like receptors (NLRs) has blossomed over the past two decades, with

much being learned about the ligands and conditions that stimulate the NLRs and

the outcomes of NLR activation in cells and animals. The NLRs play key roles in

diverse functions, ranging from transcription of MHC molecules to initiation of

inflammation. Some NLRs are activated directly by their ligands, while other ligands

may have indirect effects on the NLRs. New findings in coming years will

undoubtedly shed more light on molecular details involved in NLR activation, as

well as the physiological and immunological outcomes of NLR ligation.
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1 Introduction

The mammalian immunity consists of an innate immune system with ancient genome-

encoded and highly conserved receptors and a more recently acquired adaptive immune

system. The innate immune system provides the initial response against microbial invasion

and other sources of danger. One of the goals of this first line of defense is to generate an

immediate and non-specific response to infection and to maintain the pathogen under

control. Moreover, the innate immune responses induce and shape the optimal adaptive

immune responses and stimulate the generation of effector and memory T- and B-cell

responses. Innate immune mechanisms are also responsible for recycling damaged cells

and for initiating the process of tissue repair.

This rapid defense mechanism is dependent on the ability of the innate immune system to

recognize quickly potentially harmful molecules by means of its pattern recognition receptors

(PRRs), which recognize conserved damage-associated molecular patterns (DAMPs) and

pathogen-associated molecular patterns (PAMPs) (1–3). The innate immune system

expresses a broad range of PRRs, such as the family of Toll-like receptors (TLRs), retinoic
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acid-inducible gene-I (RIG-I)-like receptors (RLRs), C-type lectin

receptors (CLRs), and the nucleotide-binding domain (NOD),

leucine-rich repeat-containing protein receptors (NLRs) (4, 5).

This article will emphasize the role of NLRs in innate immunity.
2 NOD-like receptors

2.1 Introduction to NOD-like receptors

The NLR family of receptors is expressed primarily in the

cytosol of immune cells, including macrophages, dendritic cells,

and lymphocytes. However, NLRs are also expressed in some non-

immune cells such as epithelial and mesothelial cells (3, 6).

The NLRs play a key role in sensing molecules associated with

intracellular infection and stress. Thus, they sense a variety of

generic stimuli that indicate intracellular microbial infection and

damage, such as fluctuations in ion concentrations and generation

of reactive oxygen species (ROS).

Three major signaling pathways can be activated downstream of

NLRs: nuclear factor-kB (NF-kB) signaling, mitogen-associated

protein kinase (MAPK) signaling, and inflammasome activation

(6). Some NLRs are specialized to promote the activation of an

intracellular complex called inflammasomes.

Inflammasomes were discovered in 2002 (7). They are cytoplasmic

multi-protein complexes that assemble in the host cell in response to

PAMPs or different types of stress (7, 8). Different inflammasomes

formed by distinct NLRs converge on activation of pro-caspase-1 into

its active caspase-1 form. Cleaved caspase-1, in turn, processes pro-

interleukin (IL)-1b and pro-IL-18 into their active mature forms, IL-1b
and IL-18. These cytokines can be released to the extracellular

compartment in their active forms (Figure 1).

In parallel, active caspase-1 can cleave gasdermin D. The N-

terminal fragment of gasdermin D mediates pyroptosis, which is a

pro-inflammatory, lytic type of cell death that participates in the

release of mature IL-1b and IL-18 from the cell (Figure 1) (9, 10).

NLRP1, NLRP3, and NAIP-NLRC4 can activate the inflammasome,

and each one of them will be discussed separately in this review.

The NLR gene family includes a protein that shares similarities

with the NB-LRR subgroup of disease-resistance genes in plants, which

highlights the extent of evolutionary conservation between these genes

(5). Most of the known functions for NLRs are related to immunity and

homeostasis (6, 11–13). Polymorphisms in several genes encoding the

NLRs are associated with inflammatory and autoimmune diseases (6).

However, the function of these receptors is not exclusively related to

immunity, since they also play a role in diverse functions such as

reproduction and embryonic development (14–19). In this review, we

will focus on NLRs that play a role in innate immune responses.
2.2 Structure and classification of the
NOD-like receptors

The NLR family of receptors is organized in a tripartite

structure. The characteristic feature of NLR proteins is the
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presence of a central nucleotide-binding domain NACHT that

orchestrates the self-oligomerization that occurs during activation;

C-terminal leucine-rich repeats (LRRs) that are involved in sensing

agonist or binding ligand; and a variable N-terminal homotypic

protein-protein interaction domain, which is critical for

downstream signaling (6, 11, 20). To date, in silico analysis has

led to identification of 22 human and 34 NLR members (21–23).

The NLRs belong to five subfamilies (NLRA, NLRB, NLRC,

NLRP, NLRX) depending on the structure of their N-terminal

effector domains (6, 11). NLRs with an N-terminal portion

consisting of an acidic transactivating domain are called NLRA

(CIITA), which were previously known as transcriptional regulators

of major histocompatibility complex (MHC) class II antigen

presentation (24). The NLRB (NAIP) subfamily has an N-

terminal domain containing baculoviral inhibition of apoptosis

protein repeat (BIR)-like domain and is involved in host defense

and cell survival (6, 11, 20). The N-terminal domain of the NLRC

subfamily (NLRC1-5) contains a caspase activation and recruitment

domain (CARD), which allows for direct interaction with other

proteins carrying the CARD domain (11). The NLRP subfamily

(NLRP1-14) expresses an N-terminal pyrin domain (PYD), and is

involved in promoting the assembly and activation of the

inflammasome (3, 11). The NLRX subfamily consists of only one

member, NLRX1 (NOD9), which does not share significant

homology with the N-terminal domain of the other four subsets.

NLRX1 has an N-terminal sequence that targets the protein for

migration to the outer mitochondrial membrane (6, 11).
FIGURE 1

Structure of the inflammasome complexes involving NOD-like
receptors (NLRs). After ligand recognition, NLRP1, NLRP3 and
NLRC4 bind to pro-caspase-1 via the adaptor ASC. The CARD
domain of ASC is necessary to recruit pro-caspase-1. Nlrp1b and
NLRC4 might also directly bind to pro-caspase-1 since these
receptors contain the domain CARD. The assembly of the
inflammasome complex leads to its oligomerization. Activation of
the inflammasome complex (NLRP1, NLRP3 or NLRC4) ultimately
leads to proteolytic activation of pro-caspase-1 into active caspase-
1. Caspase-1 then cleaves gasdermin D (GSDMD) into a C-terminal
portion and an N-terminal portion. The N-terminal portion inserts
into the plasma membrane and oligomerizes to form pores that can
lead to a type of cell death called pyroptosis, and contribute to the
release of inflammasome-related cytokines. The active form of
caspase-1 also cleaves pro-IL-1b and pro-IL-18 into their active
forms, IL-1b and IL-18, respectively. The active form of these pro-
inflammatory cytokines is then released from the cell.
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Table 1 summarizes the classification (NLR family), NLR genes

present in humans and mice, their structural organization, and

main functions. The symbols for the gene names were approved by

the Human Genome Organization Gene Nomenclature Committee

(HGNC) (5). This review will focus on the main NLRs belonging to

each NLR family.
2.3 The role of NLRs in innate immunity

2.3.1 CIITA/NLRC5
The Class II MHC transactivator (CIITA) is the sole member of

the NLRA family, and has a characteristic acidic transactivating

domain. CIITA was discovered in 1993 when it was shown to be

defective in patients suffering from type II bare lymphocyte

syndrome, which results in a complete loss of MHC class II

expression in affected individuals (40). Mice lacking the CIIta

gene show impairment of MHC class II expression that is tissue-

specific, diminished T cell-dependent antigen responses, and

decreased MHC class II-dependent allogeneic responses (41).

Constitutive expression of CIITA is found in antigen-presenting

cells (25), and exposure to IFN-g can induce de novo expression of

CIITA in most cell types (40).

MHC class II gene expression is regulated through conserved cis-

acting promoter elements (W/S, X, X2, and Y), which interact with

trans-activating DNA binding factors regulatory factor X (RFX),

cAMP-responsive element binding protein (CREB), and nuclear

factor Y (NF-Y) (25). The DNA binding factors are expressed

constitutively, but their ligation to MHC class II genes is not

sufficient to increase expression (25). CIITA does not bind to DNA

directly. Instead, to induce MHC class II gene expression, CIITA

associates with each of the DNA binding factors through protein-

protein interactions, forming a transcriptionally active complex, or

“enhanceosome” (25, 42). Therefore, the main function of CIITA

appears to be the regulation of antigen presentation.

Cell-type specific promoters (PI, PIII, and PIV) regulate the

expression of CIITA in different cell types (43). CIITA is expressed

from one of these promoters which also encode a unique exon 1 that

is spliced into a common exon 2 (43). PI is induced by macrophages

and dendritic cells, PIII-mediated CIITA expression is constitutive

in B cells, and PIV is induced in nonhematopoietic antigen

presenting cells (APCs). A study published in 2018 demonstrated

that the transcription factor NFAT5 is needed for the expression of

CIIta and MHC class II in murine macrophages, but not in

conventional myeloid dendritic cells (44). The authors

demonstrated that NFAT5 regulates CIITA expression via a

region distally upstream of CIIta (44). Future studies will define

the regulation of CIITA in different cell types, including in dendritic

cells in which the regulatory control of CIITA is less-well known.

In addition, CIITA is involved in basal transcription (25, 45,

46). It was reported that CIITA is an unusual serine-threonine

kinase since it expresses both auto- and trans-phosphorylation

activity, and CIITA phosphorylates the same targets as the

TATA-box binding protein associated factor 1 (TAF1 - vital

protein during transcription initiation) (45). Additionally, CIITA
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has been shown to have acetyltransferase activity, which bypasses a

promotor requirement for TAF1 (46).

As reviewed elsewhere (47), several intracellular pathogens

inhibit the expression of CIITA and, therefore, MHC class II

molecules, to promote their survival. Conversely, CIITA also

exhibits an antiviral restriction factor activity, which has been

classified as intrinsic immunity. Intrinsic immunity refers to a

type of innate immunity that can restrict viral replication directly,

which can be induced by pre-existing factors in the host cell or

factors that can be further induced by viral infection (48). Even

though CIITA has restriction factor activities against HTLV-1

infection (49), CIITA was recently shown to inhibit infections by

Ebola virus and coronaviruses, including SARS-CoV-2 (50). CIITA

activates the expression of CD74 p41, which blocks cathepsin-

mediated processing of the Ebola glycoprotein. Additionally,

CD74 p41 blocks entry of coronaviruses, including SARS-CoV-2,

via the endosomal pathway (50).

The CIITA protein is a coactivator for transcription of MHC

class II genes. Additionally, CIITA enhances MHC class I gene

expression (46) and regulates basal transcription initiation, but it

also regulates transcription of over 60 immune genes, such as genes

encoding for IL-4 and IL-10 (25, 45). These roles make CIITA an

important regulator of innate and adaptive immunity.

Consistent with the distinctive immunomodulatory effects of

CIITA, another NLR has been shown to regulate immune responses

at the transcriptional level. More recently, the NLR family member,

CARD domain containing 5 (NLRC5), was shown to regulate

transcription of MHC class I genes (51–53).

Similarly to CIITA, NLRC5 can be induced by IFN-g, and
expression of NLRC5 results in increased MHC class I expression in

epithelial and lymphoid cells (51). NLRC5 can induce expression of

mediators of MHC class I antigen presentation, such as b2
microglobulin (b2M), transporter associated with antigen processing

1 (TAP1) and latent membrane protein 2 (LMP2) (28). More recent

works describe the role of NLRC5 in pro-inflammatory responses,

cancer, and inflammasome activation (53–55).

2.3.2 NAIP/NLRC4
The NLR family apoptosis inhibitory protein (NAIP) belongs to

the NLRB family. Initial studies on NAIP suggested a correlation

between internally deleted/mutated forms of NAIP transcripts and

spinal muscular atrophy (SMA), while deletions/mutations in the

NAIP transcript were not found in unaffected individuals (56).

However, it was later suggested that a neighboring gene, survival

motor neuron (SMN), was involved in SMA pathogenesis (57). A

role for NAIP during SMA pathology remains to be completely

understood. Nevertheless, NAIP is known to play a role in

inflammasome formation (Figure 2) (58–60), and apoptosis

inhibition (61–63).

Humans express a single functional copy of the NAIP gene,

while rodents express several Naips (seven intact copies in the 129

murine strain) (5, 64). In mice, each NAIP recognizes a single

bacterial ligand from either the T3SS (type III secretion system) or

bacterial flagella. Naip1 responds to the T3SS needle protein and

Naip2 to the T3SS inner rod protein, while Naip5 and Naip6
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TABLE 1 Human and murine NOD-like receptors symbols, structure, their respective NLR family and main functions.

NLR
family

HGNC-approved
symbol

Structure
(N-terminal –> C-terminal)

Main functions

HUMAN Mouse

NLRA CIITA
CIIta

CARD-AD-NACHT-NAD-LRR
CARD-AD-NACHT-NAD-LRR

Regulation of MHC class II expression (25)

NLRB NAIP
Naip1
Naip2
Naip3
Naip4
Naip5
Naip6
Naip7

BIRx3-NACHT-LRR
BIRx3-NACHT-LRR
BIRx3-NACHT-LRR

BIRx3
BIR

BIRx3-NACHT
BIRx3-NACHT

BIRx3-NACHT-LRR

Recognition of DAMPs and inflammasome formation associated with NLRC4 (26)

NLRC NOD1
Nod1

CARD-NACHT-NAD-LRR
CARD-NACHT-NAD-LRR

Induction of inflammation, disease, and response to microbial infection (11, 13, 27)

NOD2
Nod2

CARDx2-NACHT-NAD-LRR
CARDx2-NACHT-NAD-LRR

NLRC3
Nlrc3

CARD-NACHT-NAD-LRR
CARD-NACHT-NAD-LRR

NLRC4
Nlrc4

CARD-NACHT-NAD-LRR
CARD-NACHT-NAD-LRR

Formation of inflammasome associated with NAIP (13, 26)

NLRC5
Nlrc5

CARD-NACHT-NAD-LRR
CARD-NACHT-NAD-LRR

Regulation of MHC class I expression (28)

NLRP NLRP1
Nlrp1a
Nlrp1b
Nlrp1c

PYD-NACHT-NAD-LRR-FIIND-CARD
NACHT-NAD-LRR-FIIND-CARD

NACHT-LRR-CARD
NACHT-LRR

Formation of inflammasome and response to infection (13)

NLRP2
Nlrp2

PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR

Regulation of inflammation and reproduction (16, 29)

NLRP3
Nlrp3

PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR

Formation of inflammasome and response to infection (8)

NLRP4
Nlrp4a
Nlrp4b
Nlrp4c
Nlrp4d
Nlrp4e
Nlrp4f
Nlrp4g

PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR

Regulation of inflammation (30)

NLRP5
Nlrp5

PYD-NACHT-NAD-LRR
NACHT-NAD-LRR

Regulation of reproduction (16)

NLRP6
Nlrp6

PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR

Formation of inflammasome and response to infection (8)

NLRP7 - PYD-NACHT-NAD-LRR Regulation of reproduction (17)

NLRP8 - PYD-NACHT-NAD-LRR Possible role in inflammation (31, 32)

NLRP9
Nlrp9a
Nlrp9b
Nlrp9c

PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR

Regulation of inflammation (33, 34)

NLRP10 Nlrp10 PYD-NACHT-NAD Induction of inflammation, disease, and response to microbial infection (8)

NLRP11 - PYD-NACHT-NAD-LRR Regulation of inflammation and NLRP3 inflammasome assembly and activation (35–
37)

NLRP12
Nlrp12

PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR

Formation of inflammasome and response to infection (13)

(Continued)
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respond to flagellin. However, human NAIP responds only to the

T3SS needle protein and does not recognize flagellin (Figure 2) (26).

After recognition of the PAMP, some NAIPs bind the NLR family

CARD domain containing 4 (NLRC4) protein, which then

oligomerizes. The NLRC4 CARD domain activates caspase-1 (26, 59)

(Figures 1, 2). Among inflammasomes, only NLRC4 is downstream

from the upstream NAIP (12, 26, 59). In the NAIP-NLRC4

inflammasome, NAIP molecules recognize the pathogen (or PAMPs)

and assemble with NLRC4 molecules, which recruit and activate

caspase-1 (26). The NAIP-NLRC4 inflammasome confers protection

against infections with Legionella pneumophila, Salmonella

thyphimurium, and Shigella flexneri (58, 60). Additionally, the

NLRC4 inflammasome (along with the NLRP3 inflammasome) were

involved in immune responses against Candida albicans in a murine

model of infection (65).

It was reported that NLRC4-deficient murine macrophages

challenged with S. thyphimurium (the causative agent of

salmonellosis) failed to activate inflammasomes (66, 67). On the
Frontiers in Immunology 05
other hand, NLRC4-overexpressing macrophages died when they

were infected with high loads of S. thyphimurium (66, 68). These

results suggest that the NLRC4 inflammasomemay play a different role

depending on the bacterial load. These data also suggest that moderate

inflammatory responses may favor microbial clearance, while

exacerbated inflammation induces host cell death and may be

deleterious to the host.

The majority of studies on inflammasome activation were

per fo rmed wi th macrophages . In t e r e s t ing ly , un l ike

macrophages, neutrophils infected with S. thyphimurium

activate the NLRC4 inflammasome, but the infection does not

induce inflammasome-dependent pyroptosis (69). Therefore,

neutrophils can activate and sustain an NLRC4-dependent

inflammasome response against S. thyphimurium infection.

Because neutrophils do not die by pyroptosis after NLRC4

inflammasome activation, it is believed that these cells can

maximize the host ’s pro-inflammatory response against

bacterial infection (66).
TABLE 1 Continued

NLR
family

HGNC-approved
symbol

Structure
(N-terminal –> C-terminal)

Main functions

HUMAN Mouse

NLRP13 - PYD-NACHT-NAD-LRR Possible role in inflammation (31)

NLRP14
Nlrp14

PYD-NACHT-NAD-LRR
PYD-NACHT-NAD-LRR

Possible roles in inflammation and fertilization (18, 19, 38)

NLRX NLRX1
Nlrx1

X-NACHT-NAD-LRR
X-NACHT-NAD-LRR

Mostly unknown. Regulation of TLR-induced responses (39).
AD, acidic activation domain; CARD, caspase activating and recruitment domain; LRR, FIIND, domain with function to find; leucine-rich repeat; NACHT, domain present in CIITA, NAIP,
HET-E, and TP-1; BIR, baculovirus inhibitor of apoptosis repeat; PYD, pyrin domain; and NAD, NACHT-associated domain; X, undefined. HGNC, Human Genome Organization Gene
Nomenclature Committee
FIGURE 2

Mechanisms and ligands involved in canonical and noncanonical inflammasome activation. (1) The NLRP3 inflammasome can be activated by a
plethora of signals, including potassium efflux, mitochondrial ROS production, and extracellular ATP ligation to P2X7 receptor. (2) Muramyl dipeptide,
SARS-CoV-2 infection, viral proteases and double-stranded viral RNA can lead to the activation of the human NLPR1 inflammasome. The lethal toxin
produced by Bacillus anthracis activates murine Nlrp1b. (3) The noncanonical inflammasome is activated by intracellular LPS from Gram-negative
bacteria. Intracellular LPS directly binds to caspase-11 (in mice) or caspase-4/-5 (in humans), which become activated. (4) The protein NAIP in
humans can recognize T3SS (type III secretion system) needle protein, while the different rodent Naips can recognize different bacterial ligands, such
as T3SS needle protein (Naip1), T3SS inner rod protein (Naip2), and flagellin (Naip5 and Naip 6). Following PAMP ligation, NAIPs bind to and activate
the NLRC4 inflammasome.
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NAIP proteins are also involved in inhibition of apoptosis.

NAIP and its BIRx3 domain inhibit cleavage of pro-caspase-3 by

caspase-9 (which is activated by the apoptosome), thus preventing

apoptosis at the initiation stage of apoptosome formation (61, 63).

Thus, NAIP is a critical inhibitor of programmed cell death in host

cells, and NAIP assembles with NLRC4 to form a fully functional

inflammasome, which can lead to secretion of cytokines, induction

of cell death, inflammation, and bacterial infection control.

2.3.3 NOD1 and NOD2
Nucleotide-binding oligomerization domain containing 1

(NOD1) and nucleotide-binding oligomerization domain

containing 2 (NOD2) were the first NLR members to be

described. NOD1 and NOD2 contain one and two CARD

domains, respectively (see Table 1). Since their discovery, NOD1

and NOD2 have been studied for their roles during microbial

infection, inflammation, and disease.

Both NOD1 and NOD2 recognize peptidoglycan moieties (6).

Both Gram-positive and Gram-negative bacteria express

peptidoglycan, but they produce different motifs that can be

sensed by either NOD1 or NOD2 (4). Thus, NOD1 responds to

g-D-glutamyl-mesodiaminopimelic acid (iE-DAP), which is

produced by Gram-negative bacteria and some Gram-positive

bacteria (70). NOD2 is a general sensor for muramyl dipeptide

(MDP) motifs made by both Gram-negative and Gram-positive

bacteria (71, 72), as well as single-stranded RNA from viruses (71,

73). NOD1 and NOD2 are expressed in a range of cells, from

macrophages, dendritic cells, and keratinocytes, to endothelial cells

and intestinal and lung epithelial cells (4).

Following detection of their ligands, NOD1 and NOD2

oligomerize and recruit receptor-interacting serine-threonine

kinase 2 (RIPK2, also called RIP2 or RICK) via their CARD

domain (74). RIPK2 leads further to the recruitment of X-linked

inhibitor of apoptosis protein (XIAP), IAP1, cIAP2, and TRAF2,

TRAF5 and/or TRAF6 (TNF-receptor associated factors). RIPK2 is

ubiquitinated and recruits transforming growth factor b-activated
kinase 1 (TAK1), and TAB1, TAB2, and TAB3. This series of events

lead to assembly of a multi-protein platform called the “nodosome”,

which can lead to the activation of downstream signaling pathways,

such as NF-kB and MAPK (74). Besides being involved in the NF-

kB and MAPK signaling pathways, NOD1 and NOD2 play a role in

the interferon regulatory factor (IRF) pathway and type I IFN

responses (6). As expected, the NOD1 and NOD2 signaling

pathways are tightly controlled (74).

The role of NOD1 and NOD2 in the host anti-microbial

responses has been extensively studied in vitro, in vivo in mouse

models, and in genetic susceptibility studies in humans (71, 74).

NOD-induced immune responses are important against a wide

variety of bacterial infections, such as infections with Chlamydia

trachomatis (75), Clostridium difficile (76), Escherichia coli (77),

Legionella pneumophila (78), Listeria monocytogenes (79),

Mycobacterium tuberculosis (80), and many others. With regards

to viral infections, NOD1 plays a role in the immune response

against hepatitis C virus (81), and NOD2 regulates the IFN type I-

anti-viral responses against the respiratory syncytial virus (73).
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Furthermore, NOD1 and NOD2 play a role in stimulating Th1

cell responses required for parasitic clearance in mouse models of

infection with Toxoplasma gondii (82), Trypanosoma cruzi (83),

and Leishmania infantum (84). NOD1 and NOD2 receptors are

involved in the clearance and induction of immune responses

required to eliminate these pathogens. However, less is known

about the mechanism of recognition of parasitic infection:

whether NOD1 and/or NOD2 directly recognize PAMPs from the

parasites, or if the infection is recognized indirectly.

Some studies support the role of NODs in metabolic diseases

through a mechanism of aberrant expression and activation of

NOD1 and NOD2 genes. In fact, NOD1 and NOD2 are upregulated

in monocytes from patients with type 2 diabetes, compared with

healthy individuals (85). NOD1 expression is also upregulated in

adipose tissues of women with gestational diabetes (86), and in the

subcutaneous tissue from patients with metabolic syndrome (87).

Genetic variations of NOD1 and NOD2 have also been linked with

inflammatory diseases. Loss-of-function polymorphisms in NOD1 can

lead to asthma and sarcoidosis, and NOD2mutations have been linked

with Crohn’s disease and ulcerative colitis (6). Conversely, NOD2 gain-

of-function mutations correlate with autoinflammatory diseases, such

as Blau syndrome/early-onset sarcoidosis in the skin, eyes, and joints

(6). Overall, NOD1 and NOD2 signaling is important during host

defense against microbes, and is associated with metabolic,

autoimmune, and inflammatory diseases.

2.3.4 NLRP1
NLR family pyrin domain-containing 1 (NLRP1) was the first

NLR member discovered to participate in inflammasome and

caspase-1 activation (7). Humans show a single functional copy of

the NLRP1 gene, while rodents express several paralogues of the

same receptor, called Nlrp1a, Nlrp1b, and Nlrp1c (see Table 1).

The activation of human and murine NLRP1 leads to

inflammasome activation, which can induce caspase-1 activation,

processing and release of IL-1b and IL-18, and pyroptosis

(Figure 1). Recently, Huang et al. (88) and Hollingsworth et al.

(89) described the molecular mechanisms of NLRP1 activation.

NLRP1 is unique among the inflammasome-forming NLRs

because it contains a C-terminal extension with a FIIND and a

CARD domain (Table 1). Because the activation of the

inflammasome can lead to cell death, this is a well-regulated

process in the cell. The studies show that, in resting cells, the

dipeptidyl peptidase DPP9 interacts with the FIIND domain of rat

NLRP1 (88) and human NLRP1 (89) to suppress spontaneous

NLRP1 activation. This mechanism may explain why the NLRP1

inflammasome is activated by stimuli that lead to degradation of the

N-terminal domain of NLRP1 (90): the cleavage of the NLRP1 N-

terminal domain by pathogen proteases leads to its proteasomal

degradation, which frees the C-terminal domains involved in

NLRP1 inflammasome assembly.

MDP activates the human NLRP1, while the virulence factor

lethal toxin (LT), which is produced by the pathogen Bacillus

anthracis, activates the murine Nlrp1b (Figure 2) (13, 91). This

was the first example of an NLR that detects a virulence factor

instead of a structural microbial element (6). More recently, diverse
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viral proteases (13, 91, 92) and double-stranded RNA (93) were

shown to activate the NLRP1 inflammasome. SARS-CoV-2

infection was also demonstrated to activate the human NLRP1

inflammasome in human lung epithelial cells (Figure 2) (94). In this

study, human NLRP1 was cleaved by multiple coronavirus

proteases, which trigger inflammasome activation and death of

the infected cell, thus limiting the generation of more virions (94).

Further studies are needed to fully characterize the outcome of

NLRP1 inflammasome activation during viral infection (95).

The NLRP1 inflammasome response has been shown to be

essential against bacterial and parasitic infection (13, 91, 96).

Interestingly, NRLP1 in rats and mouse confers resistance to T.

gondii infection and is involved in the development of a complete

immune response and parasite control (96).

Variations in NLRP1 have also been linked to autoimmune

diseases (13). Defects in the NLRP1 gene increase the risk of

developing several diseases, such as vitiligo (97), congenital

toxoplasmosis (98), autoimmune thyroid disorders (99), systemic

lupus erythematosus (100), Alzheimer’s disease (101), and

rheumatoid arthritis (102).

2.3.5 NLRP3
NLR family pyrin domain-containing 3 (NLRP3) plays a role

primarily in the formation of an inflammasome complex. The

NLRP3 inflammasome is the best characterized inflammasome. It

had attracted early attention since it was demonstrated that an

autosomal gain-of-function mutation in the NLRP3 gene was linked

to an inherited autoinflammatory disease called cryopyrin-

associated periodic syndrome (CAPS) (103).

In fact, the study by Nakamura et al. showed that, during CAPS,

mast cells in the skin were the main cell population responsible for

inducing urticarial rashes (104). The study demonstrated that,

unlike normal mast cells which require stimulation for IL-1b
secretion, mast cells from CAPS patients constitutively produced

IL-1b. The mast cell-derived IL-1b from CAPS patients induced

recruitment of neutrophils and vascular leakage, histological

landmarks of urticarial rash. These results explain why anti-IL-1b
treatment alleviates the urticarial rash symptom in CAPS patients

(104). A more recent study in mice reported that gain-in-function

mutations inNlrp3 restricted to neutrophils, and to a lesser extent to

macrophages and dendritic cells but not mast cells, are sufficient to

induce severe CAPS (105). This recent study also shows that skin-

infiltrating neutrophils are an important source of IL-1b. Together,
these two studies demonstrate that mast cells and neutrophils can

activate the NLRP3 inflammasome and play a crucial role in the

pathophysiology of CAPS.

NLRP3 inflammasome activation requires two signals: first, a

priming signal, which is provided by PAMPs such as LPS, leads to

activation of the NF-kB pathway and consequent upregulation of

NLRP3 and pro-IL-1b and pro-IL-18; and second, an activation

signal, which is provided by a variety of stimuli, such as DAMPs. A

long list of stimuli can activate the NLRP3 inflammasome, such as

extracellular ATP, ROS generation and mitochondrial dysfunction,

lysosomal damage and cathepsin B release from lysosomes, the

ionophore nigericin, viral RNA, double-stranded RNA, uric acid

crystals, asbestos crystals, silica, amyloid-b, K+ efflux, poly(I-C)
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acid, imidazoquinoline, and chitosan (8, 106, 107). NLRP3 is not

thought to bind directly to its ligands since the NLRP3

inflammasome is activated by a wide range of stimuli that have

little in common chemically or structurally (107). Therefore, it has

been proposed that the NLRP3 inflammasome may sense the

cellular stress induced by the different stimuli (Figure 2).

The structural domains contained in the NLRP3 protein are

described in Table 1. The ultrastructure of the NLRP3

inflammasome has been recently described using cryogenic electron

microscopy. It was shown that the NLRP3 inflammasome forms a

disk-shaped structure, with the centrosomal kinase NEK7, and the

adaptor protein ASC, which recruits the protease caspase-1 (108). For

more details and an image of the NLRP3 assembly complex, we refer

the readers to the recent article by Xiao et al. (108).

The NLRP3 inflammasome is essential for host immune

responses against bacteria, fungi, and viral infections (107). In

fact, it was demonstrated that the NLRP3 inflammasome is

activated in human macrophages by SARS-CoV-2, leading to

secretion of IL-1b and IL-18, and pyroptosis, which contributes

to the hyperinflammatory state of the patient (109). Inhibition of

NLRP3 inflammasome activation during SARS-CoV-2 infection

was shown to reverse chronic lung pathology (109). In addition,

the NLRP3 inflammasome is involved in the development of

metabolic disorders such as atherosclerosis (110), gout (111), and

type 2 diabetes (112); autoimmune diseases such as rheumatoid

arthritis (113); and diseases of the central nervous system such as

Alzheimer’s disease (114).

The NLRP3 inflammasome activation pathway following the

two-signal model described above is known as canonical NLRP3

inflammasome activation, which leads to activation of caspase-1,

resulting in IL-1b/IL-18 secretion and pyroptosis (Figure 1).

Additionally, a non-canonical NLRP3 inflammasome activation

has been described, which involves caspase-11 (in mice) or

caspase-4/-5 (in humans) (Figure 2) (115). The non-canonical

NLRP3 inflammasome activation is initiated by direct detection

of cytosolic LPS by caspase-11/-4/-5, leading to pyroptosis similarly

to that induced by caspase-1 (116). However, the secretion of

mature IL-1b and IL-18 after caspase-11/-4/-5 activation is

caspase-1-dependent (115, 116).

More recently, NLRP11 has been proposed to be involved in

NLRP3 inflammasome assembly and activation (35). It was

demonstrated that human NLRP11 binds to ASC by PYRIN

domains and binds to NLRP3 via its NACHT-LRR region.

NLRP11 acts as a scaffold that connects ASC and NLRP3 (35).

The specific deletion of human NLRP11 in macrophages prevented

NLRP3 inflammasome activation, polymerization of NLRP3 and

ASC, caspase-1 activation, pyroptosis and cytokine release.

However, NLRP11 had no effect on other inflammasomes (35).

NLRP11 is present in humans but is not expressed in mice. Future

studies are needed to confirm and elucidate the role of NLRP11 in

NLRP3 inflammasome assembly and activation.

In clinical settings, the NLRP3 inflammasome is being

considered as a therapeutic target given its role in several

diseases. Inhibitors with therapeutic potential targeting NLRP3

pathways have already been described. They are commercially

available for research purposes (117), such as MCC950, which
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binds directly to the NLRP3 molecules, blocking their ATPase

domains and resulting in NLRP3 inhibition.

2.3.6 NLRX1
NLR family X1 (NLRX1), the sole member of the NLRX family,

has an atypical N-terminal X domain and lacks obvious homology

with other NLRs (6, 11). Its N-terminal domain presents a

mitochondria-signaling sequence that sorts NLRX1 molecules to

mitochondria. This NLR is ubiquitously expressed in mammalian

tissues, with the highest expression levels being in cells of the heart,

muscles, and mammary glands (118).

To date, NLRX1 has been reported to dampen the TLR-induced

NF-kB (119) and type-I interferon signaling pathways (120),

regulate ROS production (121–123), induce autophagy (5),

regulate cell death (25, 40–42), and modulate c-Jun N-terminal

kinase (JNK) and MAPK signaling pathways (39). On the other

hand, other studies report that NLRX1 amplifies NF-kB responses

by inducing ROS production (121, 123), and that NLRX1 enhances

ROS production, which favors chlamydial infection (122).

Unlike other NLR proteins, NLRX1 does not form inflammasome

complexes. Instead, it acts as a negative regulator of inflammatory

responses. However, the set of PAMPs and DAMPs sensed by this

receptor and its functions and mechanisms of action are not

fully understood.
3 Concluding statement

PRRs did not attract much interest in the immunological

community until Toll in Drosophila and TLRs in mammals were

shown to play a critical role in the initiation of the innate immune

response (124). Since then, more research has been conducted and

the NLRs were discovered to be involved in a wide range of

physiological mechanisms, including immunity regulation,

responses to microbial infections, fertilization, and reproduction.

Research on the functions of the NLRs was begun more recently,

but progress has been made quickly to identify ligands and

downstream pathways. Research in this field is rapidly uncovering

mechanistic details about steps that initiate NLR-dependent

signaling pathways, and their role in physiology and immunology

in vivo. Future research should uncover new roles for NLRs and

help us to better understand the molecular mechanisms involved in

their activation and role in immunity and disease.

NLRP3 is involved in formation of the most studied

inflammasome to date, the NLRP3 inflammasome. Even though a

long list of stimuli have been demonstrated to activate this

inflammasome, it is unlikely that NLRP3 directly binds to each of
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the ligands. It remains to be completely determined how such different

stimuli can activate the same receptor to activate the NLRP3

inflammasome. A possibility is that the NLRP3 inflammasome

senses global cellular stress by means of the different stimuli.

Understanding the mechanisms of activation of NLRs is clinically

significant, as the research may suggest potential therapeutic targets in

several pathological conditions. In fact, NLRP3 inhibitors have already

been considered in clinical trials involving diseases modulated by the

NLRP3 inflammasome and IL-1b, such as in CAPS (125, 126) and in

COVID-19 (127, 128). Future clinical trials and basic research will

continue to unravel the potential to target inflammasome-associated

NLRs for disease treatment and prevention.
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