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Paneth cells are a group of unique intestinal epithelial cells, and they play an

important role in host-microbiota interactions. At the origin of Paneth cell life,

several pathways such as Wnt, Notch, and BMP signaling, affect the

differentiation of Paneth cells. After lineage commitment, Paneth cells migrate

downward and reside in the base of crypts, and they possess abundant granules

in their apical cytoplasm. These granules contain some important substances

such as antimicrobial peptides and growth factors. Antimicrobial peptides can

regulate the composition of microbiota and defend against mucosal penetration

by commensal and pathogenic bacteria to protect the intestinal epithelia. The

growth factors derived from Paneth cells contribute to the maintenance of the

normal functions of intestinal stem cells. The presence of Paneth cells ensures

the sterile environment and clearance of apoptotic cells from crypts to maintain

the intestinal homeostasis. At the end of their lives, Paneth cells experience

different types of programmed cell death such as apoptosis and necroptosis.

During intestinal injury, Paneth cells can acquire stem cell features to restore the

intestinal epithelial integrity. In view of the crucial roles of Paneth cells in the

intestinal homeostasis, research on Paneth cells has rapidly developed in recent

years, and the existing reviews on Paneth cells have mainly focused on their

functions of antimicrobial peptide secretion and intestinal stem cell support. This

review aims to summarize the approaches to studying Paneth cells and introduce

the whole life experience of Paneth cells from birth to death.
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Introduction

The intestinal epithelium, which consists of a single layer of intestinal cells, is an

important barrier separating intestinal contents from tissues (1). The intestinal epithelium

is composed of absorptive cells such as enterocytes (the most abundant cell type) and

secretory cells such as Paneth cells (PCs), goblet cells, and enteroendocrine cells (2). The

small intestine is structurally divided into two parts, convex villus and concave crypts (3).
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Unlike other secretory cells, PCs, as a unique type of epithelial cells,

are located at the bottom of crypts where they are intercalated

between intestinal stem cells (ISCs).

PCs were first identified by Gustav Schwalbe based on the

obvious cytoplasmic granules in 1872 (4), and further named by

Josef Paneth in 1887 (5). PCs are normally observed in the small

intestine, especially ileum, with 5-15 cells per crypt (6, 7). However,

in pathological condition, PCs are detected at other tissues such as

stomach and colon, and this phenomenon is called PC metaplasia

(8). Although metaplastic PCs exhibit a protective effect against

infections, they also promote tumorigenesis by secreting growth-

promoting factors (8).

In contrast to the 4-5 day lifespan of enterocytes, PCs survive

approximately one month in crypts (9). PCs are widely found in the

intestine of various species such as humans, mice, pigs, and horses

(10–12). However, most studies on PCs are conducted based on the

samples from humans and mice, and the results have shown that

the development of PCs in humans is different from that in mice.

The first emergence of PCs in humans is before birth (13.5 weeks

gestational age), while that in mice is after birth (7-10 days old) (13,

14). However, the development and functions of PCs in other

species remain largely unclear (12).

Recently, PCs have attracted many researchers due to their

beneficial effects on the intestine (1), and recent research highlights

the importance of PCs in the regulation of intestinal microbiota and

ISCs. To promote a comprehensive understanding of PCs, this

review discusses the main materials and methodology for PC study

and the events during entire lives of PCs.
Morphological characteristics of PCs

The presence of abundant granules in the cytoplasm is the first

clue to PC discovery, and it remains a histological feature used for

PC identification now (4). These granules in the apical cytoplasm of

PCs mainly contain multiple antibacterial peptides (AMPs) such as

lysozyme, a-defensin, secretory phospholipase A2 (sPLA2) and

some proteins such as lipopolysaccharide-binding protein (LBP)

and norepinephrine (9, 15, 16). The discovery of lysozyme in the

granules is the first evidence of the protective role of PCs in the

intestine (17). PCs possess extensive endoplasmic reticulum (ER)

and trans-Golgi network (TGN) to synthesize and process proteins,

which enables them to rapidly supplement the released granules (9).

The above morphological characteristics suggest that PCs are a

unique type of intestinal epithelial cell with particular structure.

Notably, staining identification shows that PCs of some species such

as pigs contain no granules (18).
Materials and methods for
PC investigation

Multiple materials and methods are required to investigate the

alterations of PCs. Selecting appropriate experimental materials is

important for PC research. The majority of PC-related studies

utilize C57BL/6 mouse strain since this mouse strain possesses
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more PCs with an abundant AMP profile, compared to 129/SvEv

mouse strain (19).

In PC studies, PC interference tends to be conducted by

chemical and transgenic methods in mice (20, 21). Dithizone, a

zinc chelator, has been reported to selectively eliminate PCs from

the small intestine of mice and rats (22). However, the PC-ablation

effect of dithizone lasts only for a short time, and then renascent

PCs emerge in the crypts at 12 h after ablation and completely

restore to normal state at 72 h (22). Intestinal transforming growth

factor (TGF)-a and TGF-b1 are responsible for the rapid

regeneration of PCs (23). Another method for PC ablation

includes two steps: first, a human diphtheria toxin (DTX)

receptor is inserted into mouse’s cryptdin-2 (Defa6) promoter to

produce transgenic mouse strain PC-DTR (20), and then

administration of PC-DTR mice with DTX leads to a decline of

PC number (20, 24). Nevertheless, these two methods exhibit

different effects in many aspects. In terms of PC-ablation

efficiency, lysozyme staining results show that dithizone can

reduce PCs by 33%, while DTX administration can reduce PCs by

60% (25). In addition, dithizone also contributes to autophagy-like

changes in PCs (25). Tumor necrosis factor (TNF)-a released from

dithizone-induced degenerated PCs can activate NF-kB signaling,

thus promoting intestinal cell proliferation in rats (26).

Furthermore, PC disruption induced by dithizone, rather than by

DTX, impairs the small intestinal perfusion by down-regulating

nitric oxide signaling (27). DTX administration leads to PC

necrosis, thus possibly causing an increase in serum interleukin

(IL)-6, IL-10, and TNF, whereas dithizone fails to trigger intestinal

inflammation (25). These studies suggest that dithizone and DTX

may act on PCs via different mechanisms. Therefore, it is necessary

to make the appropriate choice between dithizone and DTX

to delete PCs according to the objective of research. Additionally,

gene editing makes it convenient to study the influence of

certain gene on PCs in C57BL/6 mice. Mice with genes atonal

homolog 1 (Atoh1), sex determining region Y-box 9 (Sox9), or

growth factor independent 1 transcription repressor (Gfi1)

knocked out are usually used as a PC ablation model (28–30). In

addition to the methods of complete PC disruption mentioned

above, transgenic Defa6-cre mice have been used to generate PC-

specific gene knockout mice, which allows the exploration of

the functions of certain gene in PCs (31). Notably, transgenic

Defa6-cre mouse strain is established by Professor Blumberg (31),

and he generously shares this mouse strain with other researchers

(32, 33).

With the exception of mice, intestinal organoids, which are

similar to the physiological structure and function of the intestinal

epithelium in vivo, are also utilized to study PCs (34, 35). The

intestinal organoids with a three-dimensional structure contain

various intestinal epithelial cells formed from the continuous

differentiation of ISCs ex vivo. Hans Clevers and Toshiro Sato

first established intestinal organoids based on isolated ISCs in 2009,

which lays a foundation for subsequent research on intestinal

organoids (34). PCs intermingled with ISCs also exist at the

bottom of crypts in organoids. Compared with mouse models, the

intestinal organoids make PC studies more convenient, exhibiting

multiple advantages such as stability and controllability.
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Using various methods such as qPCR, western blot, and

immunostaining, the alterations of PCs are examined in the

mouse models and intestinal organoids (36, 37). Among them,

histochemical staining mainly including periodic acid Schiff’s

staining, eosin and phloxine-tartrazine stainings can visualize the

abundant granules in the cytoplasm of PCs (38) In addition,

transmission electron microscopy (TEM) enables researchers to

observe the intracellular components of PCs such as granules and

ER (33). Considering that PCs can express several unique genes

(Defa1, Defa5, and Lyz1), the detection of these PC markers using

qPCR, RNA-seq, and fluorescence in situ hybridization (FISH)

usually reflects the changes of PCs at the gene expression level

(11, 39). The western blot, immunohistochemistry, and

immunofluorescence assays of a-defensin and lysozyme reveal the

changes of PCs at the protein level. Notably, it is necessary to

examine these PC markers at both mRNA and protein levels since

the results at these two levels might be inconsistent due to the

translational block caused by unfolded protein response (UPR)

activation (40).

Flow cytometry (FACS) with CD24 antibody is used to analyze

the PC number (11). FACS in combination with cell sorting allows

the isolation of live PCs from the intestine (32). The proportion of

PCs in CD24+ cells is extremely low (approximately 1.87%) (32).

The isolated PCs can be cultured in vitro, which enables researchers

to observe the alterations in PCs directly under different treatments

(32). Another method for investigating molecular changes of PCs is

laser capture microdissection (LCM). LCM can precisely isolate PCs

from embedded tissue sections without impairing tissue structure

for subsequent analysis (32, 41). Compared with FACS, LCM is
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more precise since it reflects the real changes in PCs under

physiological condition.
Origin of PC life: Differentiation
and migration

Coexistence of multiple cell types in the intestinal epithelium

suggests that cell differentiation is a strict and complex process

(Figure 1A). Cell differentiation in the intestine is determined by

several signaling pathways such as Notch, Wnt, and bone

morphogenetic protein (BMP) signaling (2). PC differentiation is

conducted under the conditions of Notch signaling off and Wnt

signaling on.

Notch signaling is the key for lineage commitment towards

absorptive cells or secretory cells. The 5-day Notch signaling

inhibition by dibenzazepine (DBZ), an inhibitor of g-secretase,
leads to PC hyperplasia in mice (42). However, a recent study

showed that acute Notch signaling inhibition (1 day after DBZ

treatment) induced rapid apoptosis of PCs with a robust rebound of

PCs at day 7 post DBZ treatment, suggesting the beneficial role of

Notch signaling in PC maintenance rather than in lineage

commitment (43). The dominance of Notch signaling in lineage

commitment is achieved by its target gene, hairy and enhancer of

split 1 (Hes1). Hes1 directly suppresses the transcription of Atoh1

which is responsible for the differentiation of secretory cells (42).

Like DBZ-treatment, the deletion of Hes1 promotes PC

differentiation in the small intestine (44). Moreover, deletion of

Notch ligands Dll1 and Dll4 and their receptors Notch1 and Notch2
A B

FIGURE 1

The origin of Paneth cell life. (A) Differentiation of Paneth cells. The differentiation towards secretory cells occurs when Notch signaling is off. Sox9
and Gfi1 are two key transcription factors of Paneth cell lineage. Wnt/PCP signaling directly drives the conversion of intestinal stem cells to Paneth
cells. Wnt/b-catenin signaling and BMP signaling promote the lineage commitment of Paneth cells. Recent studies have reported that the
differentiation of Paneth cells is also affected by epigenetic regulation such as Mll1-mediated methyltransfer and H3K27 trimethylation. The genes
around the cell images are key transcription factors for the cell lineage commitment. (B) Migration of Paneth cells. Unlike other secretory cells,
Paneth cells are located at the base of crypts. After differentiation, Paneth cells migrate downward to crypt bottom, and they are intercalated
between stem cells. The migration of Paneth cells is mediated by EphB3.
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also contributes to an increase in PCs (42, 45, 46). It should be noted

that Dll1 knockout is accompanied by the elevated expression of

Dll4 (45), and Notch1 knockout induces the expression increase of

Dll1 and Dll4 (46), which may be attributed to the increased PCs.

Wnt/b-catenin signaling can activate transcription factor 4

(Tcf4)-mediated transcription via nuclear localization of b-
catenin, and this signaling plays a crucial role in PC

differentiation in the intestine. Transgenic mice overexpressing

Dkk1 (a Wnt signaling inhibitor) exhibit the absence of all

secretory cell lineages including PCs (47). In contrast, Apclox/

loxVilCreERT2 and Catnblox(ex3)Vil-CreERT2 mice (mouse models

of Wnt/b-catenin activation) display higher level of PC

differentiation, compared with wild type (WT) mice (48). Atoh1,

a downstream gene of Wnt/b-catenin signaling, is essential for the

maintenance of secretory progenitors. High expression of Atoh1

and nuclear localization of b-catenin/Tcf4 have been reported in

PCs (47, 49). Atoh1 deletion results in a decrease in all secretory cell

number (50) and the conversion from specified secretory cells into

functional enterocytes (51). Furthermore, other factors are also

involved in driving the conversion from secretory progenitors to the

PC lineage rather than other secretory cells. Sox9 and Gfi1 are the

main transcription factors responsible for the differentiation of PCs.

Sox9 is also a target gene of Wnt/b-catenin signaling, and Gfi1

functions in the downstream of Atoh1 (29, 30). Lack of Sox9 or

Gfi1 leads to PC lineage defects in mice (29, 30). Surprisingly,

Atoh1 strengthens its own expression and directly regulates

Dll1 and Dll4 which mediate lateral inhibition, a process

maintaining a proper proportion of absorptive cells and secretory

cells (51). Similar to canonical Wnt/b-catenin signaling, non-

canonical Wnt/planar cell polarity (PCP) signaling is also

involved in PC lineage differentiation, in spite of the mutual

antagonization of their functions in some cases (52). Wnt/PCP

signaling drives the differentiation from ISCs directly to PC and

enteroendocrine cell lineages without the intermediate step of

secretory progenitors (53).

In addition to Notch and Wnt signalings, several signaling

pathways also act on PC lineage differentiation. BMP signaling

modulates secretory cell maturation without interfering with Wnt/

b-catenin signaling. The inhibition of BMP signaling by silencing

BMP receptor type IA impairs terminal differentiation of PCs (54).

Mammalian mitogen-activated protein kinase (MAPK) signaling

disruption leads to a PC maturation defect (55). The nonreceptor

tyrosine phosphatase Shp2-mediated MAPK signaling controls the

fate between goblet cells and PCs, and Shp2/MAPK signaling

weakening causes an increase in PC number meanwhile

repressing goblet cell development (56).

In addition to transcription factors and signaling pathways,

epigenetic regulation emerges as a novel modulator of PC lineage.

The regulation of Wnt and MAPK signalings by histone

methyltransferase Mll1 controls the lineage allocation between

PCs and goblet cells (57). The inhibition of histone H3 lysine 27

(H3K27) trimethylation impairs PC maturation in the intestinal

organoids (58). Thus, these studies indicate that PC lineage

differentiation and development are intricate processes under the

controls of multiple signaling pathways at both transcriptional and

post-transcriptional levels.
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After differentiation, most other cells migrate upward to villus,

while PCs move to crypt bottom (Figure 1B) (59). Ephrin type-B

receptor 3 (EphB3) is highly expressed in PCs and responsible for

PC migration (60), and EphB3-knockout mice exhibit the

disordered location of PCs along the villus-crypt axis (60). Since

EphB3 is also a downstream target of Wnt/b-catenin signaling, Wnt

inhibition via Frizzled-5 (a Wnt receptor on membrane) silencing

and Dkk1 ectopic expression results in random scatter of PCs, and

the absence of EphB3 is found in the disordered PCs (47, 49).

Therefore, Wnt signaling is of great importance for both

differentiation and migration of PCs.
PC functions in intestine

Located at the bottom of small intestinal crypts, PCs possess

multiple functions such as shaping intestinal microbiota, promoting

regeneration, and controlling inflammation. PC disruption by

chemical and transgenic methods has a negative influence on the

intestine as discussed above. AMPs secreted by PCs shape the

structure of intestinal microbiota and confer crypts with a sterile

environment. The ISC-supporting role of PCs facilitates intestinal

regeneration in vivo and organoid formation ex vivo. Clearance of

apoptotic cells from crypts by PCs prevents the occurrence of

inflammation. Here we discuss the various participations of PCs

in the intestinal homeostasis.
AMP secretion

There are trillions of microorganisms in the intestinal lumen,

most of which are harmless and commensal. These commensal

bacteria protect the intestine against pathogenic bacteria and

produce nutrients from the fermentation of intestinal contents

(61). However, the pathogenic bacteria with strong virulence can

colonize the intestinal epithelium to invade host and exacerbate

infections. PCs, as a source of abundant AMPs, play an important

role in both controlling composition of commensal bacteria and

defending against pathogenic bacteria. AMPs packed in apical

cytoplasmic granules are an ancient type of host defense effectors

in the intestinal innate immunity. The high AMP secretory

characteristics of PC makes it an essential part of the intestinal

innate immune system. In addition, the involvements of PCs in the

intestinal innate immunity are also demonstrated by their

functional proteins such as LBP, MD-2, and integrin a6b4 (15,

62, 63). Therefore, PCs could be called innate immune cells. Recent

evidence has revealed that there are two subtypes of PCs which are

distinguished by the generation of fucosyltransferase 2 (Fut2) in

mice (64). The major source of AMPs is the Fut2+ PCs mainly in

ileum, rather than the Fut2- PCs in duodenum, and Fut2+ PCs

exhibit the higher granularity and structural complexity (64). PC-

derived AMPs mainly include a-defensins (cryptdins in mice),

lysozyme, secreted phospholipase A2 (sPLA2), and regenerating

islet-derived 3a (REG3a, REG3g in mice) (38). These AMPs exhibit

similar bactericidal ability through bacterial binding and membrane

perforation (65).
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a-defensins account for 70% in all the AMPs secreted by PCs

(66). Mammalian a-defensins exhibit a length of 30-40 amino acids

with 6 cysteine residues forming disulfide bridges (38). Human PCs

contain 2 a-defensins, HD5 and HD6, while mice PCs possess 6

cryptdin isoforms, cryptdin-1 to -6 (67). PC-specific cryptdin-1 and

cryptdin-6 are transcriptionally regulated by b-catenin/Tcf4
signaling, and Frizzled-5 conditional deletion in the intestinal

epithelia abolishes the gene expression (49). The mouse model

with PC ablation mediated by dithizone treatment or gene knockout

exhibits the disorders in intestinal microbiota and the higher

susceptibility to bacterial infections, compared to control mice

(25, 33, 39). In addition, a-defensin misfolding in abnormal PCs

triggers intestinal inflammation and instability of intestinal

microbiota (68). Defa1 administration or adenovirus-induced

HD5 expression rescues mice with PC defects from severe

intestinal injury (39, 69). These studies highlight the important

role of a-defensins secreted by PCs in the intestinal

homeostasis maintenance.

Additionally, a-defensins do not display antibacterial ability

until they are cleaved into their active forms after secretion, and this

cleavage process is performed by trypsin in human and matrix

metalloproteinase-7 (Mmp7) in mice (70, 71). Mmp7 knockout

mice display the alterations in the intestinal microbial community

and develop more severe inflammation after infections (70, 72),

suggesting the necessity of a-defensin maturation in the intestine.

Moreover, the presence of high-level zinc (a cofactor of Mmp7) in

PC granules is necessary for Mmp7 activity and AMP stabilization

(70, 73, 74). Since zinc transporter 2 facilitates zinc import into PC

granules, the ablation of this zinc transporter impairs PC functions

and AMP secretion (75). Zinc supplementation alleviates PC

necroptosis and intestinal microbiota disorder induced by TNF

treatment in mice (76).

Another AMP is lysozyme, a widespread used PC marker in

mice, and lysozyme is responsible for peptidoglycan hydrolyzation

in the bacterial cell walls (38). There are two types of lysozyme in

mice, Lyz1 (expressed by PCs)-encoded lysozyme type P and Lyz2

(expressed by macrophages)-encoded lysozyme type M (38). In

human, lysozyme is not unique to PCs, and it is also present in

BEST4 cells and follicle associated epithelium (FAE), as

demonstrated by single-cell transcriptomic analyses involving

duodenum, jejunum, ileum, and colon from three humans (77).

Unexpectedly, Lyz1 deficiency has been reported to result in a type 2

immune response to protect mice from DSS (dextran sodium

sulfate)-induced colitis via IL-13-IL-4Ra-Stat6 axis (78).

Lysozyme-processed and non-processed Ruminococcus gnavus (a

lysozyme-sensitive bacterium) induce distinct immune responses in

mice, indicating that lysozyme regulates the pro-inflammatory or

anti-inflammatory effects of lysozyme-sensitive bacteria (78).

PCs have been confirmed to sense intestinal bacteria directly via

cell-autonomous MyD88-dependent toll-like receptor (TLR)

activation to induce the expression of AMPs (Figure 2) (79). Toll-

IL-1 receptor domain-containing adaptor molecule 1 (TICAM1,

also known as TRIF), another downstream protein of TLR, also

increases AMP expression under homeostatic condition (80). These

findings indicate that the TLR/MyD88 and TLR/TRIF signalings in
Frontiers in Immunology 05
PCs may explain why specific pathogen-free mice possess more PCs

than germ-free mice (81). Nucleotide binding oligomerization

domain containing 2 (NOD2), another pattern recognition

receptor, also promotes AMP expression (Figure 2). In Caco-2

cells and the ileum of Crohn’s disease patients, NOD2 disruption

decreases the gene expression of a-defensin, but not that of

lysozyme (82, 83). However, the secretion of lysozyme is affected

by NOD2. Lysozyme sorting is a lysozyme-specific process

facilitating its secretion (84). After sensing intestinal bacteria,

NOD2 promotes lysozyme sorting by recruiting LRRK2, RAB2A,

and RIP2 (84, 85). HD5 overexpressing in NOD2-knockout mice

can effectively enhance the bactericidal activity and reduce the

susceptibility to Helicobacter hepaticus infection (86).

PC degranulation is a key event mediating AMP secretion,

which can be induced by cholinergic agonists, bacteria, bacterial cell

surface antigens, and cytokines such as IL-17, IL-22 and interferon

(IFN)-g (64, 66, 87, 88). Notably, in the intestinal organoids, PC

degranulation can be induced by apical exposure (via

microinjection) of lipopolysaccharide (LPS) or Salmonella

typhimurium, but not by LPS in culture media (87). PC

degranulation is usually accompanied by the increased cytosolic

Ca2+ level (66, 89). After degranulation, PCs rapidly replenish their

granules in response to subsequent stimulation (87).
FIGURE 2

The AMP expression and secretion stimulated by the intestinal
bacteria in Paneth cells. Paneth cells can sense the intestinal
bacteria through pattern recognition receptors TLR and NOD2. TLR/
MyD88 signaling and TLR/TRIF signaling activate the expression and
release of AMPs such as CRP-ductin, REG3g, and REG3b. Bacterium-
stimulated NOD2 activation in Paneth cells contributes to the
expression of a-defensins. The synthesis and packing of AMPs are
respectively mediated by ER and TGN in Paneth cells. NOD2 also
promotes lysozyme sorting, thus facilitating the release of lysozyme.
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ISC niche support

As mentioned above, PCs are derived from ISCs through

multiple regulation. Actually, PCs also serve as a supporter in ISC

niche. Using individual leucine rich repeat containing G protein-

coupled receptor 5 (Lgr5) stem cells, Sato et al. (34) established the

small intestinal organoids containing PCs but not mesenchymal

niche. The close physiological relationship between PCs and ISCs is

demonstrated by co-culturing PCs and Lgr5 stem cells. The

existence of PCs significantly enhances the formation efficiency of

organoids (90). In vivo study has indicated that PC loss leads to a

decrease in the expression of ISC marker olfactomedin 4 (Olfm4)

(29). The fact that colonic organoid establishment requires the

supplementation of Wnt3a into medium further confirms ISC-

supporting role of PCs (91). cKit, as a tyrosine kinase receptor,

labels PCs rather than ISCs in the small intestine (92). A subset of

colonic goblet cells marked by cKit are adjacent to Lgr5 stem cells.

Blocking Notch signaling induces the increase in cKit+ cell number

in colon of mice, which is consistent with the above-mentioned

observation of PCs in ileum (92). The co-culture of cKit+ cells and

colonic Lgr5 stem cells promotes organoid formation ex vivo,

suggesting a similar ISC-supporting role of cKit+ cells in colon

(92). Stem cell factor (SCF), a ligand of cKit, is highly expressed in

the small intestinal crypts under DSS treatment, and after the

activation of SCF/cKit signaling in PCs, the co-culture of PCs and

ISCs further enhances ISC functions (93). Numerous studies have

demonstrated that IL-22 also improves ISC functions in both mice

and organoids (94). IL-22Ra1 signaling in PCs is required for

organoid growth under IL-22 treatment, suggesting that the

beneficial effect of IL-22 on ISCs depends on PCs (33). In

contrast, a recent study of the optimized human intestinal

organoids has shown that IL-22 inhibits the growth of human

intestinal organoids and boosts PC number and functions (95),

which indicates that IL-22 signaling should be cautiously controlled.

These findings imply that PCs facilitate the function of ISCs under

both homeostasis and injury conditions.
Frontiers in Immunology 06
The ISC niche is comprised of epithelial niche and

mesenchymal niche (2). Gene expression profiling reveals that

epithelial niche characterized by PCs provides Wnt3, Dll4,

epidermal growth factor (EGF), TGF-a, and R-spondin1 for ISC

niche (90). Notably, the ISC-supporting role of PCs might be

different in murine and human since the first emergence of PCs

in murine is at 7-10 day after birth and that in human is before

birth. The formation of intestinal organoids at the absence of

mesenchymal niche highlights the importance of epithelial niche.

Pericryptal stromal cells are major sources of Wnt2b, Wnt5a, EGF,

and R-spondin3 in mesenchymal niche, and enteric glia cells secrete

proEGF (EGF precursor form) to promote the intestinal

regeneration (Figure 3) (96–100).

ISC markers Lgr5 and Ascl2 are target genes of Wnt signaling

(101, 102). The transfer of Wnt signaling needs direct contact

between PCs and ISCs through the membrane receptors

composed of frizzled protein and low-density lipoprotein

receptor-related protein 5/6 (LRP5/6) (103). The aged PCs exhibit

the weakened ISC-supporting role due to the deficient Wnt3 supply

(104) and the excessive release of Notum (105), an extracellular

Wnt inhibitor. Although both PCs and mesenchymal components

provide Wnt ligands, the two sources of Wnt signalings are

redundant for ISC functions (106). Wnt3 deficiency has no effect

on ISC maintenance in mice, but Wnt3 is required for organoid

formation, implying a compensatory role of mesenchymal niche for

ISC functions (106). In addition, the disruption of Wnt ligands

secreted by PCs and myofibroblasts had no influence on ISC

functions, suggesting the complexity of the ISC regulation (107).

As an enhancer of Wnt signaling, R-spondin directly acts on Lgr5 to

boost Wnt signaling activity, and it is necessary for Wnt ligand-

mediated ISC maintenance (108). R-spondin3 has a more powerful

effect on Wnt activation and organoid growth than R-

spondin1 (98).

In addition to Wnt signaling, Notch signaling also plays a

positive role in ISC niche. Notch inactivation leads to a reduction

in Lgr5 stem cell number and Olfm4 expression level (a Notch-
FIGURE 3

Paneth cell functions under intestinal homeostasis. Paneth cells maintain the stabilization of crypt microenvironment via efferocytosis of apoptotic
cells (i), antimicrobial peptide secretion (ii), stem cell support by releasing growth factors (iii) or metabolites (iv). In addition to Paneth cells,
pericryptal stromal cells are another important source of growth factors.
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regulated gene, another ISC marker) (42, 46). Notch ligands are

transferred only to adjacent cells via cell-cell contact, and the

transfer condition of Notch ligands is more strict than that of

Wnt ligands (2). The expression of Dll4 is confirmed in PCs,

whereas that of Dll1 is still under controversy. Mice with lacZ

inserted at the Dll1 locus exhibit b-galactosidase expression in the

small intestinal lysozyme positive cells (45). By contrast, Dll1/

lysozyme double fluorescent staining reveals that there is no Dll1

expression in lysozyme positive cells (109). In addition, high-level

radical fringe proteins in PCs can increase Notch ligands on PC

surface, thus elevating the number of adjacent Lgr5 stem cells (110).

These findings further confirm that PCs promote ISC maintenance

via Notch signaling. Notably, after PC ablation, enteroendocrine

and tuft cells emerge at crypt bottoms, thus promoting ISC

stabilization by providing Notch ligands, suggesting the flexibility

of intestinal epithelium for ISC maintenance (111).

EGF signaling is responsible for regulating cell proliferation

rather than ISC maintenance through EGF receptor (EGFR) highly

expressed in ISCs (112). In ISC niche, EGF is secreted by PCs,

enteric glia cells, and pericryptal stromal cells (via extracellular

vesicles) (90, 96, 100). EGFR deletion leads to cell-cycle exit by

disturbing MAPK/ERK signaling in organoids (113). Apart from

MAPK/ERK signaling, PI3K/AKT signaling (a downstream

signaling of EGFR) is also down-regulated after EGFR inhibition

(113), but its role in ISC support requires further investigation.

However, EGF signaling must be controlled discreetly, since

ablation of leucine rich repeats and immunoglobulin like domains

1 (Lrig1), an ISC marker and negative regulator of EGFR, induces

ISC expansion or even duodenal adenomas and superficially

invasive carcinomas in mice (112, 114).

The ISC-supporting role of PCs is also achieved by metabolic

regulation (Figure 3). Calorie restriction inhibits the activity of

mammalian target of rapamycin complex 1 (mTORC1) to induce

the expression of bone stromal antigen 1 (Bst1) converting NAD+

into cyclic ADP ribose (cADPR) in PCs (115). Once released, PC-

derived cADPR paracrinically acts on ISCs and dramatically enhances

their functions (115). A subsequent study has reported that calorie

restriction-induced cADPR in PCs activates AMPK-Nampt-Sirt1 axis

in ISCs to deacetylate S6K1, thus enhancing phosphorylation of S6K1

by mTORC1, eventually boosting ISC functions (116). Surprisingly,

aging eliminates the calorie restriction-induced expansion of ISCs,

which is associated with decreased number of PCs (117). In PCs,

glycolysis provides lactate for ISCs, and the latter converts lactate into

pyruvate, thus triggering mitochondrial oxidative phosphorylation

(OXPHOS). OXPHOS-derived reactive oxygen species (ROS)

facilitates p38 phosphorylation, thereby enhancing ISC function

and differentiation (118). These studies emphasize the metabolic

support effect of PCs on ISCs, and the metabolic interaction

between PCs and ISCs may be an interesting topic to be

further explored.
Crypt microenvironment stabilization

It is generally accepted that the intestinal crypt is a sterile

microenvironment. The intestinal epithelium is covered with a
Frontiers in Immunology 07
chemical layer mainly consisting of mucus (from goblet cells) and

AMPs (primarily from PCs) (1). Although mucus is penetrable to

bacteria, mucus in combination with AMPs maintains the sterility of

intestinal crypts (119), suggesting the importance of PCs for crypt

microenvironment stabilization. PC disruption potentially results in

bacterial colonization in crypts or even bacterial penetration into

mucosa in the intestine. Gene ablation such as X-linked inhibitor of

apoptosis protein (XIAP), autophagy-related gene 7 (ATG7), and

caspase-8 leads to the loss and abnormality of PCs as well as

subsequent bacterial colonization in crypts (39, 120–123). Under

the condition of unimpaired intestinal epithelium, PC disruption

exacerbates the bacterial translocation to mesenteric lymph nodes

(MLN) and other sites such spleen and liver (79, 124). These findings

suggest that crypts are in a contaminated state under PC disruption.

The bacterial colonization in crypts may trigger ISC apoptosis.

Chemotherapy such as 5-fluorouracil and doxorubicin (Dox)

treatments can induce intestinal bacterial translocation and the

apoptosis of PCs and ISCs in mice (125). Antimicrobial

administration rescues Dox-induced ISC loss (126), implying that

sterile crypts protect ISCs from excessive apoptosis. Based on these

findings, it could be speculated that PC disruption-mediated

bacterial colonization in crypts might bring about ISC apoptosis

and loss. This speculation is confirmed by one report that ATG7

knockout causes PC dysfunction and bacterial colonization in

crypts, thus potentially inducing ISC apoptosis in mice, while

ATG7 knockout has no effect on organoid growth ex vivo (127).

Antimicrobial treatment prevents ISC loss in ATG7 knockout mice

(127), further demonstrating the indispensable role of PCs in crypt

microenvironment stabilization.

The intestinal epithelium possesses high turnover rate with a

large number of apoptotic cells rapidly supplemented to sustain

optimal barrier and absorptive functions (1). CD95, a member of

TNF receptor family, is expressed on the basolateral surface of

intestinal epithelial cells (IECs), and it can trigger cell apoptosis in

the intestine (128). PCs secrete CD95 ligand to drive apoptosis of

IECs, suggesting the potential role of PCs in regulating epithelial

integrity (129). The apoptotic cells at villus tip are shed into the

intestinal lumen (130), and other apoptotic cells on the intestinal

epithelium are engulfed by efficient phagocytes (macrophages and

dendritic cells) and inefficient phagocytes (IECs) (131, 132). The

accumulation of excessive apoptotic cells engenders a pro-

inflammatory microenvironment (133, 134). Recently, an

unanticipated phagocytic role of PCs has been reported (Figure 3)

(21). PCs mediate the uptake of neighboring apoptotic cells in vivo

and ex vivo, and PC deletion leads to apoptotic cell increase and

efferocytosis disappearance in crypts under homeostasis and

irradiation conditions (21), suggesting a novel apoptotic cell

phagocytic function by PCs, which needs to be further explored.
End of PC life: Death
and dedifferentiation

PCs possess prolonged lifespan, relative to enterocytes, and they

undergo spontaneous cell death in the small intestinal crypts

(Figure 4) (135). After approximately one-month hard work, PCs
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end their lives via apoptosis which represents an immunologically

silent form of programmed cell death (PCD), as demonstrated by

the abundant expression of pro-apoptotic protein ARTS (apoptosis-

related protein in the TGF-b signaling pathway) in PCs (136). ARTS
deficiency prevents apoptosis of PCs and increases the number of

PCs (136). In addition, PC apoptosis can be accelerated in some

cases. Gene ablation of XIAP and XBP1 (X-box-binding protein 1)

and ischemia-reperfusion cause apoptotic PC loss (39, 124, 137). PC

disruption in DTX-treated PC-DTR mice leads to robust apoptosis

of PCs (24). However, dithizone selectively induces the

degeneration to destroy PCs without triggering inflammation (22).

Considering that PCs possess a prolonged lifespan in the

intestine, autophagy is essential for the removal of the broken

organelles and redundant proteins from PCs (9). g-irradiation and

starvation treatments significantly activate autophagy of PCs and up-

regulate the expression of LC3 II (138–140). ATG family proteins

play an important role in PC autophagy. The abnormality of ATG

family proteins such as autophagy related 16 like 1 (ATG16L1) and

ATG7 leads to the defects in AMPs expression in PCs frommice and

Crohn’s disease patients (31, 141, 142).
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Necroptosis is a pro-inflammatory type of PCD, accompanied

by the release of immuno-stimulating DAMPs (damage-associated

molecular patterns) such as mtDNA and ATP (143). In addition to

apoptosis, necroptosis frequently occurs in PCs under

inflammatory conditions. PCs from human and mouse exhibit an

abundance of receptor-interacting protein 3 (RIP3), a key regulator

of necroptosis, which renders PCs susceptible to necroptosis (120).

Crohn’s disease and mouse intestinal inflammation are closely

associated with strong necroptosis of PCs (120, 144), and PC

necroptosis is further associated with gene ablation and cytokines.

Caspase-8 deletion leads to necroptotic PC loss (120). ATG16L1

deficiency-induced disruption of mitochondrial homeostasis

triggers PC necroptosis in response to TNF-a challenge (145). In

addition, pro-inflammatory cytokine IFN-l induces PC necroptosis

via caspase-8/mixed lineage kinase domain-like (MLKL) signaling

(146). The elevated level of IFN-g induced by Toxoplasma gondii

infection results in PC death which is mTORC1-dependent and

different from canonical PCD (147). Necroptotic PC loss can be

rescued by RIP3 knockout or Necrostatin-1 (an inhibitor of

necroptosis) administration (39, 148). Whether PC necroptosis is

associated with the intestinal inflammation still remains to be

further investigated.

Pyroptosis, another form of PCD, may also occur during the

end of PC life. Pyroptosis is mediated by caspase-1 protease

promoting IL-1b maturation (143). The expression of IL-1b is

much higher in PCs than in lamina propria under intestinal

homeostasis (149). The activation of caspase-1 and IL-1b as well

as the release of IL-1b are observed in PCs at day 7 post g-
irradiation, suggesting the potential pyroptosis in PCs (138). A

large amount of IL-1b is produced by PCs before the type i IFN

response, thus impairing epithelial barrier in early simian

immunodeficiency virus (SIV) infection (149). It should be noted

that the expression of NLRP3, a key component of NLRP3

inflammasome facilitating pyroptosis, is increased in PCs from

SARS-CoV-2-infected rhesus macaques (150). More research

needs to be conducted so as to understand the importance of PC

pyroptosis in the intestine.

As mentioned above, PCs are differentiated from ISCs through a

series of lineage commitments, and PCs can dedifferentiate into

multipotent stem cells in some injury cases (Figure 4). In the DSS-

induced intestinal inflammation, the differentiated and post-mitotic

PCs dedifferentiate into stem-like cells, thus promoting tissue

regenerative response by activating the SCF/cKit signaling and its

downstream PI3K/Akt and Wnt signalings (93). The functions of

Notch signaling in PC maintenance has been discussed above, and

another function of Notch signaling in PCs is to facilitate PC

dedifferentiation. Notch signaling activation drives Defa4-labelled

PCs to dedifferentiate into ISCs, which benefits the intestinal

regeneration in Dox-induced injury model (151). Irradiation

activates Notch signaling to endow PCs with stem cell features

(152). Surprisingly, the intact intestinal organoids are established

based on the isolated PCs with stem cell features, implying the

plasticity of dedifferentiated PCs (152). These findings suggest that

the end of PC life is a complicated process which is affected by

many factors.
FIGURE 4

The end of Paneth cell life. Paneth cells dedifferentiate into stem-
like cells by activating SCF/c-Kit signaling or Notch signaling in
response to the intestinal injury, which facilitates intestinal
proliferation and repair. Aging or ARTS-expressing Paneth cells
undergo apoptosis under the intestinal homeostasis. XBP1 and XIAP
have opposite effects on apoptosis of Paneth cells. Paneth cells can
remove the damaged organelles and proteins by autophagy, which
contributes to the maintenance of cellular homeostasis. ATG
proteins, g-irradiation, and starvation are associated with the
activation of autophagy in Paneth cells. The necroptosis of Paneth
cells is frequently observed in the inflamed small intestine. The
necroptosis of Paneth cells is promoted by highly expressed RIP3
and MLKL and pro-inflammatory cytokine IFN-l, and it is inhibited
by caspase-8 and ATG16L1. Multiple factors such as high IL-1b
expression in Paneth cells, g-irradiation, SIV infection, and SARS-
CoV-2 infection may trigger the pyroptosis of Paneth cells. In
Toxoplasma gondii infection, IFN-g induces mTORC1-dependent
death of Paneth cells.
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Conclusion

With the increasing attention to the multiple functions of PCs, a

brief summary of materials and methods used for PC study is badly

needed. PCs are devoted to maintaining the intestinal homeostasis

during their entire lives. PC, a long-lived intestinal epithelial cell, is

differentiated from adjacent Lgr5 positive ISCs, and it migrates

downward to the bottom of crypts after maturation. The presence of

abundant granules in the cytoplasm is the most striking

feature of PCs, which is used to identify the presence of PCs in

the intestine. Although it has been 150 years (1872–2022) since the

first identification of PCs, the multiple functions of PCs in the

intestine are not completely understood. In recent years, the novel

functions of PCs have been continuously reported. In the intestine,

PCs endow the intestinal crypts with sterile environment by

secreting AMPs, and they support ISC functions by providing

growth factors and metabolites. Apoptotic cells in crypts can be

promptly engulfed by PCs, thus preventing inflammation. At

the end of life, PCs undergo canonical PCD and heroic

dedifferentiation. Considering that PCs are located at the crypt

bottom above the lamina propria, it is worth exploring the influence

of pro-inflammatory PC death on the intestinal inflammation in

future work.
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