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Checkpoint inhibitors (CPIs) are monoclonal antibodies which, by disrupting

interactions of immune checkpoint molecules with their ligands, block regulatory

immune signals otherwise exploited by cancers. Despite revolutionary clinical

benefits, CPI use is associated with an array of immune-related adverse events (irAEs)

thatmirror spontaneous autoreactivity. Severe irAEs necessitate pausing or stopping of

CPI therapy and use of corticosteroids and/or other immunomodulatory interventions.

Despite increasinglywidespreadCPIuse, irAEpathobiology remainspoorlyunderstood;

its elucidation may point to targeted mitigation strategies and uncover predictive

biomarkers for irAE onset in patients, whilst casting new light on mechanisms of

spontaneous immune-mediated disease. This review focuses on common CPI-

induced irAEs of the gut, skin and synovial joints, and how these compare to

immune-mediated diseases such as ulcerative colitis, vitiligo and inflammatory

arthritis. We review current understanding of the immunological changes reported

following CPI therapy at the level of peripheral blood and tissue. Many studies highlight

dysregulation of cytokines in irAE-affected tissue, particularly IFNg and TNF. IrAE-

affected tissues are also predominantly infiltrated by T-cells, with low B-cell

infiltration. Whilst there is variability between studies, patients treated with anti-

programmed cell death-1 (PD-1)/PDL-1 therapies seem to exhibit CD8+ T-cell

dominance, with CD4+ T-cells dominating in those treated with anti-cytotoxic T-

lymphocyte-associatedprotein 4 (CTLA-4)monotherapy. Interestingly, CD8+CXCR3+

T-cells have been reported to be elevated in gastrointestinal, dermatological and

musculoskeletal -irAE affected tissues. These findings may highlight potential

opportunities for therapeutic development or re-deployment of existing therapies to

prevent and/or improve the outcome of irAEs.

KEYWORDS
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1 Introduction

In health, checkpoint molecules, including cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) and programmed cell

death-1 (PD-1), become up-regulated following immune activation.

Their ligation attenuates immune responses, mitigating unwanted or

excessive host tissue damage. Cancers exploit these pathways by

upregulating checkpoint molecule expression (1) to promote

tumour tolerance. Checkpoint inhibitors (CPI) monoclonal

antibodies are a class of drugs that block interactions between

checkpoint proteins and their ligands. CPIs have transformed

outcomes of many cancers (2) but cause immune-related adverse

events (irAEs) of varying severity in up to 95% of patients on

combination therapy (3). IrAEs can affect multiple organ systems,

including but not limited to the gastrointestinal (GI) tract, skin and

musculoskeletal structures; in clinical presentation they often mirror

“spontaneous” immune-mediated pathologies of affected tissues.

Whilst each irAE type has been linked to improved cancer survival

(4–9), the events themselves are often debilitating and rarely life-

threatening. IrAE severity is graded using the Common Terminology

Criteria for Adverse Events (CTCAE) (10), and current clinical guidelines

recommend pausing or stopping CPI therapy for ≥ grade 3 toxicity (3,

11–13). High dose corticosteroids are commonly administered in this

setting, but concern about adverse cancer outcomes as a consequence of

non-specific immunosuppression persists (14–16). Indeed, prompt and

more targeted immunomodulation with biologic drugs may be used to

combat irAEs whilst limiting corticosteroid use, but long-term safety data

in controlled studies are awaited.

Although generally considered to be driven by adaptive immune

mechanisms that recapitulate intended consequences of checkpoint

inhibition, the precise pathobiology of irAEs remains far from

understood. With increasing CPI use (17), the monitoring and

treatment of their impacts represents a growing healthcare burden.

Identifying robust biomarkers for predicting irAE occurrence in

CPI recipients – including their tissue-specificity or responsiveness

to targeted intervention(s) – remains a pressing unmet need.

Insights gained may furthermore advance understanding of

spontaneous immune-mediated disease mechanisms, with far-

reaching benefits.
2 Gastrointestinal irAEs

2.1 Presentation

The commonest GI-irAE symptom is diarrhoea with a median

time to onset of 5-8 weeks (18). Potential risk factors, including prior
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genetic susceptibility and the role of microbial epitopes, remain the

subject of investigation. Endoscopy or cross-sectional imaging may

demonstrate colitis and/or enteritis which, in more severe cases,

mimics the clinical phenotype of ulcerative colitis (UC) (18). The

likelihood of these complications and their severity varies with CPI

regimen used (Table 1), with CTLA-4 recipients experiencing GI

toxicity more frequently, and to a higher grade, compared with anti-

PD-1/PD-L1 monotherapy recipients (19–22, 29). Other GI-irAEs

include gastritis, oesophagitis or duodenitis, with rarer manifestations

including chronic pancreatitis, hepatitis and coeliac enteropathy (18,

30). CPI enterocolitis is typically managed with oral or intravenous

corticosteroids, escalated where needed to treatment with biologics

including the anti-TNF monoclonal antibody infliximab or the gut-

selective anti-alpha4beta7 integrin monoclonal antibody vedolizumab

(18, 30, 31). However, in as many as a third of patients with diarrhoea,

no endoscopic inflammation is seen (32, 33). This may be due to more

proximal GI inflammation or an increasingly recognised “CPI-

microscopic colitis”, where only histological inflammation is

demonstrated. In contrast to the UC phenotype, this presentation is

more akin to lymphocytic colitis (34), for which sufferers may benefit

from oral ly administered corticosteroids including the

beclomethasone pro-drug “clipper” (35, 36).
2.2 Immune dysregulation

Convincing, if complex, association between the gut microbiome

and cancer outcomes in CPI recipients has emerged (37, 38).

Moreover, case reports have demonstrated faecal microbiota

transplant (FMT) can mitigate both anti-PD-1 tumour-resistance

and treatment-refractory GI-irAEs (39, 40), and antibiotic therapy

is correlated with high-grade GI-irAE incidence (41) – all consistent

with a critical immune-mediating role for the microbiome in this

setting that has yet to be properly understood (42).
2.2.1 T-cell dysregulation
In addition to differences in GI-irAE frequency observed between

CPI treatments (Table 1), distinct immune cell infiltration patterns may

further discriminate these pathologies from “spontaneous”

inflammatory bowel disease (IBD). Hence, whilst prominent T-cell

(but minimal B-cell) infiltration is a general observation in CPI-colitis

(43), anti-CLTA-4 therapy has been particularly linked to CD4+ T-cell

accumulation and anti-PD-1 with CD8+ T-cell infiltrates (43, 44).

The majority of the CD8+CD103+ T-cells in the inflamed gut of CPI-

colitis patients were proliferating, whereas active proliferation of CD4+

T-helper 1 (Th1) cells occurred in the peripheral blood (PB), suggesting

local and systemic expansion of different T-cell subsets (45). An
TABLE 1 Reported incidences of irAEs from a range of cancer types. Incidences shown in any grade (any), grade 1-2 (G1-2) and grade 3-4 (G3-3).

IrAE type

Anti-CTLA-4 Anti-PD-1 Anti-CTLA-4 & Anti-PD-1

Any G1-2 G3-4 Any G1-2 G3-4 Any G1-2 G3-4

Gastrointestinal (diarrhea) (19–22) 9.6-28.0% 17.0-28.0% 1.7-6.0% 8.0-19.0% 19.0% 0.8-3% 16.3-36.0% 36% 1.6-9.6%

Dermatological (rash) (3, 19, 21, 23–26) 26.0-43.5% 13.0-21% 0.1-1.9% 7.6-34.0% 23.0% 0-0.6% 40.3-41.0% 27.0% 4.8-5.0%

Musculoskeletal (arthalgia) (3, 19, 21, 23, 27, 28) 5.0-6.1% 1.0-7.0% 0% 6.0-7.7% 10.0% 0% 10.5-11.0% 13.0% 0.30%
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activated effector population of ICOS+ cells was relatively enriched

amongst infiltrating CD4+ T-cells in biopsies from both anti-CTLA-4

and anti-PD1-induced colitis compared with those from IBD patients

(44). A landmark study recently used single cell sequencing to compare

tissue frommelanoma patients who did or did not experience GI-irAEs

following various CPI treatments alongside healthy tissue (46). A

striking and significant enrichment for CD8+ T-cells exhibiting

markers of proliferation (Ki67) and cytotoxicity (granzyme B) was

seen in the lamina propria of GI-irAE patients relative to both non-

irAE CPI recipients and healthy controls, alongside enhanced IFN

response gene expression and a reduction in tissue resident memory

(Trm) cells (46). Changes in the CD4+ T-cell compartment in the same

tissue included increased frequencies of Th1 cells and increased

proportions of both regulatory T-cells (Tregs) and proliferating

conventional T-cells, compared with both control groups (46). Anti-

CTLA-4 can deplete intra-tumoral Tregs in mice (47) and antibody-

dependent cell-mediated cytotoxicity (ADCC)-mediated lysis of Tregs

has been proposed as a potential mechanism of irAE development in

humans (48). Mirroring other studies, however (44, 49, 50), no

diminution, but rather an increase of Treg frequency was seen in GI-

irAE compared with non-irAE or healthy gut tissue in the study by

Luomo et al. (46), although these comparisons lacked a “spontaneous”

immune-mediated colitis (IBD) control group. Conversely, Sasson et al.

did find Tregs to represent a significantly lower proportion of

infiltrating CD4+ T-cells in GI-irAE tissue compared to that of UC

during flare (51), and a functional reduction of Treg frequency in tissue

inflammation that is explicitly CPI-induced could reconcile these

apparently conflicting observations.

Mucosal‐associated invariant T (MAIT) cells are innate-like,

MHC class I-restricted cells enriched at mucosal sites in health, but

which have been shown to accumulate in the inflamed bowel of IBD

patients (52). Current studies show MAIT cells are not increased in

affected tissues in gut-irAEs but those present express higher levels of

granzyme B (46, 51).

2.2.2 Monocytes
Monocytic influx in CPI-colitis tissue has also been reported

(45). Interestingly (and in contrast to T-cell infiltrates), monocyte

enrichment was found in both inflamed and non-inflamed

parts of the gut from these patients compared with healthy

control tissue.

2.2.3 Cytokines
Mucosal TNF levels are high in patients with anti-CTLA-4 therapy-

induced colitis, with lower levels of TNF associated with response to

steroids (44). High levels of TNF signalling specifically in myeloid cells in

CPI-colitis patients have also been reported (46). Baseline serum IL-17

also correlates with occurrence of colitis/diarrhoea in CPI recipients

receiving anti-CTLA-4 (53) and was elevated in CPI-colitis patients

compared to CPI patients who did not have an irAE (54). IL-17 levels in

CPI-colitis patients reduced to similar levels to non-irAE patients upon

resolution of clinical symptoms. Differences in gene expression of

chemokines and their receptors have also been reported in CPI-colitis

patients, with higher numbers of T-cells having increased expression of

CXCR3 and CXCR6 (46).
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3 Dermatological irAEs

3.1 Presentation

Dermatological toxicities from CPIs have a wide range of clinical

presentations including inflammatory eruptions (drug associated

maculopapular exanthem, lichenoid reactions, eczematous

reactions, psoriasiform reactions and cutaneous sarcoid), vitiligo-

like depigmentation rash (VLDR) and life threatening toxic

epidermal necrolysis (55–58). Similar to GI-irAEs, dermatological

toxicities are commoner in patients on combination CPI therapy,

compared to anti-CTLA-4 or anti-PD-1 monotherapy, although

grade 3-4 toxicities are rare (Table 1) (3, 23–26). Despite

dermatological-irAEs being more common with CPI regimens that

include anti-CTLA-4, some such as VLDR are particularly associated

with anti-PD-1/PD-L1 inhibitors (59). Dermatological-irAEs can

differ between cancer types, with VLDR seen more frequently in

melanoma patients compared with other malignancies, where it has

been associated with favourable prognostic outcomes (60–63).
3.2 Immune dysregulation

The frequently observed co-occurrence in immune-mediated skin

diseases with those of the GI tract generally, coupled with recently

reported links between gut dysbiosis and the development of irAEs

(64) (including those of the skin), fuel interest in the concept that a

“gut-skin axis” (GSA) (65) may amplify skin pathology in CPI

recipients. Immune cell infiltration has been described in case

reports of patients with a wide range of dermatological-irAEs

including maculopapular eruptions (66), lichenoid reactions (67–

70), VLDR (71) and autoimmune skin blistering conditions

(bullous pemphigoid) (72, 73)
3.2.1 T-cell dysregulation
In melanoma patients with CPI-induced maculopapular eruptions

a preponderance of CD4+ over CD8+ T-cells in cell infiltrates is

described, with few B-cells present (66). In CPI-lichenoid reactions,

infiltrating T-cells in the epidermis were predominantly CD4+, whilst

CD8+ T-cells were located intradermally (67–69). One study of 5 cases

of cutaneous lichenoid reactions found that, whilst the

dermatopathology bore strong similarity to non-CPI lichenoid

lesions, they were distinguished by increased CD163+ histocytes (67).

Comparing RNA expression profiles of skin biopsies from anti-PD-1

recipients affected with mainly lichenoid-type irAEs to those derived

from a range of non-CPI drug-induced toxic skin rashes, maximal

overlap with Stevens-Johnsons syndrome (SJS) and toxic epidermal

necrosis (TEN) was observed (70). This transcriptional profile included

increased expression of 18 genes including GZMB, CXCL9 and

CXCL10, seemingly linking PD-1 blockade with activation of

cytotoxic T-cell responses in affected tissues. SJS/TEN reactions from

CPI therapy can also occur but are extremely rare and it is thought that

CD8+ T cells may play a role in the pathogenesis of SJS/TEN in CPI

recipients (74–76).
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In VDLR, activated CD8+CXCR3+ T-cells are observed in the

vitiligo-like infiltrate of anti-PD-1 recipients. CD8+CXCR3+ T-cells

may undergo clonal expansion in the periphery followed by migration

into skin in dermatological-irAEs (71). CD8+ T-cells from CPI-

induced vitiligo differed from healthy controls and spontaneous

vitiligo in their abundant production of IFNg and TNF, and higher

circulating levels of the CXCR3 ligand CXCL10 were detected in the

serum of these patients, potentially suggesting distinct mechanisms of

cytotoxic cell infiltration and damage.

In summary, whilst activated (and, in particular, cytotoxic) T-cells

are a dominant feature of dermatological-irAEs generally, with

limited skin biopsy data, the diverse phenotypes observed remain

largely unexplained. Future work, including comparative evaluations

of tissue from larger, well-characterised cohorts using single cell

genomics to gain more granular insights, could yet transform

understanding of drug-induced and idiopathic immune-mediated

skin disease alike.
4 Musculoskeletal irAEs

4.1 Presentation

The reported incidence of musculoskeletal-irAEs is about 6%,

varying between 3.5 and 13.3% (Table 1) (3, 23, 27, 28). In the trial

setting, CTCAE grade 1-2 adverse events have not always been

reported, however, so these figures may still under-represent the

overall morbidity burden. In cohorts/case series of such individuals,

inflammatory arthritis manifests in over half (77, 78), and may be

more likely to be the first irAE presentation in recipients of anti-PD-

1/PD-L1 monotherapy (79). We here focus on musculoskeletal-irAEs

that cause synovial inflammation, but polymyalgia rheumatica (PMR)

syndromes are also common and there is frequently clinical overlap

between the presentations (80). Patterns of joint involvement and

autoantibody status at presentation are diverse but somewhat

divergent from standard rheumatology practice. For example, large

joint oligo- and monoarthritis (often involving the knees) seems at

least as typical as small joint involvement, with features of

seronegative disease including florid tenosynovitis and remitting

seronegative symmetric synovitis with pitting oedema (RS3PE)

being well-described.
4.2 Immune dysregulation

Unlike rheumatoid arthritis (RA), the majority of CPI-induced

inflammatory arthritis (CPI-IA) patients are seronegative for

circulating anti-citrullinated and/or rheumatoid factor (RF)

autoantibodies (78, 80, 81).

4.2.1 T-cell dysregulation
A number of lines of evidence point to dysregulated T-cell

homeostasis as a driver of CPI-IA (82–86). Kim et al. recently used

a single cell sequencing approach coupled with multi-parameter flow

cytometry to compare PB and synovial fluid (SF) cellular

compartments of CPI recipients who developed irAEs (82). A wide

range of cell subsets were relatively enriched in SF, including
Frontiers in Immunology 04
proliferating T-cells, an activated, CXCR3hi effector CD8 T-cell

subset, Tregs and a Th1 like subset (in anti-PD1 recipients), all

recalling observations in GI-irAE tissue described earlier. Enriched

IL-17-expressing subsets of both CD4+ and cytotoxic CD8+ T-cells

(Th17 and Tc17 cells, respectively) were also observed in this

compartment amongst combination CPI recipients, albeit not

reaching statistical significance for Tc17s. The latter is nonetheless

of interest given recent descriptions of Tc17 expansion in SF of

psoriatic arthritis (PsA) patients – another autoantibody seronegative

subset of spontaneous inflammatory arthritis, raising the possibility of

shared disease pathways between these conditions (87). Two

additional cell subsets, MAIT gd T-cells and a CD38hi CD127-

CD8+ effector subset, were relatively enriched in SF – a finding that

has since been replicated in a separate study showing these subsets

underwent clonal proliferation in the joint and distinguished CPI-IA

SF from that of both RA and PsA control patients (86). Diversification

of the T-cell repertoire as a consequence of anti-CTLA-4 treatment

was previously noted, with more extensive TCR Vb CDR3 clonotype

expansion linked to an increased likelihood of immune-related

adverse events in general (88). Sharing of expanded CD8+ clones

with CX3CR1hi effector and CXCR3hiCXCR6lo effector phenotypes

in the SF and PB of CPI-IA patients, respectively, suggests drug-

induced, systemic expansion of CD8 clusters in PB may precede their

migration to the joint at irAE onset. Another study also points

towards clonal expansion of specific CD8+ T-cells, with some TCR

clones being shared across patients (89). Potentially mirroring

observations in both “spontaneous” RA and GI-irAEs, current

evidence suggests Tregs are not depleted in joints of patients who

develop a joint-irAE (82, 85). They are enriched in SF of joint-irAE

patients where they are apparently more suppressive than those from

PB of both joint-irAE and non-irAE CPI recipients (82).
4.2.2 B-cell dysregulation
B-cells play an undisputed role in the pathogenesis of seropositive

RA but, as in the case of GI-irAEs, minimal B-cell infiltration has been

reported in the joints of CPI-IA patients, with one report of no

detectable B-cells in SF at all (83). However, enhanced systemic B-cell

reactivity during CPI treatment amongst melanoma patients who

develop irAEs has been observed, with expansion and clonal

diversification of a normally rare, CD21lo B-cell population

reminiscent of age-associated B-cells whose potential role in RA

pathogenesis is under investigation (90). Further work may yet shed

light onto their potential relevance in CPI-IA development.

It is important to note that the majority of data arising from joints

of CPI-IA patients described here describes characteristics of SF, and

not synovial tissue. Complimentary and, arguably, more relevant data

from a pathobiological perspective is expected to emerge from the

study of synovial tissue biopsy samples in the near future (86).
4.2.3 Cytokines
Several cytokines have been reported to be dysregulated in

patients with joint-irAEs. TNF has been reported to be highly

expressed in joints of joint-irAE patients (83). Meanwhile IL-17 was

shown to be elevated in a recurrent case of pseudogout at each flare

(85). Other cytokines such as IL-6, IL-1b and IFNg have also been

seen to be increased in SF of joint-irAE patients (82).
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5 Conclusion and therapeutic
considerations

IrAEs are common, and increasing use of CPIs for an ever-

widening range of tumour types and disease stages will inevitably

render them more so. Based on disparate studies employing

conventional histological techniques, and limited single cell

sequencing of disaggregated tissues, certain commonalities and

differences between immune dysregulation in dermatological,

gastrointestinal and musculoskeletal irAEs are apparent (Figure 1).

For example, prominent CXCR3+ T-cells (cytotoxic and/or Th1)

infiltration appears to be a general feature of affected tissues.

Peripheral expansion of T-cells followed by migration into tissues

may underpin this facet of irAE development (46, 71, 82) such that

enumerating specific PB T-cell subsets could conceivably aid in early

irAE detection – a critical consideration for the future. However, as

with most putative predictive toxicity biomarkers reported to date,

large studies will be needed to validate preliminary observations (91).

Mechanisms by which toxicities display varying tissue predilections

between individuals remain largely unknown, with genetic variation,

the host microbiome, pre-existing immune dysregulation and stromal

factors potentially contributing. Beyond irAE development in general,

unravelling this complexity could ultimately yield biomarkers that

predict tissue specificity and severity. With underpinning data only

now beginning to accumulate, we expect this picture to evolve rapidly

over the coming years in a fast-moving field that promises important

implications for irAE mitigation strategies to support sustained anti-

cancer treatment for affected CPI recipients.

Currently, and in keeping with published management guidelines,

glucocorticoids remain the first-line therapeutic intervention for
Frontiers in Immunology 05
moderate to severe irAEs affecting the gut, skin and synovial joint,

with doses in excess of 1mg/kg prednisolone advocated in some

circumstances (3). The impact of this approach on tumour responses

remains unclear: most studies are retrospective such that known

association between irAE occurrence and improved tumour outcome

may mask any blunting of CPI efficacy as a result of corticosteroid use.

On the other hand, whilst the need for irAE treatment with

immunosuppression within two months of CPI initiation has been

suggested to be deleterious for cancer outcome (92), the confounding

impact of premature CPI cessation in this context also remains

unclear. The same important caveat applies to data suggesting

escalation of immunosuppression, to include targeted interventions

including biologic drugs on top of glucocorticoids (93). It should also

be remembered that high-dose glucocorticoid use is itself associated

with considerable morbidity (94–96). Controlled prospective trials

coupled with experimental medicine approaches are needed to

properly evaluate these issues, their design informed by emerging

pathophysiological insight, should herald more personalised

approaches to irAE management (97). For example, clinical trial is

currently underway assessing the value of anti-TNFs alongside CPI

therapy (NCT03293784).

High levels of proinflammatory cytokines including TNF in irAE-

affected gut and synovial tissue suggest strong prima facie rationale

for anti-TNF as the most widely deployed targeted therapy for these

toxicities (80, 98). The role of this cytokine in tumour biology remains

controversial, however (99–101), and some concern about the impact

of the approach on cancer outcomes persists. For example, enhanced

Treg activity reported with anti-TNF use in RA – of potential concern

in the context of a tumour microenvironment –was specifically linked

to monoclonal antibody use rather than that of a receptor fusion
FIGURE 1

Reported immunological changes in patients on checkpoint inhibitor (CPI) therapy developing immune related adverse events (irAEs). IrAEs are common
with CPI use and can affect multiple organs systems including but not limited to gut, skin and joints. Multiple risk factors may contribute to irAE
development and/or their localisation to the represented tissues, including genetic variation, microbiome, pre-existing immune-mediated disease and
stromal characteristics. Venn diagram depicts immune changes reported in human gut, skin and joint tissue following CPI therapy reported so far in the
literature and covered by this review. *All research articles containing peripheral blood or tissue immune characterisation covered in this article.
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protein (102), emphasising that the mechanism of action of targeted

therapy may be as important as the molecular targets themselves in

this setting. Similar considerations could apply in respect of IL-6

targeting, another increasingly popular approach (103). B-cell

depletion with the anti-CD20 monoclonal antibody rituximab has

shown some promise for dermatological irAEs, with no apparent

adverse impact on survival (104), and observations in inflammatory

arthritis reviewed above arguably support interest in the approach.

This should, however, be balanced against the general dearth of

infiltrating B-cells in irAE tissues described herein, together with

very recent data indicating that regulatory B-cells (Bregs), which

would also be targeted by an anti-CD20 strategy, may play a critical

role in the prevention of irAEs (105). A deficiency of this cell type in

the circulation of CPI recipients was indeed predictive of subsequent

toxicity in this study.

Finally, targeting the microbiome of CPI recipients continues to

garner interest as a potential route to a more favourable balance

between tumour response and irAE development. The use of

probiotics as microbial modulators may offer a more streamlined

strategy than FMT – which is itself not without risk – but whether the

absence of microbial metabolites from such interventions limits

efficacy remains to be explored. Multiple early phase trials

investigating probiotic supplements alongside CPI therapies are

underway, with results set to be available as early as 2024 (106).

In summary, a recent acceleration in studies evaluating irAE

target tissue amongst CPI recipients is set to continue, together with

data from alternative target tissues not covered in this review, will

doubtless inform management strategies of the future. Combined

with prospective data from ongoing and planned clinical trials and

experimental medicine approaches, these endeavours should yield

improved survival outcomes and quality of life for cancer patients.
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