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Aseptic loosening (AL) is the most common complication of total joint

arthroplasty (TJA). Both local inflammatory response and subsequent

osteolysis around the prosthesis are the fundamental causes of disease

pathology. As the earliest change of cell behavior, polarizations of

macrophages play an essential role in the pathogenesis of AL, including

regulating inflammatory responses and related pathological bone remodeling.

The direction of macrophage polarization is closely dependent on the

microenvironment of the periprosthetic tissue. When the classically activated

macrophages (M1) are characterized by the augmented ability to produce

proinflammatory cytokines, the primary functions of alternatively activated

macrophages (M2) are related to inflammatory relief and tissue repair. Yet,

both M1 macrophages and M2 macrophages are involved in the occurrence

and development of AL, and a comprehensive understanding of polarized

behaviors and inducing factors would help in identifying specific therapies. In

recent years, studies have witnessed novel discoveries regarding the role of

macrophages in AL pathology, the shifts between polarized phenotype during

disease progression, as well as local mediators and signaling pathways

responsible for regulations in macrophages and subsequent osteoclasts (OCs).

In this review, we summarize recent progress on macrophage polarization and

related mechanisms during the development of AL and discuss new findings and

concepts in the context of existing work.
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1 Introduction

Total joint arthroplasty (TJA) is an extensive and successful surgical therapy, which has

been used in the treatment of severely traumatic or arthritic joint diseases. It helps in

relieving arthralgia, rebuilding locomotor function, and improving living quality (1). Even

so, the long-term survival of joint prosthesis reduces over time, which leads to implant

failure, reduced locomotor ability, and heavy financial burden.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1122057/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1122057/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1122057/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1122057&domain=pdf&date_stamp=2023-03-08
mailto:liziqing@sdfmu.edu.cn
mailto:sunshui@sdfmu.edu.cn
https://doi.org/10.3389/fimmu.2023.1122057
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1122057
https://www.frontiersin.org/journals/immunology


Cong et al. 10.3389/fimmu.2023.1122057
The main reason for the failure of TJA is that the joint interface

continuously produces debris particles which induce a complex

inflammatory response and leads to osteolysis and aseptic loosening

(AL) (2–4). At present, the major pathogenesis of AL is the

production of wear debris due to the mechanical strength of

joints and biological interactions over time. On one hand, the

debris induces functional changes in macrophages and promotes

the release of cytokines to regulate the immune microenvironment

in the bone-implant interface. On the other hand, by further

affecting the bone remodeling process, the debris increases bone

resorption, eventually resulting in AL (3–6).

Macrophages, the major population of tissue-resident

mononuclear phagocytes, are a critical class of cells that have an

effect on bacterial recognition and elimination, as well as in the process

of innate and adaptive immunity (7). Macrophages have a variety of

functions, exhibiting different phenotypes based on practical conditions

and responding tomicroenvironmental signals. Twomajor phenotypes

of macrophages include classically activated macrophages (M1) and

alternatively activated macrophages (M2) (8–10). M1 macrophages

have proinflammatory properties and are involved in initiating and

maintaining the inflammatory state, whereas M2 macrophages have

anti-inflammatory properties and take part in tissue homeostasis and

repair (8–13).

During the development of inflammation, the polarized state of

macrophage is in a dynamic equilibrium. In this regard, macrophages

can distinctively adapt to the microenvironment, respectively (9). For

example, the increased count of proinflammatory M1 macrophages

induced by pathological stimulus leads to periprosthetic osteolysis,

whereas anti-inflammatory M2 is favorable to shape an

immunomodulatory environment towards osseointegration (14, 15).

Therefore, it is essential to figure out the polarization of macrophages

and associated regulatory mechanisms during the pathogenesis of AL.

At present, the understanding of macrophages is still limited to

some extent. For the past few years, advancing awareness of the

impact of macrophage polarization on the pathogenesis of AL has

been recognized. This article reviewed interactions between the

various receptors, ligands, signal transductions, and other factors

related to functional changes of macrophage around the prosthesis.

In addition, it cited the research conclusions and reviews regarding

other macrophage-related inflammatory regulations, and also

emphasized the importance of the functional changes and

regulatory mechanisms of macrophages in the bone-implant

interface microenvironment.
2 Overview of aseptic loosening

2.1 Clinical features

Harris et al. (16) described a phenomenon of extensive bone

resorption leading to loosening without infection in four patients

after receiving hip arthroplasty surgery, and this is the first detailed

description of AL (16). In definition, AL can be generally described

as a failure of the fixation of one or more prosthetic components

without any infection (17). It may probably originate from

inadequate initial fixation, mechanical loss of fixation over time,
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or biological loss of fixation, all of which are the leading causes of

particles-induced osteolysis around the prosthesis (4, 17). Joint pain

is the typical symptom of patients with AL, which always become

worse when the affected joint carries out physical activity or bears

weight. Impaired gait and restricted range of motion are often

discovered in the physical exam of these patients (17).

As one of the major reasons for the failure of artificial joint

implants, AL is the main cause of revision surgery (18–20). Due to

the high complication rate, the requirement for complex

technology, and the heavy economic burden brought by revision

surgery (18), extensive studies have focused on the pathogenesis of

AL in order to develop diagnostic and therapeutic avenues with

more sensitivity and efficacy. The majority of published works

reported that AL is mainly caused by wear particles-induced

periprosthetic osteolysis (PPOL) (2–4).
2.2 Pathogenesis

Loosening of the prosthesis is a very complex process, involving

many mechanical and biological aspects (21, 22). The main

biological factor is the biological response of cells to a variety of

wear particles (21), for example, wear particles can promote

macrophage polarization to M1, and release proinflammatory

cytokines and chemokines (23, 24). These cellular responses and

subsequent activities are determined by many factors, such as the

physical and chemical properties of the material, including the size,

morphology, and composition of the material (23, 25–29).

Moreover, the presence of endotoxin can also affect these cellular

responses and activities (30–32). From the aspects of the disease

host, patient-related risk factors, such as age, sex, obesity, smoking,

and genetic variation, also play a role in AL pathogenesis (33–38).

However, comorbidities affect the occurrence of AL even larger.

Patients with hemophilia are reported to have a higher risk of AL

(39). Elevated inflammatory activity will increase the risk of

loosening after TJA in patients with rheumatoid arthritis (RA),

thus the indication of arthroplasty for RA patients should be more

strictly controlled (40).
2.3 Pathological feature

The chronic inflammation at the bone-implant interface,

accompanied by osteolytic destruction in the surrounding bone, is

the major pathological feature of AL (5, 6, 41, 42). Based on

histopathological findings, there are numerous infiltrating CD68-

positive mononuclear/macrophages, foreign body giant cells

(sometimes organized as foreign body granulomas), and wear

particles in the periprosthetic connective tissue (42, 43). Scattered

fibroblasts and T cells can be observed in the surrounding area of

infiltrating macrophage (42). In addition, endotoxin contamination

is also present around the prosthesis (44, 45). Regarding the

cytokines, there is a significant increase in the expression of

proinflammatory factors in the tissue, including interleukin-1b
(IL-1b), IL-2, IL-8, interferon-g (IFN-g), and tumor necrosis

factor-a (TNF-a) (41). It was found that in the mice skull
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implanted with titanium (Ti) particles, macrophages polarized into

M1 macrophages in the early phase of the inflammatory responses,

and partial tissue restoration was observed in the resolution of

inflammation after 6 to 8 weeks (46). However, long-term chronic

inflammation eventually leads to osteolytic destruction (6). Studies

on the various polarization phenotypes of macrophages may help in

further explaining the pathogenesis of AL.
3 Overview of macrophages in aseptic
loosening

3.1 Origin of macrophages and
wear particles

Monocytes/macrophages original ly come from the

hematopoietic stem cell (HSC) in the bone marrow and

subsequently enter the peripheral blood. In responding to the

local inflammation, circulating monocytes leave the bloodstream

and mobilize into the local tissues. Upon stimulation by several

growth factors, proinflammatory cytokines, or microbial products,

circulating monocytes further differentiate into macrophages (11,

12). In addition to that, resident tissue macrophages recruited from

the bone marrow are necessary drivers of inflammatory and tissue

regenerative responses (47). The initial recruitment of

inflammatory cells results from chemotactic factors produced by

macrophages (48). When circulating macrophage or monocyte

recruitment or activation is disrupted, the early inflammatory

response is often diminished (49). Conclusively, the number of

tissue-resident macrophages can increase exponentially, including

locally proliferating macrophages and monocytes recruited from

the bone marrow (50–52).

Due to the detection of ultra-high molecular weight

polyethylene (UHMWPE) and various kinds of high-density

material debris in tissue samples from patients, submicron-sized

wear particles are usually considered potential causes of AL

pathogenesis (53). During disease progress, macrophages play a

crucial role in recognizing wear particles and releasing a large

number of proinflammatory cytokines and chemokines, such as

IL-1b, TNF-a, IL-6 (15, 23, 24, 26, 54–58). Diverse cytokines

individually modulate the function of cells located at the interface

between the prosthesis and the surrounding bone, and collectively

affect other cells through diverse signaling mechanisms, ultimately

leading to particles-induced inflammatory osteolysis. Detailed

interactions between cytokines and cells are to be reviewed in

section 4.
3.2 PAMPs and subclinical infection

Common pathogen-associated molecular patterns (PAMPs)

include lipopolysaccharide (LPS) and lipoteichoic acid (LTA). LPS

is a typical endotoxin and a major component of the outer cell wall

of Gram-negative bacteria, whereas LTA is a cell wall polymer

discovered in Gram-positive bacteria (59, 60). PAMPs regulate
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macrophage polarization through toll-like receptors (TLRs) and

further promote the release of cytokines (61–63).

Previous studies have reported that some active bacteria or its

structural components could be found in the tissues surrounding

the loosened implant, even in the absence of any clinical or

microbial evidence of infection (44, 45). In fact, subclinical

infection is difficult to identify, and the probable cause of this is

the growth pattern of biofilm. By firmly anchoring to the surface of

the implanted prosthesis, biofilm may have protected inside

microorganisms that are being infected from elimination,

therefore it is reasonable to suspect these bacterial biofilms

anchoring on the surface of the loosened implant as the latent

source of endotoxin (45, 64). In addition, PAMPs may also originate

from bacterial colonies residing in the gastrointestinal tract, the oral

cavity, or even the wounds in the skin, where these bacteria and

PAMPs are occasionally transferred to the circulating blood, in turn

reaching the implant (65, 66). Evidenced by an in vivo experiment

based on mouse balloon models, endotoxin in blood circulation

could adhere to Ti particles and consequently induce macrophage

aggregation (67).
3.3 Functional changes of macrophages

Macrophages are activated and alter their functions to defend

against infections and present antigens to other immune cells,

thereby regulating the immune responses (Figure 1) (68).
3.3.1 Proinflammatory and
anti-inflammatory functions

Macrophages amplify the inflammatory process by releasing

proinflammatory factors to remove pathogens or other foreign

bodies (9, 47). During tissue injury, the local cells which are

infected by pathogens and undergo necrosis or pyroptosis could

release PAMPs or damage-associated molecular patterns (DAMPs)

that activate inflammatory signaling in macrophages and other

resident cell populations. Activated cells recruit neutrophils,

monocytes, and other inflammation-related cells into the tissue by

a release series of cytokines. Once the acute injury is under control,

macrophages supply nutrition to the tissues where they are located

by decomposing remnants and secreting growth factors and

mediators, exerting their function effectively in inhibiting

inflammation (47). Some macrophages, characterized by

producing of growth factors, including platelet-derived growth

factor (PDGF), insulin-like growth factor 1 (IGF-1), and vascular

endothelial growth factor-a (VEGF-a), are associated with tissue

repair and help in promoting cell proliferation and vascular

development and thus alleviating local hypoxia that occurs after

injury (47). They also produce soluble mediators, such as

transforming growth factor-b1 (TGF-b1) that induce local and

recruited fibroblasts to differentiate into myofibroblasts, thereby

synthesizing extracellular matrix components and promoting

wound closure (69). In the final phase of tissue repairment,

monocytes and macrophages present an anti-inflammatory

phenotype (47, 70). It was found that these macrophages
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responded to inhibitory mediators such as IL-10 in the local

microenvironment, eventually leading to relieving inflammation

(71, 72).

Phagocytosis mainly belongs to the function of M1

macrophages, which goes along with the proinflammatory

process, although M2 macrophages also demonstrate a weak

function in phagocytosis (73, 74). Stimulated by the serum from

Behçet’s disease (BD) patients, monocyte-derived macrophages

(MDMs) could differentiate into M1 macrophages with enhanced

phagocytic capacity (75). Subsequently, M1 macrophages display an

enhanced capacity for the elimination of pathogens, which largely

results from their increased production of superoxide, NO, and

their derivatives (76). M2 MDMs also demonstrate the ability to

phagocytose escherichia coli and cancer cells. Further research

found that the phagocytosis in M2 macrophages mainly owes to

their surface markers, such as CD14, CD206, and CD163 (77).

However, compared with M0 and M2 macrophages, LPS-treated

M1 macrophages exhibited an obviously higher ability for

phagocytic activity (78).

3.3.2 Autophagy
Both autophagy and phagocytosis in macrophages are

lysosomal-dependent catabolic processes, by which cells can

engulf and deliver cargo to the lysosomes for digestion via

forming transient vesicular structures (autophagosome and

phagosome) (79). Acting as scavenger cells, macrophages could

phagocytize cellular debris, invading pathogens, and other

apoptotic cells (80, 81). Phagocytizing dead cells in macrophages

contribute to diverse immune and inflammatory signals that could

also trigger intracellular autophagy in macrophages (82, 83). Other

studies have revealed more relations between autophagy and

phagocytosis. Autophagy promotes phagocytosis and the

clearance of pathogens via the NOD-like receptor family pyrin

domain containing 3 (NLRP3) inflammasome in macrophages (84).

As a novel function for autophagy proteins, the LC3-associated

phagocytosis pathway (LAP) is closely associated with phagocytosis

in macrophages, which exerts its role in blocking proinflammatory

signals upon phagocytosis of dying cells and preventing the
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presentation of autoantigen to other cells (85, 86). Interestingly,

autophagy-deficient macrophages may boost phagocytosis through

increased scavenger receptor expression (87).

Regarding the functional changes in activated macrophages,

vitamin D could restore anti-inflammatory M2 macrophages in an

autophagy-dependent manner (88). Similarly, ubiquitin-specific

protease 19 (USP19) could inhibit inflammatory responses and

promote M2 polarization by increasing autophagy flux (89).

Controversially, another study reported that inhibition of

autophagy could drive macrophages to the M2 phenotype (90). In

AL, a recent study revealed that by activating LAP, aluminum oxide

nanoscale particles (Al-n) attenuated the macrophage M1

polarization and inhibited the secretion of inflammatory factors,

leading to the prevention of the AL pathogenesis induced by

particles in vivo (26). Although autophagy has been shown to be

involved in the regulation of macrophage polarization, evidence

regarding the regulatory mechanisms is underdeveloped.

3.3.3 Apoptosis
Apoptosis is the sequential death of cells via the mechanisms

called programmed cell death (PCD) (91), which is characterized by

morphological changes in the cellular structures together with a

series of enzyme-dependent biochemical processing (92). In the

resolution phase of inflammation, the infiltrating leukocytes execute

the acute innate response and undergo apoptosis, subsequently

cleared by phagocytic macrophages. In this course, macrophages

undergo reprogramming from inflammatory to anti-inflammatory,

leading to the relief of inflammation (93).

Efficient clearance of early apoptotic cells requires macrophages

polarizing into the M2c phenotype (94). The capacity of M2

macrophages to uptake apoptotic cells depends on several

necessary molecules, such as Mer tyrosine kinase, Axl receptor

tyrosine kinase, growth arrest-specific 6 (Gas-6) (94, 95). In

addition, the macrophage itself could also undergo apoptosis

induced by wear particles (96). Consequently, the increase in

macrophage apoptosis limits the proinflammatory function of

macrophages (97, 98), seemly to be another important

mechanism regarding the delayed inflammatory response in AL.
FIGURE 1

Origin and functional changes of macrophages. The number of tissue-resident macrophages can increase exponentially, including locally proliferating
macrophages and monocytes recruited from the circulating peripheral blood. Stimulated by various factors, such as cytokines, PAMPs, and wear
particles, the macrophages with different origins could be activated and further polarize into M1 or M2 phenotype. According to cellular phenotypes,
activated macrophages show diverse functions, including phagocytosis, autophagy, apoptosis, and pyroptosis, to defend against infections and present
antigens to other immune cells, thereby regulating the immune responses. IFN, interferon; IL, interleukin; M1, classically activated macrophages; M2,
alternatively activated macrophages; PAMPs, pathogen-associated molecular patterns; TNF-a, tumor necrosis factor-alpha.
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The caspase-3, a key mediator related to apoptosis, was detected in

periprosthetic tissues in a mouse osteolysis model induced by

UHMWPE particles (99, 100). Furthermore, apoptosis is

associated with phenotypic changes in macrophages .

Transcription factor Zhx2 deficiency could enrich the expression

of M2 phenotype markers and as well promote the apoptosis of

macrophages (101). Likewise, through the inhibition of M2-specific

gene expression and apoptotic cell death, Delta-like-ligand 4

(DLL4) may prevent macrophage from polarizing into the M2

phenotype (102).

3.3.4 Pyroptosis
Different from apoptosis, pyroptosis is a proinflammatory type

of PCD mediated by the gasdermin family, which usually leads to

cell swelling and rapid rupture of plasma membranes, as well as the

release of immunogenic cell contents, thereby exaggerating

inflammatory status (103). In the aspect of the immune response,

pyroptosis induced by the activation of pattern recognition

receptors (PRRs) can stimulate inflammatory responses,

independent of its effect in promoting cytokine induction (104).

Pyroptosis is undoubtedly related to macrophage polarization. On

one hand, by secreting exosomal cathepsin S, M1 macrophages

induce pyroptosis in pancreatic acinar cells via the caspase1-

mediated classical pyrolysis pathway, resulting in inflammation

and pancreatic tissue damage (105). On the other hand, exosomal

Mir-30D-5p of polymorphonuclear neutrophils (PMNs) is reported

to induce M1 polarization by upregulating TNF-a, IL-1b, IL-6 and
triggering pyroptosis in macrophages, leading to sepsis-associated

acute lung injury (106).

Moreover, some mutual signals could mediate both M1

polarization and pyroptosis in macrophage, such as the caspase-1/

GSDMD signaling pathway (107) and METTL3/MALAT1/PTBP1/

USP8/TAK1 axis (108). The overexpression of brain and muscle

Arnt-like protein 1 (BMAL1) also reduces the production of

inflammasomes and pyroptosis in macrophages, as well as

decreases the proportion of M1 phenotype via the TLR2/NF-kB
pathway (109). A recent study has found that macrophages can

activate the NLRP3 inflammasome and initiate subsequent

pyroptosis to affect AL pathogenesis in mice model of cobalt-

chromium-molybdenum (CoCrMo) alloy particles-induced

osteolysis (110). As a result, wear particles not only induce M1

polarization and production of proinflammatory cytokines, but also

boost inflammation by increasing pyroptosis in macrophages and

inducing local tissue impairment.
3.4 Bone remodeling and
osteoclastogenesis

Bone remodeling is a dynamic and balanced process maintained

by osteoblasts (OBs) and osteoclasts (OCs), which is deeply affected

by the receptor activator of nuclear factor NF-kB ligand/

osteoprotegerin (RANKL/OPG) ratio. Disruption of this

homeostasis leads to severe skeletal disorders (111). OBs are a

type of bone-forming cells that are derived from bone marrow
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mesenchymal stem cells (BMSCs) and could respond to anabolic

factors, such as bone morphogenic proteins (BMPs) (112). On the

other hand, OCs are the unique cells known to absorb bone at or

near the bone surface, which originate from bone marrow-derived

monocytes/macrophages (BMMs) (113, 114).

Osteoclastogenesis is a complex process involving events of

proliferation, differentiation, cell fusion, and multinucleation (111).

The primary osteoclastogenic factor is RANKL which triggers a

complex network of signaling pathways including NF-kB and

mitogen-activated protein kinases (MAPK), via the receptor

RANK on OC progenitors. By further activating the nuclear

factor of activated T cells c1 (NFATc1), the master transcriptional

factor of osteoclastogenesis, the fate of OC progenitors is decided by

the controlling of key osteoclastogenic genes, such as tartrate-

resistant acid phosphatase (TRAP) and cathepsin K (CTSK)

(113–115). Calcineurin, a powerful mediator of transcriptional

activity of NFATc1, is regulated by cytosolic calcium (Ca2+)

downstream of the TEC kinases and phospholipase Cg (PLCg), all
of which are governed by both RANK and immunoreceptor

tyrosine-based activation motif (ITAM)-based signaling. In

addition, sustained intracellular Ca2+ oscillations are required for

OC formation and functions, which will be introduced in the

following section 5.5.3 (116). On the opposite side, OPG, as a

decoy receptor, blocks RANKL binding to its cellular receptor

RANK. An active OC is a highly polarized cell with a distinctive

cytoskeletal organization and has the ability to create the sealing

zone which is a site of tight membrane apposition to the bone

surface, thereby executing its function as a bone-resorbing

machine (116).
4 Polarization and phenotype
of macrophages

Two major phenotypes of macrophages in response to

environmental stimuli are M1 and M2. Usually, the phenotype of

macrophages can be transformed by reprogramming (117, 118).

Moreover, a recent study based on a spectrum of activated human

macrophages revealed that there are continuous intermediate

phenotypes between two opposite terminal phenotypes (119).

Under such background, researchers use the term “polarization”

to define the preference pattern of gene expression and protein

synthesis in macrophages after different stimuli (120). “Naive” M0

macrophages, the prototype of M1 and M2 macrophages, are

characterized by the expression of CD11b and F4/80, and emerge

from committed myeloid progenitors in the presence of

macrophage colony-stimulating factor (M-CSF). Although lacking

the expression of antigen-presenting molecules (MHC-II) and co-

stimulatory molecules (B7), M0 macrophages could readily

phagocytose cellular debris or pathogens (78, 121).

The polarization to M1 macrophages has two main inducible

sources, either microbial products or the cytokines secreted by TH1

lymphocytes. By recognizing pathogens and presenting antigens to

T lymphocytes, M1 macrophages play a critical role in triggering

adaptive immunity in the body. During immunization, M1
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macrophages produce high amounts of proinflammatory factors

(IL-1 b, IL-6, TNF-a, IL-12, and IL-23, among others), which in

turn promote Th1 proinflammatory response (8, 10, 12, 122, 123).

In contrast, M2 macrophages are mainly responsible for

inflammatory relief and tissular repairs. Discovered in the early

1990s, the polarization to M2 macrophages is related to IL-4, IL-10,

or IL-13 which are produced by innate and adaptive immune cells,

such as mast cells, basophils, and Th2 lymphocytes (9, 122–124). By

producing multiple growth factors and cytokines, such as TGF-b,
IGF-1, PDGF, VEGF, IL-8, and endothelial growth factor (EGF),

M2 macrophages are aided in the suppression of local inflammation

and thus beneficial for tissue repairs (8, 10, 12, 122).
4.1 M1 macrophage in AL

4.1.1 Stimulus from wear particles and endotoxin
In the bone-implant interface, macrophage polarized to the M1

phenotype is mainly stimulated by wear particles and endotoxin

(55). Upon continuous stimulation, M1 macrophages cause tissue

damage by strengthening local inflammation via the secretion of

TNF-a, IL-1b, IL-6, and IL-8 and the reduction of IL-10 expression

(15, 23, 24, 26, 54–58). Besides, other cytokines such as IFN-b (15)

and various chemokines, including chemokine (C-X-C motif)

ligand 9 (CXCL9), CXCL10, and CXCL11 (56) secreted by M1

macrophages also play a role in AL pathogenesis. These biological

reactions are largely affected by the size and type of wear particles

(23, 26). Endotoxin also contributes to macrophage differentiation

into the M1 phenotype by stimulating TLRs on the cell surface.

Particles with PAMPs adhering, such as LTA and LPS, could induce

more production of the proinflammatory cytokine than those

without endotoxin (30, 32). On the contrary, the removal of

endotoxins from particles significantly reduces the cellular activity

of macrophages (30) and inhibits OC differentiation (31).

4.1.2 Surface receptor and DAMPs
It is well-established that both polyethylene (PE) and Ti

particles can promote the expression of TLRs and various

proinflammatory factors in macrophages (43, 125). A recent in

vivo experiment also confirmed that alloy particles could induce

significantly higher numbers of TLR-1, -4, and -6 positive cells in

the synovial layer of joints (126). In the downstream of TLRs,

NLRP3, ASC, caspase-1, and TNF-a and IL-1b were found to be

positive through the colocalization with CD68 in the tissues around

the revised prosthesis (43). The NF-kB, MAPK, and TAK1

pathways are involved in mediating signaling transduction

downstream of TLRs (61–63, 127–129). In addition to TLRs,

macrophages can engulf PMMA debris through macrophage

receptors with collagenous structure (MARCO), which is a key

pathogenic factor in promoting the phagocytosis of polymethyl

methacrylate (PMMA) debris in aging macrophages (130).

As the main alternative hypothesis to PAMPs, DAMPs also

activate TLRs during AL. The term “DAMPs” refer to self-

molecules released by dying or damaged cells, which are defined

as endogenous danger molecules due to they could activate the
Frontiers in Immunology 06
innate immune system by interacting with pattern recognition

receptors (PRRs) (131). DAMPs are recognized by various

membrane-bound receptors, including PRRs and non-PRRs, and

also by intracellular sensors, notably through inflammasome (132,

133). Through binding to specific receptors, DAMPs activate the

inflammatory process and recruit immune cells like neutrophils and

monocytes. Therefore, after the clearance of DAMPs, the recruited

leukocytes will change from a proinflammatory into a reparative

program (133). Cobalt alloy particles could induce macrophage-

associated inflammatory responses and bone loss through DAMPs

rather than activated TLR4, due to the partially absent of metal-

binding histidines in TLR4 (134). However, it has also been thought

that the DAMPs generated in response to particles are insufficient to

activate TLR2 or TLR4 in these cells (32).

Although DAMPs contribute to the host’s immune defense,

they also promote pathological inflammatory responses. The

DAMPs, such as high-mobility group box 1 (HMGB1), S100

proteins, and heat shock proteins (HSPs), are commonly known

as regulatory molecules of inflammatory responses (131). HMGB1

is an ancient DNA-binding nucleoprotein. It can be passively

released from dying cells or actively secreted by monocytes,

macrophages, and myeloid dendritic cells (135, 136). HMGB1

could induce M1 polarization via TLR2, TLR4, and RAGE/NF

−kB signaling pathways, leading to LPS−induced acute lung injury

(124), meanwhile, it significantly yielded the expression of the M1

marker inducible nitric oxide synthase (iNOS) while decreasing the

M2 marker IL-10 in macrophages (137). In vitro, HMGB1 silencing

down-regulated the secretion of inflammatory cytokines in

macrophages, which cannot be reversed by the exogenous

HMGB1 (138). Interestingly, HMGB1 could also trigger M2

macrophage polarization via the TLR2/NOX2/autophagy axis

(139). In the same aspect, loss of HMGB1 in macrophages can

increase the differentiation of proinflammatory macrophages and

enhance inflammatory response under specific conditions, not the

otherwise (140). In this regard, HMGB1 may induce distinct

macrophage phenotypes probably due to different redox isoforms

(141). Besides HMGB1, the expression level of several members of

HSPs is closely related to distinct stages of polarization in

macrophages (142). Compared with unpolarized macrophages, a

significant up-regulation of members of the HSP70 family (HSPA2

and HSPA8), as well as the HSP90 family (HSP90AA1) can be

observed in M1 macrophages. On the other hand, changes in HSP

expression were also observed in macrophages during the M2

polarization, although with only five transcripts being

significantly modulated. Among them, DNAJB5, HSPA13,

HSPBAP1 were upregulated, whereas HSPH1 and HSPB1 were

down-regulated (142).

4.1.3 Particles-induced inflammation
conduce to osteolysis

Recent studies have found that Ti, CoCrMo particles, and LPS

could strongly induce inflammatory responses in macrophages,

significantly increasing the production of TNF-a and IL-1b,
rising RANKL/OPG ratio, and enhancing the OC activity (143–

146). The current paradigm holds the view that the induction of OC
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differentiation by inflammatory cytokines is indirectly yielded

under RANKL stimulation (147). Proinflammatory cytokines,

such as IL-1b, TNF-a, IL-6, soluble IL-6 receptor, and IL-17,

could all increase the production of RANKL from OBs. The

effects of proinflammatory cytokines could be balanced by anti-

inflammatory cytokines, such as IL-4 and IL-13, which could inhibit

RANKL expression (147). In addition, a variety of wear particles

could conduce to osteolysis via elevating M1 polarization (15, 24,

57, 58), since M1 macrophages are an important source of TNF-a
production (11).

Although the concrete mechanism of TNF-a on OC

differentiation is not fully understood, TNF-a signals promote OC

differentiation by upregulating several proinflammatory target genes

through the activation and nuclear translocation of NF-kB. One such
target is RANK, which increases OC activity by mediating RANKL

signaling (148). Interestingly, TNF-a produced by LPS/TLR4 signals

can regulate OC generation in LPS-treated macrophages through the

activation of RANKL signaling, whereas TNF-a in a RAW264.7 cells-

based experiment demonstrates it may act as an autocrine/paracrine

factor in promoting osteoclastogenesis, independent of RANKL

signaling (149). In addition, the co-culture experiments of

macrophages and MSCs (or OBs) revealed that PE and Ti particles

could inhibit OB function, meanwhile promoting M1 polarization

and osteoclastogenesis (150–152), proposing another mechanism for

inflammation-induced osteolysis.
4.2 M2 macrophage in AL

4.2.1 Subtypes of M2 macrophage
The classical M1/M2 system was based on experiments in vitro

with different stimulation approaches. Subsequent studies revealed

that the process of macrophage activation and polarization is much

more complex and needed an additional subdivision of the M2

population (153). As a result, the M2 macrophages is further

classified into four subtypes: alternative activated macrophages

(M2a), type 2 macrophages (M2b), deactivated macrophages

(M2c), and M2-like macrophages (M2d) (154). Among them,

applied stimuli and the achieved transcriptional changes

correspond to particular subtypes: 1) M2a macrophage induced

by IL-4 or IL-13 is a profibrotic phenotype, 2) M2b macrophage is

stimulated by immune complexes combined with Toll-like receptor

or IL-1 receptor agonists, and 3) M2c macrophage is exposure to IL-

10, TGF-b, or glucocorticoids, 4) M2d, activated by adenosines or

IL-6 (154, 155). For the pathological study, although M2a/c

macrophage is found to be beneficial in early inflammatory

stages, they have been uncovered to impair tissue remodeling

(156). Similarly, M2b macrophages have been thought to be

relieving immune responses with minor damage to local

tissue (157).

4.2.2 M2 macrophage conduces to
inflammatory relief

M2 macrophage has the effect of alleviating inflammation

induced by wear particles, through increased expression of IL-10
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and decreasing expression of IL-6 and TNF-a (24, 57, 58). In the

presence of large amounts of TLR2 ligands, the anti-inflammatory

activity of M2 macrophage is inhibited but without evident changes

in cell surface markers (158). On the contrary, inhibition of TLR4

caused a shift from inflammatory M1 macrophages toward M2-

dominant macrophages (159), suggesting that TLRs act as a switch

that plays a role in the regulation of inflammation. In the downstream

of TLRs, interleukin-1 receptor-associated kinase (IRAK) -m has

been identified as an inhibitor of TLR signaling (160). One study

found that knockdown of IRAK-m promoted M1 polarization and

inhibited M2 polarization during the mycobacterium tuberculosis

infection (161). But the discovery of IRAK-m-mediated local

immunosuppression in periprosthetic tissues hints that

macrophages have a self-protective mechanism, wherein the wear

debris-mediated stimulation is inhibited to prevent overproduction of

NK-kB-dependent proinflammatory cytokines and thus suppressing

the deleterious host response in AL (162). However, the drawback is

that the induction of IRAK-m overexpression triggered by wear

debris also appears to conduce to the inhibition of LPS-induced

TLR signaling, which leads to low-level biofilm-associated infection

and chronic inflammation (162). Therefore, activation of IRAK-m is

somehow affected by the local immune environment.

In addition, M2 polarization is regulated by cytokines in the

surrounding, especially IL-10 and IL-4. IL-10 is an important anti-

inflammatory cytokine (163). Recent studies have verified that IL-

10 treatment significantly reduces iNOS expression and promotes

CD163 overexpression, suggesting that IL-10 treatment could

reprogram bone marrow-derived macrophages (BMDMs) to an

M2 phenotype and regulate the process of M1/M2 polarization

(164). In vivo experiments revealed that the extra addition of IL-10

partially reversed the inhibitory effect of PE particles on bone

ingrowth (165). In the aspect of gene regulation, IL-10 not only

decreased the activation of signal transducer and activator of

transcription 1 (STAT1), NF-kB p65, and c-Jun N-terminal

kinase 1 (JNK1) genes but also increased the expression of

STAT3 (164). In addition to IL-10, IL-4 also has the ability to

switch the M1 phenotype induced by Ti particles into the M2

phenotype (55, 166). Compared with non-activated macrophages,

upon IL-4 stimulation, the shift from M1 to the anti-inflammatory

M2 phenotype is more thorough (55).

4.2.3 M2 Macrophage in bone remodeling
Macrophages stimulated by cytokines, such as IL-4 and IL-13,

have been confirmed to prevent the OC differentiation and inhibit

the function of mature OCs (11, 147). In addition, M2

macrophages may promote OB differentiation by producing

cytokines that are critical for osteogenesis, including BMP-2,

TGF-b , and IGF-1 (11, 167, 168). Also, by interacting

with MSCs, M2 macrophages create an anti-inflammatory

environment that is conducive to osseointegration (14). A recent

study revealed that preconditioning of murine MSCs with IFN-g
and IL-1b highly significant reduction of CD86 and iNOS protein

in macrophages under M1 inducers (LPS + IFN-g) and diminished

TNF-a secretion (169). Additionally, CD86 and iNOS protein

expression as well as NO and IL-10 secretion were markedly
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increased under M2a inducers (IL-4) (169). On the other hand,

under the stimulation of IL-4, reduced expression of CD86 and

iNOS, as well as increased secretion of nitric oxide (NO) and IL-10

could be discovered in macrophages (169). The secretion of IL-10

could be attributed to the phenotype of M2b macrophages which

are generally suggested to be the main subtype of macrophages for

inflammatory relief (170). In addition, macrophages stimulated by

a conditioned medium from preconditioned MSCs (pre-MSC-CM)

may display an overall increased phagocytic capacity (171, 172).

Also, M2a macrophages are found to undergo reprogramming to

an M2b/M2c phenotype after treatment with the pre-MSC-CM

(171, 172), indicating an influence of MSCs behavior on the

induction of macrophage polarization.
5 Regulatory mechanisms of
macrophages in AL

Several signaling pathways are involved in the process of

macrophage polarization (8, 173–179). Various ligands, receptors,

transcription factors, and other factors cooperate closely to ensure

the precise regulatory capacity of macrophages (8). New research

has found that several cytokines can influence M1/M2 polarization

through NF-kB, MAPK, and JAK/STAT pathways which are

involved in AL (55, 166, 180). Furthermore, depending on the

amounts and ratios, molecules in the microenvironment can

antagonize or synergistically act, thus in favor of certain
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macrophage phenotypes (181). Some regulatory mechanisms

related to macrophage polarization in the microenvironment of

the bone-implant interface are described below (Figure 2).
5.1 Toll-like receptors

5.1.1 Overview of toll-like receptors
TLRs have been intensively studied in innate immunity

regarding the recognition of PAMPs (182). It has been reported

that TLR2 or TLR4 can recruit MyD88 and further bind to the

IRAK to form a signal complex called Myddosome. The

Myddosome-complex recruits the ubiquitin ligase TNF receptor-

associated factor 6 (TRAF6), which triggers the TAK1 kinase

signaling cascade pathway and ultimately leads to NF-kB nuclear

translocation through the phosphorylation and activation of IkB
kinase a/b (IKKa/b) (63, 183, 184).
5.1.2 Toll-like receptors in
macrophage polarization

TLRs are closely related to macrophage polarization (63).

HMGB1 is an important mediator that induces M1 polarization

through the activation of absent in melanoma 2 (AIM2)

inflammasome, TLR2/4 and RAGE/NF-kB signaling pathways in

macrophages (124). In addition, LPS can activate downstream

TAK1, NF-kB, and MAPK signals through the TLR4/MyD88

pathway, which increases the expression of cyclooxygenase-2
FIGURE 2

Polarization-related signaling transduction in macrophages. The binding of growth factors or cytokines to their receptors activates STATs through
JAKs or PI3K/AKT pathway signaling. Activated TLRs and IL-1bR trigger downstream signaling, including the NF-kB and the MAPK signaling pathways.
Several transcription factors, such as AP-1, STATs, and p65, are regulated by the upstream signaling pathways and further promote the assembly of
NLRP3 inflammasome. Then, the activated NLRP3 inflammasome promotes the maturation of pro-IL-1b and pro-IL-18. ASC, apoptosis-associated
speck-like protein containing a CARD; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; IRAK, Interleukin-1 receptor-associated kinase; LTA,
lipoteichoic acid; MyD88, myeloid differentiation primary response protein 88; NLRP3 NOD-like receptor family pyrin domain containing 3; PAMPs,
pathogen-associated molecular patterns; RTK, Receptor Tyrosine Kinases; STATs, signal transducers and activators of transcription; TLR, toll-like
receptor; TNF-a, tumor necrosis factor-alpha; TRIF, TIR-domain-containing adapter-inducing interferon-beta.
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(COX-2) and iNOS, promotes M1 polarization and leads to the up-

regulated expression of cytokines TNF-a, IL-1b, IL-6, and PGE2

(61, 63). The particles with LTA adhering could increase the

expression of proinflammatory factors by the activation of TLR2/

NF-kB andMAPK pathways (32, 185). Previous studies have shown

that a variety of TLRs, such as TLR2, which participate in local

inflammatory and immune responses, are present in periprosthetic

tissues after the revision of total hip arthroplasty (rTHA) (43).

5.1.3 NLRP3 inflammasome
NLRP3 inflammasome widely exists in macrophages,

granulocytes, antigen-presenting cells (APC), and other immune

cells. It consists of the NLRP3 (sensor protein), ASC (adapter

protein), and caspase-1 (186). The initiation of NLRP3

inflammasome could be induced by multiple inflammatory

stimuli, such as PAMPs. As the core protein of the NLRP3

inflammasome complex, NLRP3 senses endogenous DAMPs and

microbial ligands. The production of ROS, low level of intracellular

potassium (K+), and the release of lysosomal protease into the

cytoplasm are all upstream mechanisms that trigger the activation

of NLRP3 inflammasome in several conditions (187–189). NLRP3

inflammasome which is activated by pathologically stimulated

macrophages could regulate the production of IL-18, IL-1b, and
cleavage of caspase-1 (186, 188, 189).

On the other hand, studies have also found that NLRP3

inflammasome participates in macrophage polarization (89, 175,

190, 191). In a co-culture experiment, force-pre-treated human

periodontal ligament cells (hPDLCs) promote M1 polarization and

increase the secretion of IL-1b in macrophages via the activation of

NLRP3 inflammasome (191). On the contrary, by inhibiting the

activation of NLRP3 inflammasome, metformin induces M2

polarization in macrophages and promotes wound healing in rat

dorsal skin (175). Moreover, USP19 could directly promote M2

polarization by suppressing the activation of NLRP3 inflammasome

to interferon regulatory factor-4 (IRF-4) (89). Bruton’s tyrosine

kinase (BTK) is a key factor in TLR4-related pathways, which could

activate NF-kB signaling and promote p65 phosphorylation, ASC

oligomerization, and caspase-1 activation (192). It has been recently

found that BTK could promote TiAl6V4 alloy particles (TiPs)-

induced inflammation in BMDMs by positively regulating NF-kB
activation, NLRP3 inflammasome formation, and M1 polarization

(193). On the contrary, NLRP3 silencing attenuates the promotive

effect of conditioned exosomes on M1 polarization in a particles-

induced osteolysis model (194).

5.1.4 Syk
Syk is a key component of TLRs in recognizing PAMPs and

activating immune responses (195–199). Moreover, Syk plays a

critical role in LPS-induced M1 polarization (200). In monocytes,

pharmacological inhibition of Syk prevents LPS-induced TLR4

phosphorylation (199), suggesting that Syk may be involved in

tyrosine phosphorylation of the TIR domain in TLR4. Recently,

PMMA and HA particles were confirmed to augment the

expression of CD86, and secretion of cytokines, such as TNF-a
and IL-6, in a Syk- and MAPK-dependent (phosphorylation of ERK
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and p38) manner (56). Also, Syk is reported to be closely associated

with the NLRP3 inflammasome-mediated proinflammatory

cytokine release (201). In addition, Syk could control NLRP3

activation and IL-1b synthesis in macrophages in response to

fungal infections (202).
5.2 NF-kB Signaling Pathway

5.2.1 Overview of NF-kB signaling
In the resting state, NF-kB dimers are sequestered in the

cytoplasm in an inactive state by the IkB family of proteins,

including IkBa, IkBb, IkBϵ, and the NF-kB precursors, p105 and

p100. The IkB kinase (IKK) complex consists of kinases IKKa,
IKKb, and IKKg. Upon receiving the activation signals, IkB protein

is phosphorylated by IKK complexes, leading to proteasomal

degradation of IkB. The released NF-kB dimers are then

translocating into the nucleus, where they can bind to specific

sites on DNA to regulate gene transcription (75).

5.2.2 NF-kB signaling in macrophage polarization
LPS-induced M1 polarization is dependent on NF-kB p65

activation, and the treatment with IKKb inhibitors reduces the

mRNA expression of M1 markers in macrophages (203). Therefore,

IKK inhibitors reduce LPS-induced expressions of IL-1, IL-6, IL-10,

TNF-a, and IFN (204). Recent studies have revealed that diverse

wear particles (e.g., Ti, TiPs, HA, PE, PMMA) could induce the

macrophage to release proinflammatory cytokines and chemokines,

which are accomplished by the activation of NF-kB signaling

pathways and associated macrophage polarization (15, 26, 54,

205). Qiu et al. found that stimulation of LPS or Ti particles

could up-regulate p-IKKb, p-IkBa, and p-p65 and significantly

increase the translocation of p65 into the nucleus in BMDMs.

Meanwhile, these particles-induced inflammatory infiltrations

increase the number of OCs (TRAP-positive cells) and thereby

decrease bone mineral density, eventually leading to PPOL (15).

Similarly, Gao et al. found that PMMA particles could up-regulate

iNOS and decrease the production of Arginase-1 (Arg-1) and IL-10

by the activation of p65 nuclear translocation in macrophages (54).

5.2.3 NF-kB signaling in osteoclastogenesis
Under the same settings, NF-kB can be activated by RANKL or

LPS to augment particles-induced bone loss via the enhancement of

osteoclastogenesis (206, 207). Upstream stimuli-triggered NF-kB
signaling could act on transcription factors (c-fos and NFATc1) and

regulate the expression of osteoclastogenesis-related genes, thus

promoting OC differentiation and functions (206, 208, 209).
5.3 MAPK signaling pathway

5.3.1 Overview of MAPK signaling
The MAPK signaling pathway takes part in cell differentiation,

proliferation, and apoptosis (210). MAPK pathways are organized

into three-tiered cascades consisting of three factors: MAPK,
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MAPK kinase, and MAPKK kinase. During the phosphorelay

process, MAPKKKs which are serine/threonine protein kinases,

phosphorylate and activate MAPKKs, and then dually

phosphorylate the threonine and tyrosine residues of the

conserved TXY motif that belongs to the activation loop of

MAPKs, including extracellular signal-regulated kinase (ERK),

JNK, and p38 (210, 211).

5.3.2 MAPK signaling in macrophage polarization
MAPK signaling pathway is closely associated with macrophage

polarization (61, 212–214). The activation of the MAPK signaling

pathway promotes polarization of M1 macrophages, expression of

iNOS, and down-regulation of CD206, thereby mediating the

secretion of cytokines, such as TNF-a, IL-1b, and IL-6 (214). On

the other hand, inhibiting the phosphorylation of JNK, ERK, and

p38 in MAPK pathways may switch repolarized M1 to

reprogrammed M2 phenotype (213, 214). Studies elucidate that

the MAPK signaling pathway is located downstream of TLRs,

wherein LPS could activate the MAPK pathway through TLR4/

MyD88 pathway to induce M1 polarization and participate in the

inflammatory response (61, 62, 215). Further, PMMA and

hydroxyapatite (HA) particles are reported to result in M1

polarization by increasing phosphorylation of ERK and p38 (56).

Similar to NF-kB signaling, MAPK also mediates wear particles-

induced OC differentiation and the following osteolysis (206).
5.4 JAK/STAT Signaling Pathway

5.4.1 Overview of JAK/STAT signaling
STAT proteins are potent cytoplasmic transcription factors

wherein several family members have participated in macrophage

polarization and OC formation, including STAT1, STAT3, and

STAT6 (216, 217). Growing studies reveal the involvement of the

JAK/STAT pathway in regulating multiple biological events, such as

innate and adaptive immunity, cell growth and differentiation, and

programmed cell death (217). In the aspect of functioning,

phosphorylated STATs promote monomeric dimerization

through their SH2 domains and further translocation into the

nucleus, where STATs regulate the transcription of target genes

(216, 217).

5.4.2 JAK/STAT signaling in
macrophage polarization

Several studies have revealed the mediating role of STATs in

macrophage polarization. PARP14 silencing or RBM4 knockdown

can promote IFN-g-induced signaling transduction via STAT1

activation, which leads to M1 polarization in macrophages (218,

219). Also, STAT1/6 pathway mediates M1/M2 polarization in

macrophages after physal in D stimulat ion (220). By

phosphorylating STAT6, protocatechuic acid (PCA) decreases the

activation of NF-kB signaling and gives a bias towards M2

polarization over M1 polarization in macrophages (173).

Conclusively, an obvious antagonism between STAT1 and STAT6

has been described to promote M1 and M2 cell polarization,
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respectively (220). In addition, the activation of JAK/STAT3

signaling facilitates macrophage transformation to M2c

polarization (180). In an AL mouse model, compared with the

pure stimulation of UHMWPE particles, the extra addition of IL-10

significantly decreases iNOS-positive cells and increases CD163-

positive cells via reducing the transcription of STAT1, NF-kB p65,

and JNK1, and promoting the expression of STAT6 (164).

5.4.3 JAK/STAT signaling in osteoclastogenesis
Compared with STAT1 and STAT6, STAT3 is closely related to

osteoclastogenesis. Therefore, inhibition of STAT3 can negatively

affect RANKL-mediated OC formation and functions (221). An in

vivo experiment demonstrated that treatment with TiPs pellet could

promote the expression of STAT3 and production of RANKL in

OBs, thereby stimulating OCs formation in particles-induced

osteolysis models, whereas the activation of STAT3 also mediates

nano-particles-induced IL-6-dependent inflammatory response in

OBs (222).
5.5 Calcium (Ca2+) signaling

5.5.1 Overview of Ca2+ signaling
The centration of Ca2+ in the cytoplasm ([Ca2+]c) is 20, 000 times

lower than that outside the cell. This is achieved by the Ca2+-related

transportation and exchange under the dependence on specific

proteins. When activated by a variety of external stimuli, cells

respond by an increase in the [Ca2+]c and trigger downstream

signaling, in the form of Ca2+ spikes or oscillations (223). Ca2+

signaling participates in various biological processes, resulting from a

complex switch between the activation and inactivation of Ca2+-

permeable channels (224). The excitability of Ca2+ signaling is

determined by intracellular Ca2+ oscillations, which are attributed

by the extracellular Ca2+ influx, the effect of ITAM/PLCg/IP3
signaling on the release of Ca2+ from ER, and the capacity of

collecting Ca2+ from the cytosol by SERCA. In addition, depending

on the depletion of ER Ca2+ storage, extracellular Ca2+ entry could

also be accomplished by the activation of STIM-mediated TRPC

channels and Orai1 channels, which is the so-called SOCE

mechanism (225, 226) (Figure 3).

5.5.2 Ca2+ signaling in macrophage polarization
Ca2+ signaling is related to behavior changes in macrophages,

such as polarization and phagocytosis, largely depending on Ca2+

uptake in mitochondria (227). Many studies have implicated that

distinct Ca2+ entry channels determine the IFN-induced M1

polarization or IL-4-induced M2 polarization. Naive or M2

macrophages exhibit a robust Ca2+ entry that is dependent on the

activity of Orai1 channels (228). As a result, blockade of Ca2+ entry

inhibits NF-kB/STAT1 or STAT6 signaling events and

consequently lowers cytokine production that is essential for M1

or M2 polarization in macrophages (228). In detail, Ca2+ influx

facilitates M1 polarization, enabling the high productivity of

proinflammatory mediators, such as cytokines and chemokines

(229). Transient receptor canonical ion channel 1 (TRPC1)-
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mediated calcium entry seems to play a crucial role in M1

polarization, due to a non-selective TRPC1 current is found in

macrophages with M1 phenotype (228, 230). Therefore,

knockdown or blockade of the Kir2.1 channel significantly

suppresses M1 polarization and promotes M2 polarization (231).

Of note, a study found that transient receptor potential vanilloid 1

(TRPV1)-induced Ca2+ influx could promote the phosphorylation

of Ca2+/calmodulin-dependent protein kinase II (CaMKII), but

leads to the inhibition of M1 polarization (232), bringing

uncertainty in elucidating regulatory mechanism between Ca2+

signaling and macrophage polarization.

5.5.3 Ca2+ signaling in osteoclastogenesis
Except for macrophage polarization, Ca2+ oscillations are the well-

known mechanism in triggering RANKL-induced osteoclastogenesis

and bone resorption (233, 234). The increase in the [Ca2+]c is a

fundamental process for mediating OC biology, involving in OC

proliferation, differentiation, and resorptive function. At the molecular

level, cytosolic Ca2+ binds to calmodulin and subsequently activates

calcineurin, leading to the activation of NFATc1 which is required for

OC differentiation (235). Therefore, by blocking the Ca2+ entry

channels, inhibition of the activity of Ca2+/calmodulin‐dependent

protein kinase IV (CaMKIV) and calcineurin will lead to a
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reduction in the nuclear translocation of c-Fos and NFATc1,

ultimately resulting in the suppression of osteoclastogenesis (236).

Similarly, directly interfering with intracellular Ca2+ oscillations would

also have the same negative impact on osteoclastogenesis (237). More

content associated with Ca2+ oscillations in OC biology has been

reviewed in the article by Okada H, et al. (234).
6 Future directions

Functional changes of macrophages reflect the intricate and

constant regulation of the local environment by the network of cells

and cytokines. While macrophage phenotypes have been roughly

classified into representative M1 and M2 subtypes, investigating the

concrete mechanism for the shift between proinflammatory

phenotype and anti-inflammatory state is still challenging,

especially in identifying responsible genes and proteins. In this

regard, Ca2+ signaling based on different stimuli shows bidirectional

effects on both macrophage polarization and osteoclast activation,

which may be worth further investigation. While it seems clear that

the behavior changes of macrophages, such as phagocytosis,

pyroptosis, and apoptosis, are closely related to AL pathology, the

triggered conditions and signaling events involved have not been
FIGURE 3

RANKL and calcium (Ca2+) signaling in macrophage polarization and osteoclastogenesis. The transcriptional factors responsible for macrophage
polarization and osteoclastogenesis are regulated by the NF-kB and MAPK signaling pathways, as well as the Ca2+ signaling pathways. The
excitability of Ca2+ signaling is determined by intracellular Ca2+ oscillations, which are attributed by the extracellular Ca2+ influx, the effect of ITAM/
PLCg/IP3 signaling on the release of Ca2+ from ER, and the capacity of collecting Ca2+ from the cytosol by SERCA. In addition, depending on the
depletion of ER Ca2+ storage, extracellular Ca2+ entry could also be accomplished by the activation of STIM-mediated TRPC channels and Orai1
channels, which is the so-called SOCE mechanism. Ca2+, calcium ions; DAP12, DNAX-activation protein of 12 kDa; ER, endoplasmic reticulum; FcRg,
Fc receptor gamma-chain; IP3, inositol 1,4,5-trisphosphate; IP3R, inositol 1,4,5-trisphosphate receptor; ITAM, immunoreceptor tyrosine-based
activation motif; MAPK, mitogen-activated protein kinases; NFATc1, nuclear factor of activated T cells c1; PLCg, phospholipase C-gamma; RANK,
receptor activator of nuclear factor-kappa B; RANKL, receptor activator of nuclear factor-kappa B ligand; SERCA, Sarco/endoplasmic reticulum Ca(2
+)-ATPase; SOCE, store-operated Ca2+ entry; STATs, signal transducers and activators of transcription; STIM, stromal interaction molecule; TRAF6,
tumor necrosis factor receptor-associated factor 6; TRPC channels, transient receptor potential canonical channels.
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fully elucidated. While PAMPs and DAMPs contribute to the

response of macrophages to wear particles via TLRs, the main

reason for the associated activation of TLRs is still controversial.

Likewise, DAMPs affect macrophage programming is also unclear.

Therefore, the role of PAMPs and DAMPs in AL still needs to be

further elucidated. In addition, the local environment in

periprosthetic tissue is complex due to the diversity of involved

immune cells, such as dendritic cells and lymphocytes, thus

highlighting the importance of intercellular communications via

different signals. To address unresolved issues, applying CRISPR/

Cas9 technology which enables accurate and efficient genome

editing, would help in effectively elucidating the underlying

mechanisms of macrophages in AL (238).

For the therapeutic strategy of AL, we believe the relief of

inflammation and inhibition of bone resorption are keys to success.

Through an in-depth study into the mechanisms of interaction

between cytokines and macrophages, we may instruct a more

accurate regulation of the inflammatory process in order to

maintain a balance between immune defense and tissue homeostasis.
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macrophage activation and polarization. Postepy higieny i medycyny doswiadczalnej
(2015) 69:496–502. doi: 10.5604/17322693.1150133

9. Murray PJ. Macrophage polarization. Annu Rev Physiol (2017) 79:541–66. doi:
10.1146/annurev-physiol-022516-034339

10. Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage
polarization in autoimmunity. Immunology (2018) 154(2):186–95. doi: 10.1111/
imm.12910

11. Muñoz J, Akhavan NS, Mullins AP, Arjmandi BH. Macrophage polarization and
osteoporosis: A review. Nutrients (2020) 12(10). doi: 10.3390/nu12102999
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