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Malaria and leishmaniasis are endemic parasitic diseases in tropical and

subtropical countries. Although the overlap of these diseases in the same host

is frequently described, co-infection remains a neglected issue in the medical

and scientific community. The complex relationship of concomitant infections

with Plasmodium spp. and Leishmania spp. is highlighted in studies of natural and

experimental co-infections, showing how this “dual” infection can exacerbate or

suppress an effective immune response to these protozoa. Thus, a Plasmodium

infection preceding or following Leishmania infection can impact the clinical

course, accurate diagnosis, and management of leishmaniasis, and vice versa.

The concept that in nature we are affected by concomitant infections reinforces

the need to address the theme and ensure its due importance. In this review we

explore and describe the studies available in the literature on Plasmodium spp.

and Leishmania spp. co-infection, the scenarios, and the factors that may

influence the course of these diseases.
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1 Introduction

The risk of contracting an infection is inherent in the life of any living being. The same

individual can encounter a variety of viruses, bacteria, helminths, fungi, or protozoa

throughout a lifetime and often in the same period of time, increasing the chances of a co-

infection (1, 2). Co-infection is defined as infection of the same host by two or more

microorganisms belonging to different species or strains (1, 3).

The effect of co-infection on disease pathogenesis is related to the type of interaction

that the parasites establish with each other and with the host, including the immune

response triggered against these pathogens (3–5). In a co-infection, the parasites may cause

a similar immune response profile (which may exacerbate this response) or a different one,

bringing limitations to the immune response, with increased susceptibility and lack of

control of the infection (6). Therefore, interactions between parasites that inhabit the same

host simultaneously can be neutral, synergistic or antagonistic (1–3).
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The order of arrival of pathogens in the host is another crucial

factor to be considered. When we talk about co-infection, it is

immediately assumed that at least two parasites infect the host

simultaneously, but this only happens in specific cases, when a

particular vector carries different pathogens and transmits them to

the host at the same time (5). However, what is more feasible in

nature is sequential co-infection, where the first parasite infects the

host and then the second parasite, within a certain period (which

can be from days to years), finds the same host and infects it (5).

Therefore, at the time of co-infection, the host environment is

metabolically and immunologically different compared to an

uninfected host. Thus, the manifestation of a given disease is not

only dependent on host susceptibility, pathogen virulence and

environmental factors, but can also be directly influenced by co-

infections (Figure 1).

The geographical overlap of malaria and leishmaniasis has been

reported through the presence of the parasites and specific vectors

circulating in the same endemic regions (7, 8), showing that there is

a great potential for interaction between these pathogens in the

same host. Indeed, human co-infection with Plasmodium and

Leishmania parasites has been described in nature (9–27). Despite

that, and the impact that the coexistence of the two parasites in the

same host can have on the course of the diseases, there are few

studies in the literature that address this interaction. The purpose of

this review is to provide an overview of the knowledge available in

the literature on co-infection by the parasites that cause malaria and

leishmaniasis. Articles detailing this interaction permeate natural

co-infection in humans and experimental models of co-infection

(Table 1).
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2 Malaria and leishmaniasis:
An overview

Malaria is an infectious parasitic disease caused by protozoa of

the genus Plasmodium and transmitted by the bite of the Anopheles

mosquito (7). Despite being an ancient disease, it remains a major

public health problem worldwide. According to the World Malaria

Report (37), an estimated 247 million cases of malaria occurred in

2021, with 619,000 deaths. In 2020, there was a significant increase

in the numbers of malaria deaths (620,000) compared to the

previous year (568,000). Overall, between 2019 and 2021, an

estimated 13.4 million additional cases of malaria and 63,000

deaths can largely be attributed to the disruption of malaria

prevention, diagnosis, and treatment program during the

COVID-19 pandemic (37–39). Human malaria is mainly caused

by five species of Plasmodium: P. falciparum, P. vivax, P. malariae

and P. ovale curtisi and P. ovale wallikeri (7, 40, 41). However, there

are three other zoonotically transmitted species that are also capable

of infecting humans: P. knowlesi, P. cynomolgi and P. simium

(40–45).

Plasmodium species show differences in their geographic

distribution, pathological severity, and biology. P. falciparum is

the predominant species on the African continent and is found in

other tropical and subtropical regions. It is considered the species

with the greatest impact on public health due to the high morbidity

and mortality rates associated with severe forms of the disease, in

addition to drug resistance (46). P. vivax is the most widely

distributed species in the world. This parasite is the leading cause

of malaria outside Africa and is found in regions of Asia and the
FIGURE 1

Development of a disease: interplay between environment, host, pathogen, and co-infection. The course of disease development cannot be
sufficiently predicted by the interaction of host, pathogen and environment alone. Co-infection (s), along with the other factors, can interfere with
the duration of infection, level of infectivity, clinical manifestations, and transmission, which can compromise disease control.
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Americas (46, 47). In the early stages, malaria has nonspecific

symptoms, such as fever, chills, sweating, headache, and muscle

pain. This set of symptoms is observed in most patients, but some

cases, the disease can progress to more severe manifestations, such

as pulmonary malaria, severe anemia, and cerebral malaria.

According to theWHO guidelines, the recommended treatment

for adults (excluding pregnant women in their first trimester) and

children with uncomplicated malaria caused by P. falciparum, P.

vivax, P. ovale, P. malariae or P. knowlesi is with artemisinin-based

combination therapies (ACT). This can include artemether +

lumefantrine, artesunate + amodiaquine, artesunate +

sulfadoxine–pyrimethamine (SP), and others (48). Chloroquine

can also be used to treat uncomplicated non-P. falciparum

malaria in areas with chloroquine-susceptible infections. In
Frontiers in Immunology 03
specific cases, to prevent P. vivax or P. ovale relapse, treatment

should be carried out with primaquine, paying attention to the risk

of G6PD deficiency. For severe malaria, the treatment of choice is

intravenous or intramuscular administration of artesunate,

followed by combination ACT therapy (48).

Leishmaniasis is a group of neglected infectious diseases caused

by protozoan parasites of the genus Leishmania and transmitted by

the bite of infected sand flies. It is estimated that 700,000 to 1

million new cases occur annually, and 1 billion people live in

endemic areas and are at risk of infection (8) Endemic in 98

countries and 3 territories (49), in tropical and subtropical

regions and in the Mediterranean basin, leishmaniasis is

associated with lack of financial resources, precarious housing,

climate change, population displacement, malnutrition and
TABLE 1 Cases and studies on Plasmodium spp. and Leishmania spp.

Malaria parasites Leishmaniasis parasites Natural or Experimental co-infections Reference

(a) Plasmodium spp. L. donovani Human (9)

P. vivax L. donovani complex Human (10)

Plasmodium spp. L. donovani Human (20)

Plasmodium spp. L. donovani Human (21)

Plasmodium spp. L. donovani Human (22)

P. falciparum L. donovani Human (23)

Plasmodium spp. L. donovani complex Human (24)

P. vivax L. donovani Human (25)

P. falciparum L. donovani Human (26)

P. falciparum/P. vivax L. donovani Human (27)

P. falciparum L. donovani Human (11)

Plasmodium spp. L. donovani Human (12)

P. falciparum/P. vivax L. donovani Human (13)

P. falciparum/P. vivax L. donovani Human (16)

P. vivax L. donovani Human (14)

P. vivax L. donovani Human (15)

Plasmodium spp. L. donovani Human (17)

(b) P. berghei L. infantum Golden hamster (28)

P. yoelii
P. berghei

L. enriettii Syrian hamster (29)

P. yoelii L. amazonensis BALB/c (30)

P. yoelii L. amazonensis C57BL/6 (31)

P. yoelii L. amazonensis C57BL/6 (32)

P. yoelli L. amazonensis BALB/c (33)

P. chabaudi AS L. infantum C57BL/6 (34)

P. falciparum L. donovani In vitro
(Dendritic cell culture)

(35)

P. yoelii 17XNL L. amazonensis/
L. braziliensis

BALB/c (36)
f

Co-infection: (a) natural and (b) experimental (animal and in vitro model) co-infection.
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compromised immune system (8, 50, 51). More than 50 species of

Leishmania have been identified, distributed in regions of the Old

World (Europe, Asia, and Africa) and the New World (Americas).

Of these, 20 species are known to infect humans (50, 52).

The disease, leishmaniasis, comprise a wide spectrum of clinical

manifestations grouped in three main forms: Visceral Leishmaniasis

(VL), Cutaneous Leishmaniasis (CL) and Mucocutaneous

Leishmaniasis (ML) (8, 50). The VL form, also called kala-azar, is

the most severe form of leishmaniasis. In the Old World, it is

associated with infection by L. donovani and L. infantum, and in the

New World by L. infantum. It is characterized as a systemic

infection, with symptoms that include irregular fever, fatigue,

abdominal pain, weight loss, splenomegaly and hepatomegaly (51,

52). Without treatment, VL is fatal in 95% of cases (8, 52). The CL

form is the most common form of the disease. In the OldWorld, CL

was mainly caused by L. major and L. tropica, and in the New

World by more than eight different species of the L. (Leishmania)

and L. (Viannia) subgenera, including L. (L.) amazonensis, L. (L.)

mexicana, L. (V.) braziliensis, L. (V.) panamensis, L. (V.) peruviana

and L. (V.) guyanensis (51, 53). The clinical presentation of CL

varies according to the infecting species, the genetic background of

the host, and immune response triggered. Typically, the lesions

occur in the region of the sand fly bite and present as a single non-

ulcerative and painless papule. However, multiple lesions can also

occur as well as ulcerating dry or wet lesions with raised edges.

Cutaneous lesions can heal spontaneously or after therapeutic

interventions, but others can persist and be refractory to the

treatment (51, 52, 54, 55). Between 2-14% of patients with CL

caused by parasites of the L. (Viannia) subgenus develop ML (52,

56). In ML, the parasite disseminates from the skin to the oral and

nasal mucosa through the lymphatic and hematogenous system,

with slow and progressive destruction of these tissues (51, 52,

54, 57).

During the last six decades, the different forms of have been

treated with a reduced option of drugs, including pentavalent

antimonials, paromomycin, miltefosine, pentamidine isethionate

and amphotericin B (52, 58, 59). Monotherapy with pentavalent

antimonial was the first-line treatment for CL and VL worldwide,

but due to the emergence of resistance or failure during treatment

with this drug, its use is no longer recommended in some regions of

the world (59, 60). Oral miltefosine monotherapy is being

implemented by more countries in the last decade, as well as

combination regimens of antimonial, paromomycin, liposomal

amphotericin B, amphotericin B deoxycholate, pentoxifylline and

miltefosine, according to the disease form and particular conditions

of pediatric and adult patients (52, 58, 59).

It is well known that genetic factors influence resistance or

susceptibility to infectious diseases, including malaria and

leishmaniasis. However, few genome-wide association studies

(GWAS) have been conducted to identify human gene

polymorphisms associated with these diseases. Some genetic

variations, such as those found in the hemoglobin subunit beta

(HBB), ABO blood group (ABO), ATPase plasma membrane Ca2+

transporting 4 (ATP2B4), glucose-6-phosphate dehydrogenase

(G6PD) and CD40 ligand (CD40LG) loci, have been associated
Frontiers in Immunology 04
with attenuation of severe malaria (61). In addition,

polymorphism in the erythrocyte Duffy antigen/receptor for

chemokines (DARC) gene is associated with resistance to P.

vivax malaria (62, 63). Specific TNF and DDX39B haplotypes

have also been linked to increased susceptibility to P. vivax

infections in Brazil (64, 65). DDX39B encodes an RNA helicase

that has been described as a negative regulator for the expression

of TNF and IL-6.

Regarding leishmaniasis, recently, a robust GWAS identified

lysosomal associated membrane protein 3 (LAMP3), Syntaxin 7

(STX7), Keratin 80 (KRT80), IFNG antisense RNA 1 (IFNG-AS1),

Cytokine receptor like factor 3 (CRLF3), and Serpin family B

member 10 (SERPINB10) as plausible genetic risk factors for CL

caused by L. braziliensis (66). This study suggested that lower levels

of IFN-g and TNF, regulated by IFNG-AS1, increase the risk of CL.

For VL, GWAS analysis identified a polymorphic HLA-DR-DQ

region within the major histocompatibility complex of immune-

related genes as the single major genetic determinant of VL (67).

Interestingly, this association was found in three independent

cohorts from India and Brazil, and represented infections caused

by different parasite species, including L. donovani and L. infantum.

Sakthianandeswaren A, et al. (68) and Bharati, K (69), have also

described in their revisions several gene variations and their

relationships with the course of different forms of leishmaniasis

(68, 69). Despite the mentioned studies on genetic polymorphisms

and parasitic diseases, to date, there has been no description of the

association of certain polymorphisms with resistance or

susceptibility to Plasmodium and Leishmania co-infection. This

remains a challenging field for future studies.

The geographical distribution of countries with reported

malaria cases (39) or VL and CL cases in the world (70) reveals

an overlapping of malaria, VL and/or CL cases in the Americas

(Central and South), Africa and Asia, and suggests that at least 38

countries are at risk of co-infection (Figure 2). In brief, overlapping

cases of malaria and CL are reported in Central America in

countries such as Mexico, Costa Rica, Panama, Honduras, and

Nicaragua, and in South America in Ecuador, Peru, Guyana, and

Suriname. In addition, cases of malaria, CL and VL are observed in

Guatemala, Colombia, Venezuela, Bolivia and Brazil (39, 56, 70, 71).

On the African continent, cases of malaria and CL overlap mainly in

the north of the continent, in countries with a predominantly

tropical climate, such as Senegal, Burkina Faso and Nigeria. Also,

countries in northeastern Africa, such as Somalia, Uganda, Djibouti,

Tanzania, Eritrea, and South Sudan, have reported cases of malaria

and VL (39, 70). And yet, cases of malaria, CL, and VL have been

reported in Cameroon, Chad, Sudan, Ethiopia, and Kenya. In West

Asia, malaria and CL are endemic in Saudi Arabia, while all three

diseases are present in Yemen. In South Asia, cases of malaria and

CL are found in Pakistan, and cases of malaria, CL and VL are

found in Iran and Afghanistan (39, 71, 72). Malaria and VL cases

have been reported only in India, Nepal, Bangladesh and Thailand

(39, 70), while malaria and CL cases have been reported in Bhutan, a

country located between China and India. Isolated cases of malaria

or leishmaniasis are observed in several other countries, but without

reports of co-endemicity.
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3 Plasmodium spp. and Leishmania
spp. co-infections

3.1 Natural co-infections

Seminal reports addressing natural co-infection by the parasites

that cause malaria and leishmaniasis are from the 1930 and 1940

decades. To our knowledge, the first report of natural co-infection

by Plasmodium spp. and Leishmania spp. in areas endemic for both

parasites was made by Henderson et al. (9). Conducted on 300

patients with VL from a province in Sudan between 1933 and 1936,

this study found the occurrence of concomitant infection with

Plasmodium spp. in 30% of patients with VL (9). A few years

later, Yoeli (10) observed the presence of non-pigmented malaria

parasites, with characteristics similar to P. vivax in the bone marrow

of a patient hospitalized with VL in Athens (10).

Since then, natural co-infection has been described in different

regions of the world involving different Plasmodium and

Leishmania species (Table 1). When assessing the concomitance

of other infections in patients with leishmaniasis, Plasmodium was

responsible for 10.7% of co-infection cases during a VL epidemic in

southern Sudan in 1988 (20). Plasmodium co-infection was also

described in 9,3% of VL cases in eastern Sudan in a retrospective

study conducted from January 2013 to June 2014 (12) and, in 6.4%

of VL cases in Pokot territory, located in western Kenya and eastern

Uganda, a few years earlier, in 2006 (23). However, two other

studies also conducted in Pokot territory, between 2000-2006, with

a larger number of study subjects, describe a higher co-infection rate

of 19-20.8% among patients with VL (24, 26). In Ethiopia, a study

conducted between 2013 and 2018 showed that out of a total of 434

VL cases, Plasmodium co-infection is seen in 6.4% of cases in the

Oromia region (17). Another study conducted in 2014 in northwest
Frontiers in Immunology 05
Ethiopia, on the border with Sudan, showed that 4.2% of VL

patients were co-infected with Plasmodium (13). Overall, a meta-

analysis study with data from 1991 to 2020 suggests that the

prevalence of Plasmodium co-infection among individuals with

VL ranges from 7 to 18% in Africa and Asia, according to the

endemicity of VL and malaria in the evaluated area (18).

To assess the prevalence and risk factors of co-infection by

Leishmania and Plasmodium parasites, van den Bogaart et al. (26)

followed patients admitted to a hospital in Uganda between 2000

and 2006. As mentioned above, of the 2,414 VL patients, 19% were

diagnosed with malaria (26). Most of the co-infected patients were

male, and age was considered a risk factor of co-infection, since the

highest incidence of concurrent VL and malaria was observed in

children of 0 to 9 years old. Children in this age group are twice as

likely to be co-infected as adults over the age of 30 (26). The same

group of investigators also conducted a study in three hospitals in

Sudan between the years 2005-2010 evaluating malaria parasite co-

infection in VL-hospitalized patients. Of the 1,295 VL patients,

31.2% were co-diagnosed with malaria (mainly caused by P.

falciparum) at the time of hospital admission or during

hospitalization (27), corroborating the prevalence of Leishmania

and Plasmodium co-infection reported previously in the same

region (22). Gender and age were considered risk factors for co-

infection (27). The findings by Ferede et al. (13) also indicated that

age was associated with co-infection by the parasites that cause

malaria and leishmaniasis. They noted that the diagnosis of both

diseases was significantly higher (33%) in children under 5 years

old, who would possibly be more prone to co-infection because they

have a less robust immune system (13). The second age group with

the highest cases of co-infection was patients aged 15-29 years,

where a 4% prevalence of dual diagnosis of VL and malaria was

observed (13). Focusing on migrant workers, mostly male and aged
FIGURE 2

Geographical overlap of malaria and leishmaniasis cases worldwide. Geographical distribution of countries co-endemic for malaria and leishmaniasis.
Cases of malaria and visceral leishmaniasis (VL) are reported in countries highlighted in mustard; cases of malaria and cutaneous leishmaniasis (CL)
are reported in countries highlighted in red, and cases of malaria and both leishmaniasis (VL and CL) are reported in countries highlighted in green.
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between 15 and 29 years, Aschale et al. (16) found that the

prevalence of co-infection among workers was 2.8% (16).

The concomitant occurrence of both infections in the same

individual has implications for the clinical course of malaria and

leishmaniasis. In a study conducted in East Africa, malaria is cited

as a risk factor for the development of VL (23). The opposite,

however, has not been thoroughly investigated. Although no

differences in the prognosis of VL have been observed (as long as

the Plasmodium infection is identified and treated effectively), co-

infected patients have greater morbidity evidenced by loss of body

mass, jaundice, and malaise (26, 27). Interestingly, an increased

Leishmania parasite load was observed in lymph nodes or bone

marrow aspirates in co-infected patients, suggesting a potential

suppressive effect exerted by malaria parasites on Leishmania

infection (27). On the other hand, reduced levels of P. falciparum

parasitemia were detected in the co-infected patients compared to

malaria-only patients, suggesting a protective effect of co-infection

on Plasmodium infection (11). This effect may be related to the

increased systemic levels of pro-inflammatory cytokines (TNF-a
and IFN-g) observed in the co-infected group when compared to

patients infected with Plasmodium alone (11). The data indicate

that the co-occurrence of the two diseases in the same individual

interferes with the host’s immune response.

Co-infection cases have also been reported in India, accounting

for 5.9% of patients with splenomegaly and fever (21). Interestingly,

all patients diagnosed with VL, and malaria had symptoms that

could be related to both diseases, such as fever, splenomegaly and

hepatomegaly (15, 21). In a region of Nepal bordering India,

another case of co-infection was reported, this time in a 5-year-

old child, infected with P. vivax and L. donovani, with a history of

fever, abdominal pain, constipation, and hepatomegaly (14). The

data suggest that the clinical symptoms of co-infected patients

hinder accurate diagnosis and, consequently, the initiation of

appropriate treatment . Thus, delay in the recommended

treatment may compromise treatment success and the course of

the diseases (13, 15, 18, 25). However, co-infection is not reported to

affect the efficacy of the recommended treatment for malaria or

leishmaniasis if it is done in a timely manner.

Traditionally, we look for cases of co-infections with pathogens

endemic to the same geographic area, but with the intense

migratory activities and war refugees, this condition no longer

applies. There may be imported cases of a particular infection,

which is not endemic to that region. In an interesting case report, a

patient from Nepal, a VL endemic area, while going to work in

Malaysia (a malaria endemic area) tested positive for P. vivax two

weeks after his arrival in the country. But even after complete

treatment for malaria, the patient still had high fever, lack of

appetite, splenomegaly, hepatomegaly, and pancytopenia. When

the bone marrow aspirate was evaluated, amastigotes forms of

Leishmania were found inside macrophages, showing that this

was a case of co-infection by Leishmania and Plasmodium. This

situation is considered challenging, since the patient probably

contracted the L. donovani infection first at a different location
Frontiers in Immunology 06
and the Plasmodium infection, contracted later, interfered with the

VL diagnosis, which could have been fatal (25).
3.2 Experimental co-infection: In vivo and
in vitro models

Experimental animal models are valuable tools to investigate the

pathological mechanisms of co-infections. The first study carried out to

understand the dynamics of co-infection used Syrian golden hamsters

(Mesocricetus auratus) inoculated with L. infantum and P. berghei. In

this study, the authors observed that previous infection with L.

infantum inhibited the multiplication of malaria parasites. On the

other hand, an infection already initiated by P. berghei did not inhibit

the multiplication of L. infantum (28). Using the same rodent model,

the effect of P. yoelii infection on the course of infection by L. enriettii, a

natural parasite of guinea pigs, was also evaluated. In contrast to what

was observed by Adler et al. (28), when both infections were performed

simultaneously or when P. yoelii was inoculated few days after L.

enriettii infection, there was an increase in skin lesions in these two

groups of co-infected animals when compared to the L. enriettiimono-

infected group (29).

Like hamsters, murine models are excellent experimental models,

being susceptible or resistant to different strains of Plasmodium spp.

and Leishmania spp. according to their genetic background. Coleman

et al. in their first studies on multiple infections, evaluated the co-

infection by P. yoelii 17x (a non-lethal strain) and L. amazonensis in

BALB/c and C57BL/6 mice, murine models considered susceptible and

resistant to L. amazonensis infection, respectively (30–33). BALB/c

mice infected first with L. amazonensis and a few days later (2 days, 3

days or 3 weeks) infected with P. yoelii 17x showed worsening of the

skin lesion and Plasmodium infection with high parasitemia, marked

hypothermia and elevated mortality rate (30, 33, 36). Similarly, C57BL/

6mice, when initially inoculated with L. amazonensis and subsequently

(2 days or 3 weeks later) infected with P. yoelii, also showed increased

footpad lesion and greater P. yoelli parasitemia compared to mono-

infected animals (31, 33). Interestingly, in some co-infected animals,

dissemination of the L. amazonensiswas observed, with the appearance

of a lesion in the contralateral uninfected paw, suggesting that

concomitant infection with Plasmodium would have a potential to

suppress the immune response, increasing the severity of cutaneous

leishmaniasis in this model (32).

The impact of P. yoelii 17XNL infection on BALB/c mice

parasitized by L. braziliensis was different from that observed in co-

infection with L. amazonensis and P. yoelli (36). Animals co-infected

with L. braziliensis and P. yoelii had lower parasitemia and smaller and

less ulcerative lesions compared to mono-infected groups (36). Finally,

a preliminary study in C57BL/6 mice infected first with P. chabaudi

and then with L. infantum describes a higher susceptibility to

leishmaniasis in co-infected animals. Co-infection, on the other

hand, did not interfere with the course of malaria (34).

The effect of co-occurrence of the two infections in the same host

on the elicited immune response was evaluated by Pinna et al. (36).
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Co-infection of BALB/c mice with L. amazonensis and P. yoelii or L.

braziliensis and P. yoelii reduced serum levels of the cytokines IFN-g,
TNF-a, IL-6 and IL-10 induced by the malaria parasite. The data

suggest a modulating effect of Leishmania infection on the immune

response triggered by the Plasmodium parasite (36). Note that in

malaria, the optimal immune response capable of controlling the

parasite and causing no harm to the host involves an initial pro-

inflammatory type 1 response, which later switches to a more

regulatory response (73). Reduced serum levels of IL-10, an

important regulatory cytokine, may have triggered an imbalance in

the immune response and the worsening of malaria (74–77),

contributing to the higher morbidity observed in animals infected

with L. amazonensis and P. yoelii. From the standpoint of Leishmania

infection, co-infection with P. yoelii increased serum levels of pro-

inflammatory cytokines compared to animals infected with Leishmania

alone. This immune response profile may have contributed to the

reduced severity of Leishmania lesions observed in co-infected

animals (36).

In summary, although the data suggest that co-infection shapes the

susceptibility of the host to one or other infection, there is a

considerable difference between the results obtained by the

experimental co-infection studies. These differences are possibly

related to the different species and/or strains of parasites involved in

the studies, the genetic background of the host, and the time and order

in which the infections occurred. All of these factors can dictate the

clinical course and severity of the diseases (28–30, 33, 34, 36).

Similar to the in vivo experimental models, the in vitro co-

culture system also provides important clues to understand how the

immune response to a pathogen is triggered. Thus, it is quite

common to use the in vitro co-culture system to assess how a

specific parasite interacts with a particular cell type and modulates

its function. In this regard, several studies have shown that exposure

to Plasmodium-infected erythrocytes or hemozoin, a product of

hemoglobin metabolism, negatively interferes with the antigen-

presenting function of dendritic cells (DCs) (78–84). This

negative impact on DC activation and maturation is also

described in studies evaluating the interaction of the promastigote

form of Leishmania with DCs (85–92). On the other hand, uptake

of amastigote forms of Leishmania by DC induces its maturation

and activation of T cells to a Th1 profile (92, 93). However, only one

study so far has evaluated what happens to DC when interacting

with both parasites, Plasmodium and Leishmania, simultaneously.

In this study, monocyte-derived DCs (obtained from healthy

donors) and co-stimulated with different concentrations of L.

donovani promastigotes forms and P. falciparum-parasitized

erythrocytes developed a semi-mature to immature profile, as the

parasite/cell ratio increased, similar to DCs cultured with

promastigotes forms of L. donovani alone (35). Suggesting a

dominant effect of the Leishmania parasite-induced stimulus, over

Plasmodium-induced stimulus, on the activation profile of DCs.
4 Conclusion

The geographical overlapping of the Plasmodium and

Leishmania parasites, their vectors, and cases of natural co-
Frontiers in Immunology 07
infection are more than proven. Studies on natural and

experimental co-infection, discussed in this review, suggest that

the co-occurrence of the two parasites in the same host interferes

with the duration of infection, level of infectivity and/or clinical

manifestations. Some of these factors can influence the transmission

and compromise the control of one or both diseases. This review

also evidences the dangers of co-infection for populations residing

in areas where these diseases are co-endemic. As the search for co-

infections is not usually performed in these regions, the diagnosis of

one infection may compromise the accurate and timely diagnosis of

the other, implying a delay in treatment and possibly leading to

patient death. Thus, more efforts should be made in an attempt to

reduce the lack of knowledge about concomitant infections, and

encouragement for the creation of programs that seek to diagnose

co-infections by Plasmodium spp. and Leishmania spp. in areas co-

endemic for both diseases.
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