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Genetically engineered chimeric antigen receptor (CAR) T cells can cure patients

with cancers that are refractory to standard therapeutic approaches. To date,

adoptive cell therapies have been less effective against solid tumors, largely due

to impaired homing and function of immune cells within the immunosuppressive

tumor microenvironment (TME). Cellular metabolism plays a key role in T cell

function and survival and is amenable to manipulation. This manuscript provides

an overview of known aspects of CAR T metabolism and describes potential

approaches to manipulate metabolic features of CAR T to yield better anti-tumor

responses. Distinct T cell phenotypes that are linked to cellular metabolism

profiles are associated with improved anti-tumor responses. Several steps within

the CAR T manufacture process are amenable to interventions that can generate

and maintain favorable intracellular metabolism phenotypes. For example, co-

stimulatory signaling is executed through metabolic rewiring. Use of metabolic

regulators during CAR T expansion or systemically in the patient following

adoptive transfer are described as potential approaches to generate and

maintain metabolic states that can confer improved in vivo T cell function and

persistence. Cytokine and nutrient selection during the expansion process can

be tailored to yield CAR T products with more favorable metabolic features. In

summary, improved understanding of CAR T cellular metabolism and its

manipulations have the potential to guide the development of more effective

adoptive cell therapies.

KEYWORDS
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Introduction

Surgery, chemotherapy, and radiation remain the cornerstones

of cancer treatment. However, many patients are not cured by these

approaches and those that are cured may incur significant

morbidities, demonstrating an urgent need for the development

of novel therapeutic options. Cancer cells subvert normal metabolic

pathways to favor their growth and evasion of the immune system.

Altered metabolism of the tumor microenvironment (TME) plays a

critical role in tumorigenesis by creating an immunosuppressive

milieu (1–4). Several therapeutic approaches to modify and restore

the immune system are currently being developed and applied.

Genetically engineered T cells constitute a powerful new therapeutic

approach in the treatment of cancer. Chimeric Antigen Receptors

(CARs) are synthetic receptors that graft a defined specificity onto

an immune effector cell, typically a T cell, and augment T cell

function. Once infused into the patient they expand and kill tumor

cells. They also prevent tumor recurrence by promoting immune

surveillance in conjunction with tumor infiltrating lymphocytes or

by their own persistence (5–7). While significant strides have been

made in CAR T cell therapy for hematologic malignancies leading

to FDA approval of multiple products, durable responses in solid

tumors remain limited (8, 9). Strategies to improve CAR T cell

function are actively being sought. Metabolic manipulation

represents a potential approach for improving the former given

that T cell function is closely tied to cellular metabolism. Energetic

demands and consequences of T cell activation, cytokine

production, proliferation, and survival are facilitated by metabolic

rewiring (10, 11). Furthermore, each stage within the CAR T

manufacture process can influence the eventual metabolic profile

of the infusion product, while metabolic features of the latter are

directly linked to in vivo efficacy and persistence (8). The goal of this

manuscript is to review known aspects of T cell metabolism, in the

context of CAR T therapy, and present potential metabolic

interventions that can be undertaken at each step of the

manufacture process, including CAR design, priming, and

expansion to leverage metabolic fitness of CAR T cells to

augment therapeutic outcomes. In general, CAR T products

containing memory like cells with enhanced mitochondrial fitness

and high reliance on oxidative phosphorylation (OXPHOS) along

with fatty acid oxidation (FAO) have been shown to have superior

in vivo anti-tumor efficacy and long-term persistence. While

effector function is tied to glycolysis that is engaged upon

antigen-driven activation, a high proportion of memory cells that

can be maintained in diminishing levels of antigen are associated

with sustained anti-tumor responses. Thus, strategies that favor

mitochondrial biogenesis along the manufacture process of the

CAR T cells and maintenance of this metabolic phenotype after

infusion are discussed in this review.
Brief overview of T cell metabolism

T cells are specific effectors of the adaptive immune system,

which continuously survey and eliminate pathogen infected cells as
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well as tumors. To elicit a robust immune response, T cells

differentiate into diverse functional subsets, such as effector T

cells (Teff) and memory T cells (Tmem), which can further

differentiate into more diverse subsets based on cytokine milieu

(12, 13). Such subsets have different functional and metabolic

requirements. In the absence of antigen, naïve T cells are

quiescent, rarely divide, have a low energetic demand, and

continuously circulate through secondary lymphoid tissues (11,

14). Memory T cells are also mostly quiescent but display a

greater mitochondrial mass that provides a bioenergetic

advantage to support rapid recall responses upon antigen re-

exposure. Both sets of T cells rely almost completely on the

energy derived from mitochondrial oxidative phosphorylation

(OXPHOS) and fatty acid oxidation (FAO) to maintain their

basal energy level, cellular function, and viability (15–18).

Following antigen exposure, T cell activation is orchestrated by

TCR/peptide-MHC interaction providing the first signal forming an

immune synapse. Further interaction at the synapse with

costimulatory molecules provides the required second signal.

Thus, a complete TCR-based activation of T cells requires two

signals (15, 19, 20). Once activated, T cells predominantly engage in

aerobic glycolysis, the pentose phosphate pathway (PPP), one-

carbon metabolism, fatty acid oxidation (FAO), and

glutaminolysis to facilitate proliferation and enable subsequent

effector functions (17, 21–24), Figure 1A.

Glycolysis

Naïve T cells and non-proliferating cells generate ATP via

OXPHOS. Once T cells are activated, they engage glycolysis,

where pyruvate is fermented to lactate in the cytoplasm in the

presence of sufficient oxygen, a process termed the Warburg effect

(24–27). The process of glycolysis begins with the uptake of

extracellular glucose, mediated by cell surface transporter Glut1

and ends in conversion to pyruvate, through a series of enzymatic

reactions generating metabolites that can enter other pathways

(21, 28, 29). Pyruvate produced under aerobic conditions can be

converted in the mitochondria into acetyl Co-A, which then enters

the tricarboxylic acid (TCA) cycle. Alternatively, under anaerobic

conditions, it can be converted in the cytoplasm into lactate,

which is then excreted from the cell (30), Figure 1A. While T cells

require mitochondrial ATP from OXPHOS for activation,

continued proliferation of the activated T cells relies on either

aerobic glycolysis or OXPHOS (29). Chang et al. showed that

OXPHOS and aerobic glycolysis can be used interchangeably as

fuel for T cell proliferation and survival, but glycolysis is essential

for T cell effector function (29). Glycolysis while relatively

inefficient for energy production compared to OXPHOS, which

produces 10 times higher energy yield, may nonetheless be

preferred by rapidly proliferating cells secondary to the

concurrent generation of biosynthetic precursor molecules that

the cell needs (18, 24, 31–34). Following T cell activation there is

also a reduction of ATP output from the mitochondria, which is

instrumental to maintaining a low ATP : ADP ratio, promoting a

high glycolytic rate (18, 21, 32, 35). Glycolysis is critical for
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effector differentiation as it is required for the post-transcriptional

regulation of interferon (IFN)-g production (29). However,

persistently heightened glycolysis limits the Teff capacity to

establish immunological memory making them short lived,
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while moderately dampened glycolysis supports generation of

long-lived memory CD8+ T cells (36). T cells activated in

limited concentrations of glucose fail to upregulate cytotoxic

molecules, such as perforin and granzyme (16). The PI3K-AKT
A

B

FIGURE 1

Metabolism manipulation strategies to improve CAR T cell efficacy and persistence: (A) T cells undergo metabolic rewiring upon encountering
antigen. Aerobic glycolysis is upregulated upon T cell activation. Glycolysis provides energy for cell effector functions, as well as intermediates for
the PPP that generates NADPH for anabolic processes and fuels nucleotide and amino acid biosynthesis. Proliferating T cells also rely on serine-
glycine, folate, and methionine metabolism to generate one carbon units for de novo nucleotide synthesis, as well as NADPH production. Pyruvate
produced at the end aerobic glycolysis can enter mitochondria for conversion to Acetyl CoA that feeds into the TCA cycle. Jointly, within the
mitochondria, the TCA cycle, fatty acid oxidation, and glutaminolysis fuel T cell proliferation and differentiation. T cell activation is facilitated by
increased mitochondrial biogenesis, generation of energy, OXPHOS and generation of reactive oxygen species, with NADPH providing reducing
power for the latter. Potential metabolic points of stimulation or inhibition for enhancing CAR T cell function are provided. 2-DG inhibits hexokinase,
re-directing metabolites toward PPP and OXPHOS. Inhibition of LDH drives pyruvate toward TCA and OXPHOS. PGC1a stimulates mitochondrial
biogenesis, which promotes OXPHOS, and can stimulate FAO via CPT1a. (B) Generally, a memory like CAR T phenotype has been shown to improve
in vivo persistence and anti-tumor function. Memory cells primarily rely on OXPHOS; hence, strategies that favor the former during CAR design, CAR
T manufacture, expansion, or following infusion are provided. Mitochondrial OXPHOS can be increased directly or indirectly by decreasing aerobic
glycolysis. Acronyms used: GLUT-1, glucose transporter-1; 2-DG, 2-deoxyglycose; LDH, lactate dehydrogenase; LDHi, lactate dehydrogenase
inhibitor; a-KG, a-ketoglutarate; OAA- oxaloacetic acid; TCA Cycle, tricarboxylic acid cycle; THF, tetrahydrofolate; 1C, one carbon; SHMT2, serine
hydroxymethyl transferase 2; MTHFD1, methylene tetrahydrofolate dehydrogenase 1; PPP, pentose phosphate pathway; FA, fatty acid; CPT1a,
carnitine palmitoyl transferase 1a; PGC1a, peroxisome proliferator-activated receptor-gamma co-activator 1a; NADPH, reduced nicotinamide
adenine dinucleotide phosphate; 4-1BB, distinct costimulatory molecule; CAR, chimeric antigen receptor; CD, cluster of differentiation; IL,
interleukin; mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol 3-kinase.
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pathway also regulates glycolysis. AKT activity augments

glycolysis by inducing Glut1 trafficking to the cell surface,

increasing the activity of key glycolytic enzymes and more

importantly, activating the kinase, mammalian target of

rapamycin (mTOR), that favors cell growth, protein synthesis

and proliferation (16, 21, 31–33).
Pentose phosphate pathway

Glycolysis is not the sole metabolic fate of glucose. The pentose

phosphate pathway (PPP) starts from glucose-6-phosphate, an

intermediate product of glycolysis, Figure 1A, and diverts it

through several paths (37). The non-oxidative PPP branch shunts

intermediates of glycolysis towards production of nucleotide and

amino acid precursors that are needed for T cell growth and

proliferation. Meanwhile, the oxidative PPP branch generates

NADPH that is then used to generate reactive oxygen species

(ROS) required for modulating redox balance and fatty acid

biosynthesis (17, 37, 38).
Glutaminolysis

Glutaminolysis is a pathway of incomplete glutamine oxidation

that occurs in immune cells (39). The rate of glutamine utilization is

high in both resting and activated lymphocytes. Glutaminolysis is

critical for T cell function and as an energy producing pathway.

Glutamine is a major anaplerotic fuel required for maintaining the

TCA cycle (40) and reductive carboxylation in effector T cells (41, 42).

Glutamine can enter the TCA cycle via conversion to a-ketoglutarate,
Figure 1A, which can be processed to oxaloacetate, and subsequently

citrate (40, 43). The latter is then excreted into the cytosol where it can

be converted to acetyl CoA, the backbone of lipid synthesis.

Glutaminolysis also provides metabolites for other biosynthetic

processes by increasing availability of intracellular glutamine,

aspartate, and ammonia that are necessary for purine and

pyrimidine synthesis (44). A catabolic pathway involving glutamine,

in the presence of NADP+ dependent malate dehydrogenase, following

a series of steps, yields pyruvate and large amounts of NADPH.

NADPH is required for protein, DNA, and RNA synthesis (44, 45).

In contrast to glycolytic energy production, glutaminolytic energy

production requires mitochondrial OXPHOS (34, 39, 46).
One-carbon metabolism

While early studies in immune cells demonstrated glycolysis to be

the predominant metabolic pathway (43, 47), more recent studies have

shown a role for mitochondria in metabolic reprograming, respiration,

and amino acid metabolism to support cellular proliferation (48, 49).

Analysis of the mitochondrial proteome demonstrated that T cell

activation induces mitochondrial proliferation and proteome

remodeling, which then generates specialized mitochondria. The

most striking change noted in these activated T cell mitochondria

was the massive induction of enzymes involved in folate-mediated one
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carbon metabolism (50). One carbon metabolism is a key metabolic

node in proliferating cells (51). It consists of serine-glycine metabolism,

folate cycle andmethionine cycle and is essential to processes such as de

novo purine synthesis, methyl donor generation, as well as NADPH

production that are critical for cell survival and function (52–54). Folate

intermediates, such as, tetrahydrofolate (THF) are active carriers of one

carbon units for de novo nucleotide synthesis (55). Ron-Harel et al.

provided evidence for the former by showing a significant increase in

the intracellular levels of precursors for these pathways during T cell

activation, as well as 13C2-serine labeling of the media used to stimulate

naïve T cells with tracing through the pathway to the yield of 13C

labeled purines. This confirmed that metabolic changes in one carbon

metabolism occur upon T cell activation and that T cells, upon

activation, engage in both de novo biosynthesis and purine salvage

pathways (50).

Serine is a major donor of one-carbon units during T cell

activation and is essential for T cell effector responses (51). Other

sources of one-carbon moieties for cytoplasmic one-carbon

metabolism include formate, histidine, and purines (54, 56, 57).

One-carbon units are generated in parallel pathways in the

mitochondria and cytoplasm (50, 52, 54, 56, 57), and both sets of

enzymes were found to be highly induced following T cell activation

(50). However, the majority of one carbon units are generated

within mitochondria in activated T cells. The key enzyme for

mitochondrial one carbon metabolism and T cell survival is

serine hydroxyl-methyltransferase-2 (SHMT2), Figure 1A.

Evidence for the latter was generated in the SHMT2 knockdown

(KD) model where a decrease in the one carbon unit pool, as well as

an accumulation of metabolites upstream the de novo purine

synthesis was observed (50). T cells from the SHMT2 KD

displayed a 2- to 3-fold increase in cell death compared to

wildtype. The latter was a result of increased cell death due a

nucleotide imbalance, with an observed 50% reduction in purine

levels but unaffected levels of pyrimidines leading to the inhibition

of de novo purine synthesis and increased DNA damage. In

addition, SHMT2 plays a critical role in glutathione synthesis;

hence, the shortened T cell half-life was also attributable to

increased oxidative stress promoting cell death under hypoxia in

SHMT2 KD T cells (50). SHMT2 KD T cells could be rescued

completely with the combination of formate, a product of

mitochondrial one carbon metabolism, and N-acetyl cysteine

(NAC), a glutathione precursor, reaffirming the important role of

mitochondrial one-carbon metabolism in promoting T cell survival

(50, 58, 59). Another critical regulator of CD4+ T cell proliferation

and differentiation is methylenetetrahydrofolate dehydrogenase 2

(MTHFD2). Suguira et al. showed that MTHFD2 is selectively

required for Teff cells. A deficiency of MTHFD2 alters de novo

purine synthesis, resulting in insufficient generation of nucleotides

(60). To summarize, one-carbon metabolism plays a major role in T

cell proliferation and survival.
Fatty acid oxidation

Fatty acid oxidation (FAO) is a pathway that converts fatty

acids to acetyl-CoA, NADH, FADH2 which are then used by cells
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for energy production (38). This pathway takes place in the

mitochondria and can produce tremendous amounts of ATP.

Starting in the cytoplasm with activation of fatty acids to a fatty

acid acyl-CoA, short chain fatty acids diffuse passively into the

mitochondria, while medium and long chain fatty acids are

conjugated to carnitine and are consequently shuttled into the

mitochondria. Once inside the mitochondria, carnitine conjugated

fatty acids are converted back to fatty acid acyl-CoA that undergoes

b-oxidation generating large amounts of acetyl-CoA, NADH and

FADH2, which are used in the TCA cycle and electron transport

chain (ETC) to produce ATP (38).

When in circulation, naïve T cells engage in FAO for ATP

production or use OXPHOS to maintain low levels of glycolysis.

Once activated, they switch from FAO to fatty acid synthesis (FAS)

due an increased demand for lipids (11, 35). FAO promotes

memory T cell production that is necessary for a long-lived

immune response. CD8+ memory T cells are dependent on FAO

for their development, persistence, and immediate response to

stimulation (20, 23, 61). This is enabled by their greater

mitochondrial mass and spare respiratory capacity compared to

naïve and effector counterparts (20, 61). Therefore, lipid

metabolism plays an important role in T cell activation and

formation of memory phenotypes.
Brief overview of CAR T cell
manufacture process and the
associated cellular metabolism
consequences

CARs are synthetic receptors that redirect T cells against a defined

target in a major histocompatibility complex (MHC)-independent

fashion. CAR T cell therapy aims to eliminate specific tumor cells in

a sustainedmanner. The first step of the CAR Tmanufacturing process

is the collection of PBMCs through leukapheresis, either patient’s own

or from a donor (62, 63), followed by isolation of T cells. T cells are

then activated with anti-CD3/CD28 magnetic beads to promote

proliferation and differentiation. At this point, T cells transition from

a naïve or quiescent state to an activated state, with a concurrent

metabolic switch from FAO to glycolysis (20, 26, 29), whereby T cells

differentiate into either high glucose requiring Teff cells and low glucose

requiring Tmem cells (11, 36). The next step in the manufacturing

process is viral transduction, where T cells are incubated with a

lentiviral vector encoding the CAR construct. The final step in

manufacture includes expansion within cytokine enriched media and

represents yet another opportunity for T cells to differentiate into

distinct functional phenotypes, i.e., Teff, Tem, Tscm, Tcm, based on

culture conditions. CAR T products containing a high proportion Tcm

or Tscm subsets have been shown to have an enhanced subsequent

metabolic adaptability, mediated mainly through mitochondrial

metabolism, and are able to maintain a long-term anti-tumor

response in vivo (8, 10, 14, 64–67). Optimization of CAR T cell

metabolism for the maintenance of early memory phenotypes, Tscm

and Tcm, to improve CAR persistence and cytotoxic function can
Frontiers in Immunology 05
potentially be carried out at several stages, as described hereafter,

Figures 1A, B.

CAR constructs: The first T cell activating receptors were CD3z
chain fusions, which also elucidated the role of the z chain (68, 69).

These early studies showed that T cell activation signaling, and

initiation of cytotoxicity were possible by cross-linking the fusion

receptors. Eshhar et al. then incorporated the immunoglobulin-

derived single chain variable fragment (scFv) onto these receptors to

direct and lyse hapten coated cells (5, 70), generating the first-

generation CAR T. Since then, multiple generations of CAR T cells

have been engineered. The current FDA approved CAR T cell

receptor has four parts: 1) an extracellular target antigen-binding

domain composed of a single chain variable fragment (scFv) of an

antibody targeting the specific tumor antigen; 2) a hinge region; 3) a

transmembrane domain; and 4) the intracellular domain, i.e., T cell

receptor (TCR) signaling domain comprised of CD3z and

costimulatory domains. The CD3z domain in the CAR structure

serves as signal 1 and a costimulatory domain provides signal 2 (15).

Second and third generation CARs have multiple costimulatory

domains, such as immunoglobulin (Ig) superfamily members,

CD28 (B7.1/B7.2-CD28) and inducible T cell costimulatory

(ICOS, B7RP-1-ICOS) (71), and tumor necrosis factor receptor

(TNFR) superfamily members 4-1BB, OX40 and CD27 (10, 15).

Depending on the costimulatory domains incorporated into the

CAR construct, different downstream signaling pathways are

activated that impact in vivo persistence, susceptibility to

exhaustion, generation of memory, and anti-tumor potency (10).

CD28 and 4-1BB signaling domains are the most widely used and

studied. Hence, their effects on CAR T cell metabolism are

described below.

Metabolic phenotypes linked to CAR constructs: Kawalekar

et al. found that 4-1BB based (BBz) CAR T cells had higher

proliferative capacity and persistence than CD28 based (28z)
CAR T cells. Both sets of CARs started with a uniformly

increased expression of CD69, an activation marker, on Day 1.

Subsequently, the BBz CAR T cells proliferated and persisted in

culture for over 4 weeks, while the 28z CAR T cells had done so for

2 weeks (72). Even more striking persistence differences were

observed in vivo, where CD28-based CAR T cells were detected

for 30 days (73–75), while 4-1BB based CAR T cells persisted for

years (76, 77). The increased persistence of BBz CAR T cells was

attributed to their differentiation into CD45RO+CCR7+ Tcm cells,

and this phenotype was maintained through the culture process. In

contrast, 28z T cell expansion resulted in a higher proportion of

CD45RO+CCR7- Tem cells following stimulation through the CAR

(20, 72, 78).

To characterize cellular metabolism changes upon CAR

signaling, Kawalekar et al. measured the oxygen consumption rate

(OCR), a surrogate measure of OXPHOS, before activation, as well

as at 7- and 21-days post antigen stimulation; including following

serial addition of an inhibitor of ATP synthesis, an uncoupling

ionophore, and blocking agents of the ETC. The OCR profiles were

similar in both groups on Day 0. On days 7- and 21-post antigenic

stimulation an ~10-fold increase in OCR was observed in both

groups. Maximal respiratory capacity of BBz CAR T cells showed a
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robust increase following decoupling of the mitochondrial

membrane. The extracellular acidification rate (ECAR), a

surrogate of lactic acid production during glycolysis, was elevated

in 28z CAR T cells. 28z CARs were found to be rapidly consuming

glucose and generating lactate, consistent with observed high ECAR

leve l s . Addi t iona l ly , Glut1 , PDK1 (26) , G6PD, and

phosphoglycerate kinase (PGK), and have also been shown to be

elevated in 28z cells. These findings support the conclusion that 28z
CAR T cells rely on glycolysis, Figure 1B, for their energy needs (26,

72), a characteristic of Teff cells (72, 78).

In contrast, BBz CAR T cells rely on mitochondrial oxidative

phosphorylation (72). When glucose uptake and fatty acid

utilization rates were evaluated by measuring residual glucose,

lactate, and heavy-carbon-labeled long chain fatty acid, palmitic

acid, in the media at different time points, BBz cells showed high

utilization of palmitic acid, measured by heavy-carbon-labeled

acetyl CoA levels. As b-oxidation of fatty acids generates acetyl

CoA, an increase in heavy-carbon-labeled acetyl-Co-A pool

indicated that BBz CAR T cells use FAO to fuel their bioenergetic

needs. Also, carnitine palmitoyl transferase (CPT1A), which

controls a rate limiting step in mitochondrial FAO and promotes

mitochondrial biogenesis (20), was significantly elevated in BBz
cells. Additionally, fatty acid binding protein (FABP5) that is

involved in fatty acid uptake, transport, and metabolism was also

elevated in these cells. Together, these findings indicate that BBz
CAR T cells use fatty acids for their energy needs (23, 72). Finally,

BBz CAR T cells have a survival advantage due to their ability to

generate increased mitochondrial mass (61, 72). BBz CAR T cells

consistently demonstrated high spare respiratory capacity (SRC),

which is a characteristic of natural CD8+ T cell memory and

supports T cell function in the hostile tumor environment (20,

72, 79–81).

Selection of CAR costimulation systems based on associated

metabolic re-wiring: As discussed, the costimulatory signals in the

CAR constructs that are necessary for T cell activation, expansion,

cytokine secretion, cytotoxic function, memory formation, and

survival are mediated through metabolic reprogramming.

Depending on the costimulatory domain incorporated into the

construct, different signaling pathways are triggered upon antigen

activation (82–84). As already discussed, the CD28 domain in CARs

leads to the activation of PI3K/Akt pathway, Figure 1A and aerobic

glycolysis as the predominant metabolic program. In contrast, T

cells with CAR constructs comprising of 4-1BB domain activate the

NF-kB, MAPK, and ERK pathways. These CAR T cells exhibit

enhanced OXPHOS and SRC derived from fatty acid oxidation.

Mitochondrial biogenesis and oxidative metabolism associated with

Tcm phenotype are preferred in CAR T therapy given enhanced in

vivo persistence and function (72), Figure 1B.

Another costimulatory domain, ICOS, has been shown to lead

to higher PI3K/Akt pathway activation compared to CD28, and

increased secretion of IL-21, IL-17, and INF-gamma (85). OX40, a

member of the TNFR family which is upregulated with T cell

activation via the OX40L has a broad effect on T cell activation,

proliferation, differentiation, and survival. It stimulates glycolysis

and OXPHOS via PI3K/Akt, MAPK and NF-kB pathways, and

induces antiapoptotic genes, Bcl-1and Bcl-xl, to promote T cell
Frontiers in Immunology 06
expansion and survival, respectively (86–88). To summarize,

selection of co-stimulatory domains has a significant impact on

persistence and antitumor function of CAR T therapies.

Improving CAR T cell efficacy using CAR systems encoding

cytokines and/or chemokines: Cytokine- and chemokine- encoding

genes can be added into the CAR construct, which may lead to distinct

cellular metabolism features.While themetabolic consequences of such

modifications have not been fully explored, they have been

implemented to improve CAR T entry into and function within the

TME. While first-generation CARs had a single CD3z signaling

domain they were ultimately not very effective (89–91). Second and

third generation CAR T cells have incorporated one or two

costimulatory signals, respectively. Genetic modifications to CARs for

co-expression of cytokine (92–98), chemokine (99–101), or both

factors (102–104) have been successfully used to enhance therapeutic

efficacy CAR T cells.

Use of cytokines in expansion media to promote CAR T cell

metabolic rewiring: Cytokine composition in culture media impacts

efficacy of the CAR T cell product. Cytokines that have been broadly

investigated to date are IL-2, IL-7, IL-15, and IL-21 (105). IL-2 is a T

cell growth factor that promotes effector differentiation and glycolysis

in CD8 T cells (22, 106, 107). When CAR T cells are expanded using

IL-2, they differentiate to effector CD8+ cells via Akt-m TOR

pathway. However, aryl hydrocarbon receptor activation was also

observed under such expansion conditions, suggesting that IL2

signaling contributes to CAR T cell exhaustion (105, 108). IL-7 and

IL-15 can cause differentiation to memory T cells (20, 109, 110). IL-7

can induce glycerol channel expression and triglyceride (TAG)

synthesis that results in a product with a high CD8 memory

proportion. It also promotes Glut-1 cell surface expression thereby

increasing glucose uptake and promoting cell survival (111). The

combination of IL-2 and IL-7 in the ex vivo culture media during

CAR T cell expansion enhances glycolysis and differentiation of T

cells towards the effector phenotype necessary for cytotoxicity (112).

Another cytokine used for CAR T expansion is IL-15. It

downregulates mTORC1 activity and expression of several

glycolysis enzymes, thereby improving mitochondrial fitness and

maintenance of the Tscm phenotype (105, 113). Consequently,

recent trials have used CAR T cells expanded in IL-7 and IL-15

and have demonstrated superior anti-tumor efficacy. Notably, CAR T

cells expanded in IL-2 can show phenotypic features similar to those

expanded in IL-15, when mTORC1 inhibition is provided by

concurrent exposure to rapamycin (24).

Optimizing nutrients within expansion media: Optimization of

expansion media, aside from cytokine milieu, can also impact on T

cell differentiation and subsequent function. For example, L-

arginine is consumed rapidly in activated T cells; hence, when

exogenous L-arginine was supplemented, a shift from glycolysis to

OXPHOS was observed in cultured cells (34, 114). A potential

explanation for this switch is that with increased L-arginine leads to

an upregulation of the serine biosynthesis pathway, fueling the TCA

cycle and enhancing OXPHOS (114, 115). The decrease in

glycolysis combined with increased L-arginine levels potentiates

the generation of the Tcm subset, promoting anti-tumor activity in

vivo (29, 36, 114). Another feature of T cells cultured in excess L-

arginine is prolongation of survival (114). Other nutrients in the
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media that could be altered are fatty acids, especially short chain

fatty acids (SCFA), such as butyrate, propionate, and acetate (116),

which diffuse passively into the mitochondria. Depending on the

concentration, the SCFAs have been shown to favor a memory-like

T cell phenotype (116–120).

Following infusion, CAR T have to traffic to tumor sites,

penetrate the TME, and persist in the patient to generate

sustained anti-tumor activity. Strategies aimed at improving

trafficking and persistence of CAR T, including nanoparticle RNA

vaccines as well as oncolytic viruses have been described, albeit so

far in pre-clinical studies, with clinical testing currently ongoing for

the latter. While these approaches have the potential to enhance

CAR T in vivo performance, they are not metabolic in nature and

are reviewed elsewhere (121).
The impact of TME metabolism on
endogenous and adaptively
transferred T cells

Cancer involves abnormal cell growth, diminished apoptosis,

and evasion of the normal host defenses that facilitate local invasion

and potential distant metastasis (122). The high replication rate of

tumor cells requires a continuous source of energy necessitating

modification of normal metabolism. Cancer cells engage aerobic

glycolysis to meet their metabolic requirements and ATP

production (1, 123). Increased aerobic glycolysis by the tumor

cells creates a glucose deprived TME, impairing effector T cell

function within the endogenous anti-tumor immunity and adaptive

cell therapy (1, 123). Tumor derived lactate accumulation via

aerobic glycolysis leads to an acidified TME. This in turn impedes

monocarboxylate transporter-1 mediated, gradient-dependent

export of lactate from CD8+ T cells (1, 124, 125). Malignant cells

within a solid tumor rapidly proliferate and organize, which can

lead to poor vascularization that exacerbates TME hypoxia. In

addition to the decreased oxygen delivery, TME hypoxia can be

further enhanced by high tumor oxygen consumption. Hypoxia

inhibits differentiation, proliferation, and cytokine production of

cytotoxic T lymphocytes (CTL) and T helper (Th1) cells (10, 125,

126). Under hypoxic conditions, tumor cells respond with rapid

induction of transcription factor hypoxia-inducible factor 1 alpha

(HIF1a) and NFkB (1, 127). Both factors are involved in the

regulation of genes implicated in inflammation and adaptation to

hypoxia. These pathways control mitochondrial dynamics and

mitophagy, promote TME acidification, and regulate the

expression of cytokines and angiogenic factors (1, 10, 128–131).

These transcription factors regulate the expression of a plethora of

cytokines and angiogenic factors, including, IL-6, IL-10, and

vascular endothelial growth factor (VEGF) (10, 127). These

molecules then recruit cells with immunosuppressive function,

including myeloid-derived suppressor cells (MDSCs), T

regulatory (Treg) cells, innate lymphoid cells (ILCs), tumor

associated macrophages (TAMs), and cancer associated fibroblasts

(CAFs). This establishes an immunosuppressive TME and

suppresses antigen processing and presentation (10, 132), leading
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to immune evasion. Furthermore, HIFa controls the expression of

checkpoint molecule programmed death-ligand 1 (PD-L1) on the

surface of cancer cells and PD-1 expression on T cells, which

negatively impacts T cell survival and effector functions via the

PD1/PD-L1 axis (10, 125). Additionally, hypoxia dampens activity

of adenosine kinase and adenosine deaminase leading to adenosine

accumulation in the TME that favors immunosuppressive cells and

inhibits anti-tumor T cell function (125). As described, the TME

plays an important role in augmenting endogenous T cell and CAR

T cell function. Several excellent reviews on TME metabolism as a

barrier to immunotherapy and metabolic strategies to manipulate

the former have been recently published (3, 4, 133). The focus of

this review is the manipulation of CAR T metabolism to improve in

vivo function and persistence, which is described hereafter.
Immunometabolic interventions
to improve CAR T in vivo efficacy
and persistence

Increased persistence and survival are characteristics of an

effective CAR T anti-tumor response (134). Presence of specific T

cell subsets, such as those with minimal differentiation and

increased self-renewal capacity, can enhance CAR T cell anti-

tumor efficacy (135). As already described, metabolism plays a

major role in this process, with effector T cells depending more on

glycolysis and memory T cells relying on mitochondrial oxidation

and FAO for their bioenergetic needs (136). Pre-clinical studies

have shown that an infusion of a high proportion of naïve T cells

(Tn), Tscm, or Tcm leads to superior anti-tumor efficacy compared

to products with higher Tem or Teff content (137, 138). However,

during the ex vivo expansion process, a large proportion of Tem and

Teff are generated due to a high rate of glycolysis induced during

activation and expansion that drives T cells towards terminally

differentiated phenotypes (36). The cytokine milieu during ex vivo

expansion, antigen activation, and costimulation, contribute to this

process, as previously described. Given that the functional

phenotype, i.e., Tscm, and favorable metabolic features are linked,

maintenance of this phenotype represents a promising strategy for

generating effective adoptive T cell therapies, Figure 1B.

Inhibition of glycolysis: 2-deoxyglucose (2-DG) is a prototypical

inhibitor of the glycolytic pathway that blocks hexokinase (139),

Figure 1A. Fraietta et al. showed inhibition of glycolysis with 2-DG

decreased T cell effector and promoted memory T cell generation

(140). Additionally, the same group demonstrated that a glycolytic

gene signature characterized CAR T cells obtained from patients

with partial or no response to therapy. The former also displayed a

higher uptake of a glucose analog than CAR T cells isolated from

patients with complete responses (140). Thus, employing strategies

to interfere with glycolysis is a potential solution to improve

downstream in vivo CAR T cell efficacy. At high concentrations,

however, 2-DG may interfere with T cell proliferation and cytolytic

function. Cham et al. showed that 2-DG at 10-50 mM

concentrations in culture interfered with T cell proliferation and

almost completely abolished cytolytic ability of CD8+ T cells (123).
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Shi et al. showed that inhibition of glycolysis by 2-DG at a

concentration of 1mM had minimal inhibitory effects on cell

proliferation (139). Similarly, Sukumar et al. used 2 mM

concentrations of 2-DG, which sufficiently inhibited glycolysis

without interfering with cell proliferation and successfully

induced OXPHOS. They also demonstrated that T cells primed in

the presence of 2-DG accumulated at higher numbers in tumors

(36). In conclusion, inducing a memory T cell phenotype by

inhibiting glycolysis with relatively low levels of 2-DG during

CAR T cell manufacture is a potential strategy to improve CAR T

cell efficacy, Figure 1B.

Improving mitochondrial function: As already discussed,

mitochondria play a key role in the regulation of T cell

metabolism, biosynthesis, migration, cell fate and programmed

cell death. Regulating mitochondrial OXPHOS is one approach to

improve CD8+ T cell function. Lactate dehydrogenase (LDH) is an

enzyme just distal to glycolysis that converts pyruvate into lactate.

Hermans et al. demonstrated that a small molecule LDH inhibitor,

at a concentration of 1 uM led to metabolic rewiring, blocking

generation of lactate and promoting pyruvate entry into the TCA

cycle, and ultimately enhancing OXPHOS (51), Figure 1A. The

latter can inhibit terminal effector differentiation and exhaustion.

The same group also demonstrated that LDH inhibition in

combination with IL-21 exposure increased the formation of

Tscm cells leading to an improved anti-tumor response and

persistence. Interleukin-21 (IL-21) is a cytokine that uses the

common cytokine receptor g chain (gc) as a receptor component

(141). It primarily activates STAT3 (142), along with IL-7 and IL-15

expands CD8+ T cells (143). Thus, transient inhibition of LDH in

combination with IL-21 supplementation during expansion phase

generated a more effective cell therapy product (51). Another

strategy for improving mitochondrial function is through the

peroxisome proliferator-activated receptor-gamma coactivator

(PGC)-1a that belongs to a family of transcription coactivators

(144). PGC-1a overexpression in CD8 T cells has been found to

boost mitochondrial biogenesis and memory phenotype, enhancing

anti-tumor immunity (121, 145, 146), Figure 1A. Additionally,

overexpression of PGC-1a in exhausted T cells improved their

mitochondrial function, restoring functionality (121, 147). CD8+ T

cells with PGC-1a overexpression secondary to exposure to

bezafibrate, a PGC-1a agonist, in the presence of PD-1 blockade,

upregulated mitochondrial OXPHOS and increased FAO, which

enhanced their survival (148). Bezafibrate is a drug already in

clinical use for hypercholesterolemia and could potentially be

deployed in the setting of adoptive immunotherapy, following

CAR T infusion.

An exhausted T cell (Tex) phenotype has been described

extensively in the setting of chronic infection but has also been

recognized in tumor-resident endogenous T cells and in the setting

of adoptive T cell therapy (105, 149). Tex vulnerability is at least in

part attributable to tonic TCR stimulation, which leads to metabolic

rewiring and epigenetic changes that can enforce terminal

exhaustion (105). CAR T cells are thought to be especially

susceptible to this process given continuous antigenic stimulation

that occurs during their ex vivo expansion, ahead of exposure to
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tumor antigen in the TME. Enhancing mitochondrial fitness and

the linked Tscm phenotype during priming and expansion appear

to counteract this susceptibility (105). Tex display inhibitory

receptors, diminished effector ability, and decreased proliferative

capacity. Metabolically, these cells are characterized to

mitochondrial dysfunction and decreased glycolysis utilization

(105, 149). Interestingly, Tex functionality can be restored with

metabolic manipulation, as described above, through PGC-1a
overexpression (121, 147), further supporting the notion that

ability to maintain OXPHOS and FAO metabolism are necessary

to avoid Tex phenotype. Additionally, PD-1 blockade in T cells has

been shown to drive increased FAO, enhancing their survival and

memory phenotype (121, 150). However, terminally exhausted T

cells may only partially respond to PD-1 blockade, presumably due

to fixed epigenic modifications (149). Acetate supplementation,

which can restore acetyl-CoA required for histone acetylation,

can improve chromatic accessibility and restore functionality in

CD8 T cells (149, 151). Other epigenetic modifiers may lower

susceptibility or restore functionality in Tex and are explored in

greater depth in other reviews (105, 149).

Sustained activation of the PI3K-Akt-mTOR pathway by

activation beads, IL-2, or tonic signaling drives T cells towards

terminal differentiation and inefficient tumor killing (152–154).

mTOR is a main regulator of CD8 T cell differentiation. Inhibition

of mTORC1 by rapamycin or metformin (AMPK activator) has been

shown to enhance OXPHOS by increasing FAO, and ultimately

promoting the CD8+ T memory phenotype (154, 155). In the setting

of CAR T, use of rapamycin during priming and expansion promoted

the memory phenotype and increased FAO metabolism (121, 152,

156, 157). The addition of PI3K inhibitors, including, MK2206,

LY294002, IC87114, idelalisib, and TGR-1202, during expansion

has been shown to maintain CAR T cells in a less differentiated

state leading to increased downstream anti-tumor efficacy and

persistence of CAR T cells in vivo (105, 121, 158).

To summarize, induction of mitochondrial biogenesis and

promotion of T cell differentiation towards a memory phenotype

is a promising strategy for improving anti-tumor efficacy and

persistence of CAR T cells.
Conclusion

Aside from identifying tumor specific antigens and engineering

appropriate CARs, several strategies to enhance in vivo CAR T

function are currently being pursued. As greater understanding of T

cell metabolism and immunosuppressive features of the TME is

gained, this knowledge can be potentially leveraged to enhance anti-

tumor responses. As described, manipulation of the T cell activation

machinery that is linked to cellular metabolism reprogramming can

enhance in vivo CAR T cell performance and persistence. Improved

trafficking and function of CAR T cells in the TME have been

observed with CAR T products containing distinct functional

phenotypes that are linked to corresponding metabolic rewiring.

These phenotypes can be generated via manipulations of the CAR

construct itself, i.e., through selection of costimulatory elements, or
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during the expansion phase using cytokines and nutrients to skew

CAR T products towards more favorable metabolic characteristics.

Additionally, metabolic regulators can be used either during

expansion or after infusion to generate and maintain metabolic

phenotypes within CAR T cells, respectively. Metabolic rewiring of

cellular therapies represents a promising clinically relevant

approach to improve immunotherapy responses.
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Glossary

2DG 2-deoxy-D-glucose

ADP Adenosine diphosphate

Akt Ak strain transforming

AMPK AMP-activated protein kinase

ATP Adenosine triphosphate

CAF Cancer associated fibroblast

CAR-T Chimeric antigen receptor T cell

CPT1A Carnitine palmitoyl transferase 1A

CTL Cytotoxic T lymphocyte

ECAR Extracellular acidification rate

ERK Extracellular signal-regulated kinase

ETC Electron transport chain

FABP5 Fatty acid binding protein 5

FAO Fatty acid oxidation

FAS Fatty acid synthesis

G6PD Glucose-6-phosphate dehydrogenase

HIF1a Hypoxia inducible factor 1a

ICOS Inducible T cell co-stimulator

IFN-g Interferon-g

IL Interleukin

ILC Innate lymphoid cell

KD knockdown

LDH Lactate dehydrogenase

MAPK Mitogen-activated protein kinase

MDSC Myeloid-derived suppressor cell

MHC Major histocompatibility complex

MTHFD2 Methylene tetrahydrofolate dehydrogenase-1

mTOR mammalian target of rapamycin

NAC N-acetyl cysteine

NADPH Nicotinamide adenine dinucleotide phosphate

NF-kB Nuclear factor kappa light-chain enhancer of activated B cells

OCR Oxygen consumption rate

OXPHOS mitochondrial oxidative phosphorylation

PBMC Peripheral blood mononuclear cell

PD1 Programmed death-1

PDK1 Pyruvate dehydrogenase kinase-1

PDL1 Programmed death ligand-1

PGC1a Peroxisome proliferator-activated receptor-gamma coactivator-1
alpha

(Continued)
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PGK Phosphoglycerate kinase

PI3K Phosphatidylinositol 3-kinase

PPP Pentose phosphate pathway

ROS Reactive oxygen species

SCFA Short chain fatty acid

scFv single chain variable fragment

SHMT2 Serine hydroxy methyltransferase 2

SRC Spare respiratory capacity

TAM Tumor-associated macrophage

Tcm central memory T cell

TCA Tricarboxylic acid

TCR T cell receptor Teff, effector T cell

Tem effector memory T cell

Tex exhausted T cell

Th1 T helper 1

Th17 T helper 17

THF Tetrahydrofolate

Tmem memory T cell

Tn naïve T cell

TNFR Tumor necrosis factor receptor

Treg regulatory T cell

Tscm stem cell-like memory T cell

VEGF Vascular endothelial growth factor
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