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Serum cytokine change profile
associated with HBsAg loss
during combination therapy with
PEG-IFN-a in NAs-suppressed
chronic hepatitis B patients

Wen-Xin Wang1†, Rui Jia2†, Xue-Yuan Jin1, Xiaoyan Li1,3,
Shuang-Nan Zhou1, Xiao-Ning Zhang1, Chun-Bao Zhou1,
Fu-Sheng Wang1,3* and Junliang Fu1,3*

1Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital,
Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases,
Beijing, China, 2Department of Gastroenterology, The 985th Hospital of Joint Logistic Support Force of
Chinese PLA, Taiyuan, China, 3Medical School of Chinese PLA, Beijing, China
Objective: The aim of this study was to explore the profile of cytokine changes

during the combination therapy with pegylated interferon alpha (PEG-IFN-a) and
its relationship with HBsAg loss in nucleos(t)ide analogs (NAs)-suppressed chronic

hepatitis B patients.

Methods: Seventy-six patients with chronic hepatitis B with HBsAg less than 1,500

IU/ml and HBV DNA negative after receiving ≥ 1-year NAs therapy were enrolled.

Eighteen patients continued to take NAs monotherapy (the NAs group), and 58

patients received combination therapy with NAs and PEG-IFN-a (the Add-on

group). The levels of IFNG, IL1B, IL1RN, IL2, IL4, IL6, IL10, IL12A, IL17A, CCL2,

CCL3, CCL5, CXCL8, CXCL10, TNF, and CSF2 in peripheral blood during treatment

were detected.

Results: At week 48, 0.00% (0/18) in the NAs group and 25.86% (15/58) in the Add-

on group achieved HBsAg loss. During 48 weeks of combined treatment, there was

a transitory increase in the levels of ALT, IL1RN, IL2, and CCL2. Compared to the

NAs group, CXCL8 and CXCL10 in the Add-on group remain higher after rising, yet

CCL3 showed a continuously increasing trend. Mild and early increases in IL1B,

CCL3, IL17A, IL2, IL4, IL6, and CXCL8 were associated with HBsAg loss or decrease

>1 log, while sustained high levels of CCL5 and CXCL10 were associated with poor

responses to Add-on therapy at week 48.

Conclusions: The serum cytokine change profile is closely related to the response

to the combination therapy with PEG-IFN-a and NAs, and may help to reveal the

mechanism of functional cure and discover new immunological predictors and

new therapeutic targets.
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Introduction

Approximately 290 million people are chronically infected with

the hepatitis B virus (HBV) worldwide (1). More than 650,000

people die each year from end-stage liver disease associated with

HBV, including liver failure, cirrhosis, and hepatocellular

carcinoma (1–3). Achieving the functional cure, meaning both

HBV DNA and hepatitis B surface antigen (HBsAg) undetectable

(4–6), can significantly improve the disease progression of chronic

hepatitis B (CHB) and is considered the ideal endpoint for antiviral

treatment (4–7). Nucleos(t)ide analogs (NAs) and interferon (IFN)

are the main first-line agents for CHB, which can significantly

inhibit HBV replication. However, it is hard to achieve a

functional cure with either drug alone. Although many studies

have shown that sequential or combination therapy with the two

drugs can significantly improve the probability of functional cure in

some specific populations, it is still not satisfactory (8–12).

Therefore, it is particularly important to explore the mechanisms

behind HBsAg loss and to identify predictive markers to expand the

population suitable for treatment.

The development of HBV infection is mainly affected by the

host’s immune response. In acute infection, 95% of adult patients

showed an adequate immune response and eventually cleared the

virus. Otherwise, patients can become chronically infected when the

host immune response is inadequate or inappropriate (13, 14). As

important immune system components, cytokines may introduce

immune dysregulation or tolerance and be associated with

progression in CHB (15–18). Inflammatory cytokines, such as

IFN-a, CXCL8, CXCL9, and CXCL10, can induce inflammatory

immune cell recruitment and promote hepatocyte apoptosis in CHB

(15, 19–21). For instance, an elevated serum IFN-a and CXCL8

could promote NK-cell-mediated liver cell injury (20, 21), high

serum CXCL9 and CXCL10 levels were reported to correlate with

the development of hepatitis flares (20–22), IL-2 and IFN-g were

upregulated with high ALT levels (21). The changes of multiple

cytokines can more comprehensively and accurately reflect the

immune network in the liver to guide clinical treatment better.

It was also demonstrated that in the case of antiviral therapy,

changes in serum cytokines were related to the response to antiviral

therapy. Li M. et al. reported that an early rise in IFN-a2 levels during
pegylated interferon alpha (PEG-IFN-a) treatment was related to

functional cure in hepatitis B e antigen (HBeAg) positive CHB

patients (23, 24). In addition, CXCL10 has also shown a predictive

role in PEG-IFN-a treatment of chronic hepatitis C (25). Still, the

detailed relationship among virological and biochemical markers, and

cytokines behind different responses to anti-HBV treatment

remains unclear.

In this study, we investigated the dynamic changes of serum

cytokines levels during PEG-IFN-a add-on therapy in NAs-

suppressed CHB patients with HBsAg levels < 1,500 IU/ml, and
Abbreviations: Anti-HBs, antibody to hepatitis B surface antigen; CHB, chronic

hepatitis B; ETV, Entecavir; HBeAb, hepatitis B e antibody; HBV, hepatitis B virus;

HCC, hepatocellular carcinoma; HBeAg, hepatitis B e antigen; HBsAb, hepatitis B

surface antibody; HBsAg, hepatitis B surface antigen; IFN, interferon; NAs, nucleos

(t)ide analogs; PEG-IFN-a, pegylated-interferon-alpha; TDF, tenofovir

disoproxil fumarate;
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explored the relationships between the changes of cytokines, the

virological response, and the fluctuation of liver inflammation.
Materials and methods

Study population and design

This was an open-label, clinical controlled, observational study.

The CHB patients were recruited from the Fifth Medical Center of

Chinese PLA General Hospital. Subjects aged 18–65 years who had

taken NAs drugs for ≥ 1 year and achieved serum HBsAg levels <

1,500 IU/ml and HBV DNA < 20 IU/ml were eligible. Exclusion

criteria for recruited patients were co-infected with other hepatitis

viruses or human immunodeficiency virus; liver cirrhosis, liver

transplantation, or other liver diseases or severe systemic diseases;

and IFN, glucocorticoids, or other immunomodulatory therapy in

the six months before enrollment. Enrolled subjects were divided

into two groups (the NAs group and the Add-on group) according

to their choices after being informed of the benefits and risks of

PEG-IFN-a therapy. NAs group continued to receive entecavir

(ETV) or tenofovir disoproxil fumarate (TDF). The Add-on group

was treated with PEG-IFN-a-2b (180 mg once a week) in addition to

ETV or TDF. The primary outcome was HBsAg loss or decline > 1

log after 48 weeks of treatment. Patients were divided into three

subgroups according to the responses to 48 weeks of the

combination therapy. At week 48, patients who achieved HBsAg

loss were defined as complete responders (the CR group); patients

who achieved HBsAg decreased > 1 log from baseline but remained

positive were classified as partial responders (the PR group);

patients who achieved HBsAg decreased < 1 log from baseline and

still positive were defined as non-responders (the NR group). The

study protocol was approved by the Ethics Committee of the Fifth

Medical Center of Chinese PLA General Hospital.
Clinical and laboratory evaluation

Peripheral blood samples were collected from all enrolled

patients during the screening period. Samples were then

continuously collected after enrollment every 24 weeks (the NAs

group) or every 12 weeks (the Add-on group). Serological and

biochemical markers of HBV were routinely tested in the central

clinical laboratory. Serum HBV DNA levels were determined by

the COBAS AmpliPrep/COBAS TaqMan HBV Test (Roche

Molecular Systems, Inc, Branchburg, USA). The lower limit for

HBV DNA detection was 20 IU/ml. Serum HBsAg levels were

quantified by Elecsys HBsAg II quant II (Roche Diagnostics

GmbH, Mannheim, Germany). The lower limit for HBsAg

detection was 0.05 IU/ml. COBAS e602 (Roche Diagnostics

GmbH, Mannheim, Germany) was used to detect HBsAb,

HBeAg, and HBeAb levels. Serum levels of IFNG, IL1B, IL1RN,

IL2, IL4, IL6, IL10, IL12A, IL17A, CCL2, CCL3, CCL5, CXCL8,

CXCL10, TNF, and CSF2 were determined by flow-cytometer

using AIMPLEX kit (Aimplex Biosciences, Inc., Beijing, China)

according to the manufacturer’s instructions.
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Statistical analysis

SPSS version 25.0 and R version 4.1.2 were used for statistical

analyses. Search Tool for the Retrieval of Interacting Genes (STRING)

platforms was utilized for protein-protein interaction network (PPIN)

analysis (26). Median (quartiles) were reported for continuous

variables. The statistical significance of the difference between the

two groups was determined using the Mann–Whitney U test, while

among three groups using the Kruskal-Wallis H test. Categorical

variables were analyzed using the Chi-squared test. Spearman

correlation was adopted to determine the correlation between

continuous variables. In the bilateral test, P < 0.05 was considered

to have a statistical difference.
Results

Characteristics of enrolled patients

In this open-label, observational, clinical controlled study,

seventy-six patients were enrolled. The characteristics of patients

were shown in Table 1. At baseline, HBsAg levels were comparable

between the NAs and Add-on groups. At week 48, 0.00% (0/18) in the

NAs group and 25.86% (15/58) in the Add-on group achieved HBsAg

loss, respectively.

After 48 weeks of combination therapy, 15 patients with HBsAg

loss were assigned to the CR group, 9 patients with HBsAg decreased >

1 log from baseline but still positive were assigned to the PR group, and

34 patients with HBsAg decreased < 1 log from baseline and remain

positive were assigned to the NR group.
The dynamic change of HBsAg and ALT in
the NAs and Add-on groups

During 48 weeks of treatment, HBsAg levels declined significantly

in the Add-on group, barely dropping in the NAs group. ALT

increased more than twofold from baseline at week 12 in the Add-

on group and then gradually declined, but the ALT level was still
Frontiers in Immunology 03
higher than that of the NAs group. ALT in the NAs group was not

significantly increased (Figure 1).
The dynamic changes of cytokines induced
by PEG-IFN-a are different from those
of NAs

The levels of most cytokines, except IFNG and IL6, were lower in

the NAs group than in the Add-on group. During 48 weeks of

combined treatment, there was a transient spike in the levels of

IL1RN, IL2, and CCL2. Compared with the NAs group, CXCL8 and

CXCL10 in the Add-on group remain higher after rising, and yet

CCL3 showed a continuously increasing trend, and all were

significantly higher at week 24 and week 48. (Figure 1)
Mild and early increases in IL1B, CCL3, and
IL17A were associated with HBsAg loss or
decrease >1 log during combination therapy

In the Add-on group, ALT peaked at week 12 regardless of the

response. Non-responders had the highest ALT peak, with no

statistical difference, and then it continued to decline. ALT

decreased in the CR and PR groups and then showed a slight

upward trend at week 48 (Figure 2).

In the CR group, higher baseline levels of IFNG and an early

elevation of IL2, IL6, and CXCL8 were observed. The levels of IFNG

(week 0), IL2 (week 24), IL6 (week 12), and CXCL8 (week 12) in the

CR group were weakly higher than those in the PR and NR group,

though with no statistical difference (IFNG [week 0]: H=4.282,

P=0.118; IL2 [week 24]: H=1.255, P=0.534; IL6 [week 12]: H=0.233,

P=0.890; CXCL8 [week 12]: H=0.822, P=0.663). IL17A levels

increased significantly at week 12 in the CR group than in the PR

and NR groups (H=9.466, P=0.009). Typically, at week 12, the CR

group showed a transient increase in IL1B and CCL3. IL1B levels

increased more in the CR group than in the other patients (H=6.542,

P=0.038). At week 24, the PR group showed a transient increase in

IL1B and CCL3, with no significant difference. However, no visible
TABLE 1 Characteristics of the Enrolled Patients.

Indicators NAs group (n=18) Add-on group (n=58) P

Male/female, n 14/4 49/9 0.763

Age(years), median (quartiles) 38.0(34.0, 47.8) 38.5(32.0, 46.8) 0.859

Baseline HBsAg(log10IU/ml), median (quartiles) 2.79(2.28, 3.03) 2.59(1.97, 2.95) 0.328

Baseline HBeAg positive, n (%) 8(47.06) 17(30.91) 0.222

Baseline HBeAb positive, n (%) 7 (41.18) 23 (41.82) 0.963

Baseline ALT(U/L), median (quartiles) 19.5(13.0, 25.0) 22.0(17.8, 27.0) 0.409

Baseline AST(U/L), median (quartiles) 24.0(17.5, 27.3) 21.0(19.0, 24.0) 0.363

HBsAg loss at week 48, n (%) 0 (0) 15(25.86) 0.039
frontier
HBeAg/HBeAb data were not available for one patient in the NAs group, for three patients in the Add-on group.
Abbreviations: NAs, nucleos(t)ide analogs; Add-on, nucleos(t)ide analogs combined with pegylated-interferon-alpha; HBsAg, hepatitis B surface antigen; HBeAg, hepatitis B e antigen; HBeAb,
hepatitis B e antibody; ALT, alanine aminotransferase; AST, aspartate amino transferase.
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increase in CCL3 was observed in the NR group. Besides, there was an

increase in IL-4 in the CR group at week 12 (H=1.225, P=0.542).

In the NR group, the levels of CCL5 and CXCL10 remained high

after an obvious increase. At week 12, 24, and 48, the CCL5 level in NR

group was significantly higher than that in CR group and PR group

(week 12: H=6.361, P=0.042; week 24 H=6.409, P=0.041; week 48:

H=7.584, P=0.023). At week 12 and 36, CXCL10 levels increased

significantly in the NR group than in the CR and PR group (week

12: H=8.530, P=0.014; week 36: H=6.210, P=0.045).

Other cytokines, such as IL12A, IL10, TNF, CCL2, and CSF2,

showed similar trends regardless of the response to the

combination therapy.
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The correlations between the dynamic
changes of cytokines, HBsAg, and ALT
varied according to the response to
combination therapy

We analyzed the correlation between the dynamic changes of

cytokines with HBsAg and ALT. A PPIN was constructed among 16

cytokines involved by the STRING database (Supplementary

Figure 1A). Cytokines with statistically different expression levels

in CR, PR, and NR groups were used to reconstruct a PPIN and

included in the correlation analysis (Supplementary Figure 1B;

Figures 3A–C).
FIGURE 2

Dynamic changes of HBsAg, ALT, and cytokines of different response subgroups in the Add-on group. The line represents the mean and the bar
represents the standard error. #, significant differences in cytokine levels among the three subgroups, P<0.05; *significant differences in the amplitude of
cytokine change from baseline among the three subgroups, P<0.05. HBsAg, hepatitis B surface antigen; ALT, alanine aminotransferase; Add-on, nucleos
(t)ide analogs combined with pegylated interferon alpha therapy; complete responder, achieving HBsAg loss at week 48; partial responders: achieving
HBsAg decreased by > 1 log from baseline but HBsAg remains positive at week 48; non-responder, achieving HBsAg decreased by < 1 log from baseline
and HBsAg remain positive at week 48.
FIGURE 1

Dynamic changes of HBsAg, ALT and cytokines in the NAs group and Add-on group. The line represents the mean and the bar represents the standard
error. #, significant differences in cytokine levels between the two groups, P<0.05; *significant differences in the amplitude of cytokine change from
baseline between the two groups, P<0.05. HBsAg, hepatitis B surface antigen; ALT, alanine aminotransferase; NAs, nucleos(t)ide analogs; Add-on, NAs
combined with pegylated interferon alpha therapy.
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The presence of all cytokines in one cluster indicated a strong

interaction among each other cytokines. Existing databases and text

mining showed that most of the cytokines involved in this study had

co-expression relationships. There were laboratory-confirmed

interactions between IFNG and TNF, CXCL8 and CCL5 and CCL2,

IL2 and IL17A, and CXCL10 and CXCL5. There may be protein

homology between CCL5 and CCL3 (Supplementary Figures 1A–B).

The existing database showed that CXCL10 was co-expressed with

IL1B, CCL5, and CCL3. Text mining showed that CXCL10 and IL17A

were co-expressed. (Supplementary Figure 1B)

In the CR subgroup, the increases of IL1B, IL17A, and CCL3 were

positively correlated (P<0.05). No correlation existed between the

increases of other cytokines, HBsAg, and ALT (Figure 3A).

In the PR group, the increase of CCL5 was positively correlated

with the increase of CXCL10, and the increase of IL17A was also

positively correlated with CCL3 (P<0.05). There was no correlation

between the dynamics of other cytokines, HBsAg and ALT. Of note,

the increase in IL1B at week 48 was significantly inversely related to

the magnitude of the increase in CCL5 from baseline (r= - 0.867, P=

0.002) (Figure 3B).

In the NR group, the decline of HBsAg level was correlated

positively with the rise of IL1B and CXCL10 (P<0.05). The early
Frontiers in Immunology 05
elevation of ALT was correlated positively with the elevation of

CXCL10 (P<0.05). The increase of IL1B was correlated negatively

with the increase of CCL5 (P<0.05) and was correlated positively with

the increase of IL17A and CCL3 (P<0.05). In addition, the increase of

IL17A was correlated negatively with the increase of CCL5 and

positively correlated with the increase of CCL3 (P<0.05) (Figure 3C).
Discussion

CHB is an immune-related disease; immune cells and cytokines

play an essential part in disease progression. Several studies have

demonstrated that baseline quantitative HBsAg < 1,500 IU/ml can

effectively predict HBsAg loss after a finite course of IFN-based

therapy (27, 28). However, HBsAg alone as a predictor could not

fully predict the efficacy (15, 29) nor reflect the liver’s immune status

(30). Cytokines in serum can indirectly reflect intrahepatic immune

response and inflammation (10). Dynamic detection of multiple

cytokines can reflect the immune changes more thoroughly to

reveal the mechanism of antiviral therapy. However, the association

of cytokines with the response to antiviral treatment is yet to be

entirely clear. In this study, we found that the slight early increase of
B

C

A

FIGURE 3

Correlation between dynamic changes of HBsAg, ALT and cytokines in different response to the add-on therapy. (A) Correlation between dynamic
changes of HBsAg, ALT and cytokines in complete responders (B) Correlation between dynamic changes of HBsAg, ALT and cytokines in partial
responders (C) Correlation between dynamic changes of HBsAg, ALT and cytokines in non-responders. *P<0.05; **P<0.01. HBsAg, hepatitis B surface
antigen; ALT, alanine aminotransferase; Add-on, nucleos(t)ide analogs combined with peg-interferon alpha therapy; complete responder, achieving
HBsAg loss at week 48; partial responders: achieving HBsAg decreased by > 1 log from baseline but HBsAg remain positive at week 48; non-responder,
achieving HBsAg decreased by < 1 log from baseline and HBsAg remain positive at week 48.
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Th1 cytokine (IL2), Th2 cytokine (IL4), Th17 cytokine (IL17A and

IL6), and proinflammatory cytokines (IL1B, CCL3, and CXCL8) was

associated with HBsAg loss or decrease >1 log in the Add-on group,

and sustained high levels of proinflammatory chemokines (CCL5 and

CXCL10) were associated with poor response during combination

therapy of NAs and PEG-IFN-a.
The incidence of liver cirrhosis and hepatocellular carcinoma is

significantly reduced after HBsAg loss, which is the treatment goal of

CHB (4, 31, 32). An expert consensus recommends a 1log drop in

HBsAg in early treatment as an indication for continued PEG-IFN-a
therapy (27). Multiple studies have confirmed that a 1log drop in

HBsAg predicts functional cure (33–37). Therefore, we defined good

response and partial response as HBsAg loss and decreasing > 1

log, respectively.

In CHB, Th1/Th2 and Th17/Treg were in immune imbalance (30,

38, 39), and antiviral treatment partially restored immune cell

function (30). IL2 (Th1 cytokine) activated CD8+T cells and NK

cells and promoted their proliferation and cytosolic activity (40–42).

NK cells can indirectly regulate T cells by releasing or consuming

cytokines (43, 44). Peg-IFN-a increased IL2 activity in vitro (45) and

enhanced the inhibition of NK cells on regulatory T cell proliferation

and differentiation through IFNG (46). IL4 (Th2 cytokine), produced

by NKT cells, inhibits HBV RNA and HBsAg production (47).

Activated Th17 cells primarily secrete cytokines such as IL17A, IL6,

and TNF and also recruit macrophages, neutrophils, and lymphocytes

to induce local inflammation (48–51). IL6 (Th17 cytokine) exerts

direct antiviral effects by activating the NF-kB pathway in infected

hepatocytes (52, 53). A cross-sectional study found that high levels of

IL17A were associated with spontaneous HBsAg loss (48), which is

consistent with our study. IL-17 could effectively inhibit HBV

replication in a noncytopathic manner (54). IL4 has been

confirmed to inhibit the secretion of IL6 and TNF in vivo and in

vitro (55). In this study, IL2, IL4, IL6, and IL17A (Th17 cytokine) in

the Add-on group showed the same change trend, increasing at the

early stage and decreasing at the later stage, especially in patients with

good response, suggesting that the dynamic balance between Th1/

Th2/Th17 immunity may play a key role in functional cure under

combination therapy.

Especially, the timing of CCL3 and IL1B elevation may be

associated with the response of antiviral therapy. During the

combination therapy, patients with an increase in IL1B and CCL3

at week 24 did not respond as well as those with an increase at week

12, but the non-responders had almost no significant increase in

CCL3. IL1B is a pro-inflammatory and antiviral cytokine (52, 56),

produced mainly by inflammatory macrophages in the liver (52).

HBV modulates liver macrophage function to impair the production

of IL1B to maintain the infection status (52). It is speculated that the

late or insignificant increase in IL1B may be a manifestation of an

inhibitory immune microenvironment, which is not conducive to the

functional cure of CHB.

Compared with the CR and PR groups, CCL5 and CXCL10 were

maintained at high levels after the early increase in the NR group

during combined treatment. CXCL10 is a potent chemoattractant of

activated T cells, leading to immune activation (48). Sonneveld MJ

et al. observed that higher levels of CXCL10 before PEG-IFN therapy

may be beneficial for obtaining HBeAg loss (57). However, Wong,

G.L. et al. reported that lower levels of CXCL10 can predict HBsAg
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loss (58), which was consistent with our studies. In fact, 41 HBeAg-

positive and 45 HBeAg-negative patients were enrolled and received

48 weeks of PEG-IFN-a plus adefovir. And S BWillemse et al. figured

that higher baseline CXCL10 levels appeared to be associated with

favorable responses in HBeAg-positive patients but not in HBeAg-

negative patients (13). Therefore, the relationship between cytokines

and the response may be influenced by HBV replication levels.

However, in this study, CXCL10 did not show significant changes

during NAs treatment, which may be a manifestation of the lack of an

effective immune response.

We noted that the level of IFNG was higher in patients with good

responses than in patients with partial responses and poor responses

under combination therapy. But patients treated with NAs had higher

levels of IFNG and worse responses. This phenomenon may be

related to the duration of high levels of IFNG. It has been reported

that the presence of long-term IFNG is associated with chronic

inflammation and contributes to the occurrence of tumors (59). In

the Add-on group, the IFNG level increased and then decreased. It is

suggested that long-term high levels of pro-inflammatory cytokines

are not conducive to the functional cure, and the dynamic balance

between pro-inflammatory and anti-inflammatory cytokines plays a

vital role in treating CHB.

CHB is characterized by immunosuppression, decreased anti-

inflammatory cytokines expression, and increased anti-inflammatory

cytokines expression. The ability of NK cells to secrete cytokines and

the HBV-specific immune response was partially restored after the

immune tolerance was broken (60). The PEG-IFN-a treatment

restored immunity and suppressed the product ion of

immunosuppressive cytokines (61). Li, M. H. et al. (61) enrolled

patients with CHB and treated them with NAs and PEG-IFN-a,
respectively. It was found that the level of IL10 in both groups

increased with time, and the increase was more evident in the NAs

group, which was consistent with our study. In our study, the level of

IL10 increased in both the NAs and Add-on treatment, especially

during NA treatment.

The different correlations of cytokines among patients with

different responses to PEG-IFN-a treatment are due to different

profiles of cytokine change. Ning Qin et al. found that PEG-IFN-a
enhanced the inhibition of NK cells on Treg cells, and this inhibition

was associated with a significant decline in HBsAg (46). Nishio, A.

et al. found that patients with early NK cell activation after PEG-IFN-

a treatment had greater HBsAg decline (62). Our study suggests that

PEG-IFN-a treatment induces different immune microenvironment

changes, which may be the mechanism of different outcomes. But the

underlying mechanism needs further exploration. There was a

significant inverse correlation between IL1B and CCL5 in

nonresponsive patients. IL1B is a proinflammatory cytokine

associated with innate immunity. CCL5 is mainly produced by

CD8+T cells and can chemotaxis and activate T lymphocytes,

dendritic cells, and natural killer cells (63). The negative correlation

between the two cytokines in non-responders may indicate that the

coordinated interaction between innate and specific immunity

contributes to viral clearance.

In summary, our study found that the pattern of serum cytokine

dynamics correlates with the response to the sequential combination

therapy of PEG-IFN-a and NAs. A mild and harmonious interaction

of Th1/Th2/Th17 cytokines is associated with a favorable virological
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response, and sustained high levels of certain inflammatory cytokines

are not conducive to HBsAg clearance. There were some deficiencies

in this study. First, we did not detect the variation in the number and

function of cytokine-related immune cells. Second, cytokines and

HBsAg in liver tissue were not detected. However, these preliminary

results provide clues for further revealing the immune mechanism of

antiviral therapy and developing new therapeutic targets.
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