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Macrophages are the preeminent phagocytic cells which control multiple

infections. Tuberculosis a leading cause of death in mankind and the causative

organism Mycobacterium tuberculosis (MTB) infects and persists in macrophages.

Macrophages use reactive oxygen and nitrogen species (ROS/RNS) and autophagy

to kill and degrade microbes including MTB. Glucose metabolism regulates the

macrophage-mediated antimicrobial mechanisms. Whereas glucose is essential

for the growth of cells in immune cells, glucose metabolism and its downsteam

metabolic pathways generate key mediators which are essential co-substrates for

post-translational modifications of histone proteins, which in turn, epigenetically

regulate gene expression. Herein, we describe the role of sirtuins which are

NAD+-dependent histone histone/protein deacetylases during the epigenetic

regulation of autophagy, the production of ROS/RNS, acetyl-CoA, NAD+, and S-

adenosine methionine (SAM), and il lustrate the cross-talk between

immunometabolism and epigenetics on macrophage activation. We highlight

sirtuins as emerging therapeutic targets for modifying immunometabolism to

alter macrophage phenotype and antimicrobial function.
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Introduction

Macrophages are the preeminent phagocytic cells which respond to pathogen invasion

using a variety of anti-microbial mechanisms. Circulating monocytes originating in bone

marrow become macrophages (MFs) at tissue sites of infection after getting exposed to

cytokines and microbial stimuli. During tuberculosis, the causative organism Mycobacterium

tuberculosis (MTB) infects and grows in naive MFs. That tuberculosis continues to kill more

than a million people each year indicates that MTB has evasion mechanisms to survive and
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grow in MFs. Indeed, MTB evades antimicrobial mechanisms of MFs
using multiple strategies including epigenetic modifications (1, 2). For

example, MTB encodes for dozens of methyltransferases of which,

products from Rv1988 and Rv2966c methylate DNA (2, 3); DNA

hypermethylation of MFs was reported to decrease immunity in TB

patients (4). MTB derived Rv3423.1 acetylates histones affecting gene

expression, whereas Enhanced intracellular survival (Eis) protein

acetylates histone H3 at K9 and K14 and increases IL-10 (5).

Together, these observations suggest that ‘acetylation and

methylation’ are important for controlling antimicrobial mechanisms

within MFs during intracellular infections like tuberculosis.
Intriguingly, T cell derived cytokines like IFN-g drive naïve MFs

into an M1-MF phenotype whereas, IL-4, IL-10 and IL-13

differentiate them into M2-MFs. We recently reported that MTB

infected human M1- and M2-MFs show unique transcriptional

responses and M1-MFs were able to inhibit the growth of MTB

using a nitric oxide- and autophagy-dependent mechanism, whereas

M2-MFs were permissive for growth (6). During these studies, we

noted that M1- and M2-MFs expressed differing levels of sirtuin

(SIRT) histone/protein deacetylases and significantly, SIRT2 blockade

increased the ability of MFs to kill MTB suggesting a pivotal role.

Recent studies demonstrate that the activity of MF derived

histone acetyltransferases is regulated by their co-substrate, acetyl-

CoA (ac-CoA), whereas the activity of sirtuin proteins which are

nicotinamide adenine dinucleotide (NAD+)-dependent histone

deacetylases, is dependent on NAD+. It is also known that the

activity of histone methyltransferases and DNA methyltransferases

is regulated by their specific co-substrate, s-adenosylmethionine

(SAM) (7). Therefore, chromatin-modifying enzymes can sense the

metabolic status and translate this information into gene expression.

In MФs, this would determine their polarization state as either pro-

inflammatory IFN-g/LPS inducible M1-MFs or alternatively

activated and anti-inflammatory, IL-4/IL-10 and IL-13 driven M2-

MFs. Interestingly, Glucose metabolism differs between M1- and

M2-MFs and glycolysis and its associated pentose-phosphate-

pathway (PPP), serine biosynthesis, and one-carbon metabolism are

major sources for the co-substrates for methylation and acetylation.

In M1-MFs, glucose uptake is elevated by up-regulated glucose

transporter GLUT1, followed by up-regulated glycolysis (8, 9). High

glucose intake and metabolism is essential for phagocytosis,

production of reactive-oxygen-species (ROS) and reactive-nitrogen-

species (RNS), and secretion of pro-inflammatory cytokines (10).

Emerging evidence also links glycolysis to epigenetics. Locasale’s

and Schultz’s groups have demonstrated that histone acetylation is

enhanced by glucose flux in a variety of cell types (11, 12). Acetylation

is strongly associated with ac-CoA levels but inversely correlated with

the ratio of ac-CoA to free CoA (11). Inhibition of glycolysis results in

the reduced production of ac-CoA and reduction of histone

acetylation leading to differentiation of embryonic stem cells (13).

In bacteria, two-thirds of glycolytic and TCA cycle enzymes are

acetylated, with acetylation inhibiting their catalytic activity and

promoting degradation (14). Glycolysis also regulates histone

deacetylation because NAD+-dependent srtuin proteins regulate the

expression of glycolytic enzymes and the ratio of NAD+/NADH is

controlled by the glycolytic flux, and vice versa (15–18). In addition to
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acetylation, glycolysis also indirectly affects methylation through

serine biosynthesis that utilizes 3-phospho-glycerate (3-P-G) as the

starting material (19). Through one-carbon metabolism, serine is used

for the de novo synthesis of methionine and SAM which is the co-

substrate of methyltransferases (19, 20).

In this review, we summarize the recent research on the

regulation of glucose metabolism and its associated metabolism by

sirtuin proteins and their co-substrate NAD+ and their impact on

epigenetic regulation of MF activation, polarization, and autophagy

activity. We also discuss the NAD+-dependent sirtuin histone

deacetylases as emerging drug targets for the treatment of infectious

diseases, specifically for tuberculosis. Since we wish to focus on

metabolism-derived co-substrates of histone acetylation/methylation

enzymes and the NAD+-dependent histone deacetylase-sirtuin

proteins, epigenetic regulation of autophagy by other histone

modification enzymes or modification states is beyond the scope of

this review and are covered elsewhere (21, 22).
Glucose metabolism
and immune responses

Glucose metabolism exerts a strong impact on immune cell

function (Figure 1) (23). For example, hexokinase (HK) binds to

bacterium-produced N-acetylglucosamine and causes its deactivation

as well as its dissociation from mitochondrial voltage-dependent anion

channels (VDACs), which in turn, leads to NOD-Like Receptor family

Pyrin domain containing 3 (NLRP3) inflammasome activation in MFs
(24, 25). Phosphoglucose isomerase (PGI) is identical to the protein

known as Autocrine Motility Factor (AMF) which is upregulated in

cancer cells together with other glycolysis enzymes and thought to play

a key role in cancer metastasis by activating Epithelial-Mesenchymal

Transition (EMT) and the MAPK/ERK or PI3K/AKT pathways (26,

27). These pathways are also upregulated in glucose deprivedMFs (28–
30). Fructose-bisphosphate aldolase (FBA) is immuno-responsive

during pathogen infection and is a potential vaccination target (31).

Triosephosphate isomerase (TPI) catalyzes the interconversion of

dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-

phosphate (G3P). TPI has been predicted to be essential for growth

of MTB (32). Phosphoglycerate kinase (PGK) enhances the immunity

to Streptococcus agalactiae in tilapia (33). Immunization of

phosphoglyceromutase (PGM) induces Th1- and Th2-related

immune responses in mice infected with Brucella (34). Deficiency of

enolase (ENO1) causes the reduction of pyruvate which then

contributes to a dysfunction in mitochondrial homeostasis and affects

dendritic cell survival, maturation and antigen presentation (35).

Pyruvate kinase 2 (PKM2) is required for the expression of PD-L1 in

immune cells and tumors. Loss of PKM2 impairs endothelial cell

proliferation and migration and triggers innate immune signaling

(36). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) binds to

3’-UTR of inflammatory mRNAs and inhibits the translation of tumor

necrosis factor alpha (TNF-a) and interferon gamma (IFN-g) (37).

PDK2/4 serves as a metabolic checkpoint for polarization of

macrophages into the pro-inflammatory M1 phenotype (38). Though

not generally characterized as a glycolytic enzyme involved in the 10
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1121495
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1121495
steps of glycolysis, lactate dehydrogenase (LDH) is elevated in pro-

inflammatory immune cells to produce surplus lactate. Another

glycolysis-related enzyme is glucose-6-phosphate dehydrogenase

(G6PD) which acts at the first and the rate-limiting step of the

pentose phosphate pathway (PPP). G6PD level is elevated in M1-

MFs and cells deficient in G6PD have a reduced ability to induce the

innate immune response, thereby increasing host susceptibility to

infection with pathogens (39). In addition to glycolytic enzymes, the

glycolytic intermediates also play a significant role in the activation of

the immune system. Pyruvate is reduced by LDH to form lactate that

regulates immune response in macrophages and dendritic cells (40).

Importantly, phosphoenolpyruvate (PEP), the precursor of pyruvate, is

an immune signaling molecule; it promotes pro-inflammatory

functions and activates T cells by regulating Ca2+-transportation and

translocation of nuclear factor of activated T cells (NFAT) (41). Other

metabolic enzymes and their products associated with glucose and

immunometabolism have been reviewed elsewhere. These pathways

include PPP (42), TCA cycle (43, 44), serine biosynthesis and one-

carbon metabolism (45, 46), glutamine metabolism (47), and arginine

metabolism (48).
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Glucose metabolism, reactive oxygen
(ROS) and reactive nitrogen species
(RNS) production in macrophages, and
their action on bactericidal function

Reduction-oxidation (redox) reactions occur in various metabolic

processes including glycolysis, TCA cycle, but predominantly in the

electron-transport chain (ETC) of mitochondria, which is essential

for the generation of energy (ATP) for living cells. Oxidants, typically

reactive oxygen species (ROS), are produced as the byproducts of

redox reactions in ETC (49, 50). The major cellular redox reactions

are conversions between NAD+ and NADH, NADP+ and NADPH,

and FAD and FADH2. NAD+ is reduced/converted into NADH

during glycolysis (two molecules) and in TCA cycle (three

molecules) (51). NADH is re-oxidized to NAD+ by either lactate

dehydrogenation (LDH) which catalyze the conversion of pyruvate

into lactate, or by the ETC complex I through which, one proton and

two electrons are released and ROS (O2
.-) is formed when the

electrons are added to O2 (51, 52). Paralleling the glycolysis
FIGURE 1

A diagram of glycolysis and glycolic enzymes involved in the regulation of immune responses.
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initiating at glucose-6-phosphate, the pentose-phosphate-pathway

(PPP) generates NADPH (from NADP+) from pentose as well as

ribose 5-phosphate, a precursor for the synthesis of nucleotides.

Similar to NAD+/NADH, NADPH is oxidized by NADPH oxidase

(NOX) to be converted back to NADP+ and ROS is formed when the

released electrons are added to O2 (53). NOX is a membrane-bound

flavocytochrome, containing two molecules of heme and one

molecule of flavin adenine dinucleotide (FAD) with a spectroscopic

absorbancemax of 558 nm. For this reason, NOX is also referred to as

flavocytochrome b558 which contains p22phox (a-subunit, the

production of the CYBA gene) and NOX2/gp91phox (b-subunit,
CYBB gene) (54). NOX is found in functional phagocytes including

neutrophils, eosinophils, monocytes, dendritic cells, and macrophages

(55). The third pair of redox reaction is FAD and FADH2, which are

bound to succinate dehydrogenase complex (SDH). The substrate of

SDH is succinate, an intermediate of TCA cycle, which is synthesized

directly from succinyl-CoA. Succinate synthesis is enhanced in M1-
Frontiers in Immunology 04
MFs due to the inhibition of TCA cycle (9). In addition, succinate can

also be synthesized via glutamine-dependent anaplerosis or the g-
aminobutyric acid (GABA) shunt, which promotes and maintains

polarization of M1-MFs (56). SDH is a part of ETC Complex II, and

mediates oxidation of succinate into fumarate. This reaction is

coupled with the reduction of ubiquinone (UQ) to ubiquinol

(UQH2) coupling with the oxidation of FADH2 to FAD. When

high amounts of succinate are oxidized to fumarate under low

oxidative phosphorylation conditions, electron flux moves in the

opposite direction of ETC, from complex II toward complex I,

leading to reverse electron transport (RET) and generating ROS (9,

57, 58) (Figure 2). The production of mitochondrial ROS is also

mediated by immunoresponsive gene 1 (IRG1), which utilizes b-
oxidation of fatty acids to generate ROS and improved activity of ETC

increases ROS production in phagosomes thereby augmenting

bactericidal activity (59). On the other hand, IRG1 is also called

Aconitate Decarboxylase 1 (ACOD1), an important enzyme in the
FIGURE 2

Up-regulated production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in M1- macrophages. Increased production of NADH
from reduction of NAD+ via glycolysis fuels the electron transport chain (ETC) complex 1 to generate O2

.-; NAD+ is continuously replenished by
upregulated NAD+ de novo synthesis from tryptophan metabolism. Increased production of NADPH via the pentose-phosphate-pathway (PPP), which is
also up-regulated in M1- type macrophages (MFs), fuels the ETC to produce O2

.-. O2
.- is also generated via succinate dehydrogenase (SDH) which is

coupled with FADH2/FAD redox reaction in complex II of ETC. In M1-MFs, RNS is derived from nitric oxide (NO) which is produced by arginine
metabolism through iNOS/NOS2. Mitochondrial ROS/RNS regulates phagocytosis, bacterial killing, and polarization towards M1-MFs via ATG and MAPK
activation. Additional symbols: 1,3-BPG, 1,3-bisphosphoglyceric acid; a-KG, alpha-ketoglutarate; ATG, Autophagy regulating gene; CIT, citrate; DHAP,
dihydroxyacetone phosphate; F-1, 6-P, Fructose-1, 6-biphosphate; F-6-P, Fructose-6-phosphate; FUM, fumarate; G-3-P, glycerol-3-phosphate; G-6-P,
glucose-6-phosphate; GABA, g-aminobutyrate; GA, glutaminase; GABA-T, GABA transferase; GAD, glutamate decarboxylase; GDH, Glutamate
dehydrogenase; Gln, glutamine; Glu, glutamate; GLUT1, glucose transporter protein type 1; iCIT, isocitrate; IDO, Indoleamine-pyrrole 2,3-dioxygenase;
Kyn, kynurenine; Lac, lactate; MAL, malate; OAA, oxaloacetic acid Pyr, pyruvate; SSA, succinate semialdehyde; SSADH, succinate semialdehyde
dehydrogenase; SUC-CoA, succinyl-CoA; SUC, succinate.
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TCA cycle, which converts aconitate to itaconic acid that has a

canonical antibacterial role through isocitrate lyase inhibition (60,

61). IRG1 is specifically up-regulated in LPS induced pro-

inflammatory murine M1-MFs (62, 63). ROS are essential for

macrophages to fight against invasive pathogens through the M1-

MF-dependent innate immune defense system, but they also play a

critical role in signal transduction, differentiation, and gene

expression (64, 65). In addition to ROS, cells generate oxidants

through reactive nitrogen species (RNS). RNS are produced from

the reaction of nitric oxide (•NO) with superoxide (O2
•−) to form

highly reactive peroxynitrite (ONOO−) (66) (Figure 2). NO is

synthesized from arginine by NO synthase (NOS2/iNOS) (67, 68).

Macrophages produce both ROS and RNS in response to

phagocytosis and are required for killing of pathogens (69). The

antimicrobial function of macrophages mainly depends on NOS2 and

NOX2 genes which are upregulated in both murine and human M1-

MFs to generate abundant ROS and RNS (70–74). Therefore, M1-

MFs exhibit a high bactericidal function to defend against many

intracellular pathogens including MTB (75). It has been noted that

M1-MFs have lower acidification rate and reduced proton pumping

activity and thereby increased proton moving force compared to M2-

MFs; this facilitates M1-MFs to generate ROS and efficiently control

pathogens (76). Interestingly, NO also enhances the accumulation of

itaconic acid in inflammatory cells increasing anti-bacterial activity

(77); consequently, gene disruption of IRG1 reduces itaconic acid

increasing the susceptibility to MTB infection and lung

immunopathology (78). Paradoxically, for some pathogens, excess

ROS can hijack host immune system and become favorable to

pathogen survival (79). The mechanisms of ROS dependent hijack

are not clear but inhibition of ETC complex I and regulation of TCA

intermediates by NO may provide a plausible explanation (77, 80).
Metabolic profiles of mouse and
human M1- versus M2-MFs during
tuberculosis infection

Metabolic gene expression profiling has revealed a biphasic

metabolic behavior of MTB infection using an animal model (81).

In the early phase post infection (up to 8 hr), the innate immune

system is activated to generate proinflammatory cytokines including

interleukin-1b (IL-1b), IL-6, IL-12, and TNF-a, predominantly in the

M1-MFs. In this early phase, glucose uptake aided by upregulated

GLUT1 is accelerated and the genes of glycolysis are activated to

increase the production of ATP and glycolytic intermediates and

increase the consumption of NAD+. Concurrently, oxidative

metabolism is down regulated indicated by a decrease in key

enzymes of the TCA cycle and mitochondrial ETC complexes in

mice exposed to MTB (82–84). However, as the infection progresses

to 24 and 48 hr, post-infection, the M1- metabolic state of

macrophages is reversed and an increase in TCA cycle and

oxidative phosphorylation with dampened glycolysis are observed

suggesting a switch towards M2-MFs (9, 81, 85). These data are

consistent with increased glycolysis and reduced TCA proteins in

human M1-MFs and switch towards M2-MFs observed using

proteomics analysis in our lab (86). Whereas most proteins of the
Frontiers in Immunology 05
ETC complexes II-IV were down-regulated, majority of proteins in

complex I were up-regulated in human M1-MFs (86).

Although many metabolic profiling studies have been done using

mouse macrophages, recent studies are focusing on human

macrophages (86–92). For example, mice are more susceptible to

tuberculosis whereas nearly 90% of humans exposed to tuberculosis

develop latent infection indicating a better control by their

macrophages. In this direction, Gleeson, et al. identified that lactate

derived from glycolysis-generated pyruvate, is increased in M1-MFs

when activity of TCA cycle is down-regulated, suggesting it as a key

player during metabolic remodeling in MTB-infected human

macrophages (93). Treatment of resting human macrophages with

exogenous lactate caused a decrease in extracellular acidification rate

while an increase of oxygen consumption rate (analogous to oxidative

phosphorylation), resulted in an increased capacity to kill MTB

possibly through autophagy (94). The same study also found that

tuberculosis antimicrobial drugs, such as clofazimine, reshaped the

immunometabolic profiles of MTB infected human macrophages

towards oxidative phosphorylation similar to the effects of

lactate (95).

On the other hand, Cumming, et al. found that in MTB-infected

human monocyte-derived macrophages (nondifferentiated/resting

state) both glycolysis and oxidative phosphorylation were

suppressed leading to a state of metabolic quiescence resulting in a

decrease of ATP production in mitochondria and a switch from

dependency on glucose to fatty acids (88). This study suggested that

MTB promoted polarization of macrophages towards M2-MFs. We

suggest that this discrepancy could arise when the starting monocyte-

macrophage populations are different. Nonetheless, there seems to be

a consensus that MTB infected human macrophages undergo a

transition from M1-MFs during early phase of infection to M2-

MFs during late phase similar to the mouse data (81).

Interestingly, pharmaceutical modulation with histone

deacetylase inhibitor, suberanilohydroxamic acid (SAHA) promoted

the glycolysis rate of human macrophages with increased production

of pro-inflammatory cytokine IL-1b (a marker of M1-MFs) and

decreased production of anti-inflammatory cytokine IL-10 (a marker

of M2-MFs) during the early stage of MTB infection associated with

enhanced T helper cell responses ex vivo (87). In this direction, we

recently reported RNA-seq based transcriptomic data supporting

metabolic profiling; genes of glycolysis, TCA cycle, and ETC

complexes were all up-regulated that MTB infected in M1-MFs at

24 hr post infection (6). We further demonstrated that human M1-

MFs expressed unique innate immune response genes to defend

against tuberculosis through increased production of NO, accelerated

autophagy- dependent killing of MTB and increased antigen

presentation to T cells through an ATG-RAB7-cathepsin pathway

(6). Taken together, these data indicate that MTB infection promotes

naïve macrophage polarization progressively from M1-MF to M2-

MF phenotype. The biphasic metabolic switch observed using ex-vivo

MTB-infected human macrophages is similar to that of mouse

macrophages infected with MTB. However, mice still develop

progressive tuberculosis after aerosol infection with MTB unlike

humans suggesting that differences in metabolic regulation of M1-

vs. M2-MFs may exist. For example, we found that sirtuins were

differentially expressed by MTB infected M1 and M2-MFs unlike

similarly infected in mouse MFs (96). The metabolic basis for the
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differences in the antimicrobial function of M1 vs. M2-MFs is

discussed below.
Glucose has a profound impact
on immunometabolism
and autophagy in human MFs

Glucose metabolism and glycolysis are key players in

inflammatory response (10). In mouse M1-MFs exposed to

pathogens, both glycolysis and GLUT1 expression are upregulated
Frontiers in Immunology 06
in the early phase of infection to facilitate rapid glucose uptake and

consumption, resulting in eventual depletion of glucose, increased

acidification of the microenvironment, both of which can be

detrimental to proliferating pathogens (8, 9, 97). In addition to

ROS/RNS discussed above, another bactericidal mechanism of

macrophages is autophagy which is regulated by nutritional and

metabolic states (98). Autophagy is generally induced by decreased

availability of glucose or other nutrients such as amino acids

(Figure 3A). In contrast, it can be stimulated by metabolites such as

fatty acids and ammonia. Under nutrition-restricted conditions,

glucose, acetyl-CoA, and amino acids are depleted, and NAD+
B

A

FIGURE 3

Impact of glucose metabolism on autophagy in macrophages during tuberculosis. (A) Regulation of autophagy by glucose homeostasis (Left: glucose
starvation; Right: glucose repletion) dependent metabolic sensor kinases. Description of the scheme is referred to the text. (B) Glycolysis-promoted
histone lactylation and acetylation during macrophage polarization. Upregulation of glycolysis in M1-Mfs increases lactate production from pyruvate;
however, excess of lactate provided exogenously pushes the equilibrium of the conversion between pyruvate and lactate further to the synthesis of
citrate from pyruvate and the former is broken up to acetyl -CoA by ACLY; this results in the elevation of both global histone acetylation and acetylation
of chromatins associated with the promoters of genes which promote polarization towards M2-Mfs.
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accumulates leading to an increase in the NAD+/NADH ratio (51)

which in turn, regulates autophagy (99, 100). Several metabolic-

sensor kinases also regulate this process (Figure 3A).

The target of rapamycin complex 1 (mTORC1) of the mTOR

complex is a positive regulator of glycolysis and is activated in M1-

MFs. Whereas mTORC1 inhibits autophagy, inhibition of mTORC2

activates the process. Roberts et al. demonstrated that during glucose-

limiting conditions, HK2 binds and inhibits mTORC1 thereby

activating autophagy, whereas in glucose-repletion condition,

glucose-6-phosphate (G6P) inhibits the binding of HK2 to

mTORC1 to suppress autophagy (101, 102). Therefore, HK2 and

G6P are pharmaceutical targets to induce autophagy in glucose-rich

condition. Indeed, Metformin, a biguanide antidiabetic drug, lowers

G6P in hepatocytes by activation of glucose phosphorylation, which is

downstream of glycolysis and triggers autophagy (103, 104). This

means that during early phase of infection of macrophages, high

glucose intake produces excess ATP that activates ROS-dependent

oxidative stress response and thereby up-regulated pro-inflammatory

cytokines but this process also reduces autophagy without

pharmacological intervention (102, 105). However, during the later

phase of infection of macrophages, glucose and other nutrients are

depleted, resulting in activation of autophagy and ROS level.

The second class of kinases is the AMP-activated kinases

(AMPKs) which activate autophagy. Under glucose starvation,

AMPK promotes autophagy by directly activating ULK1 through

phosphorylation of Ser317 and Ser777 (106, 107), which can be

prevented by mTORC1 that phosphorylates Ulk1 at Ser757 (106,

107). Glycolysis provides most of ATP in M1-MФs which is

hydrolyzed into ADP and further into AMP, generating energy

needed by cells. During glucose starvation, the AMP/ATP ratio

increases leading to the activation of AMPK (108). Activation of

AMPK inhibits mTOR resulting in an increase of autophagy (109,

110). Seemingly redundant to mTORC1, the RAS/cAMP-dependent

protein kinase A (PKA) signaling pathway also regulates the

induction of autophagy in yeast and mammals (111, 112). In

addition to mTORC1 and PKA, Akt in the PI3K/Akt signaling

pathway also regulates autophagy. Akt inhibits autophagy through

phosphorylating the C-terminal Ser279 of Beclin-1 in the core

autophagy machinery independent of mTORC1 (113, 114).

Interestingly, during glutamine deprivation or hypoxia, a glycolytic

enzyme – phosphoglycerate (PGK1), also directly phosphorylates the

N-terminal Ser30 of Beclin-1 leading to enhanced VPS34 activity and

subsequent autophagy (115). Of note, phosphorylation of Beclin-1 at

N-terminus or C-terminus has different effects on autophagy;

phosphorylation at the N-terminus enhances autophagy while at

the C-terminus inhibits. Akt is a major mediator of insulin

signaling and has been reported to be involved in mediating obesity

and type 2 diabetes-related inflammatory disease (116). Metformin

inhibits Akt activating autophagy, which is consistent with its

activation of autophagy by lowering G6P as a result of inhibition of

glucose flux and glycolysis (117). Deletion of Akt promotes

macrophage polarization towards to M1-MФs and increased NO

synthesis from arginine (118, 119). These observations suggest that,

besides its antidiabetic effect, metformin can significantly reduce the

risk of TB in patients with diabetes mellitus (120). Contradictory

findings on the relationship between glucose metabolism and

autophagy have been also revealed. Collins and coworkers reported
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that loss of mTORC1 in macrophages enhanced pro-inflammatory

functions which are normally related to M1-MФs with upregulated

glycolysis and activation of mTORC1 (121). These results were

evaluated using rapamycin to polarize mouse and human

macrophage models (122). The discrepancy can be explained by the

differential localization of mTOR in lysosomes under M1- and M2-

conditions (119). Mechanistically, it is known that, under starvation

of glucose, a p38 MAPK-dependent pathway can trigger autophagy

independent of the AMPK-mTOR pathway (123). We illustrate a

diagram of Mtb-killing or survival during autophagy or nitric oxide

(NO) through metabolite-sensing kinases corresponding to glucose

homeostasis (Figure 3A).

During MTB infection of macrophages, glucose metabolism plays

a significant role centered around autophagy. Glucose is a major

metabolic source producing ac-CoA through glycolysis and SAM

through serine biosynthesis and one-carbon metabolism. Ac-CoA

and SAM are the necessary cofactors of histone acetyltransferases and

methyltransferases (including DNA methyltransferases); further,

glycolysis consumes NAD+ that is an essential cofactor of histone

deacetylases. It is evident that glucose metabolism controls the level of

cofactors and thereby, the epigenetic regulation through histone

acetylation and methylation (and DNA methylation) which is

further reviewed below. IFN-g which drives M1-MFs promotes a

metabolic switch from oxidative phosphorylation to glycolysis, a

process similar to the Warburg effect of hypoxia in cancer cells.

Increased glycolysis causes the production and enrichment of copious

lactate. Interestingly, Zhang et al. identified that histones can be

modified by lactylation, and increased lactate promoted histone

lactylation and polarization towards M2-MFs (124). These data

suggest that M1-MFs can self-differentiate into M2-MFs after

prolonged glycolysis culminating in excess lactate. Noe et al. also

show that glucose is still required for M2-MF polarization; under

glucose starvation, exogenously added lactate matching the measured

concentration of lactate produced by IL-4 primed M2-MFs rescued

the loss of lactate endogenously produced from glucose metabolism.

This process enriched citrate from pyruvate by the half-blocked TCA

cycle, and subsequently increased ac-CoA after ACLY cleavage

resulting in global histone acetylation and M2 gene promoter-

specific acetylation (Figure 3B) (125). Together, these observations

indicate that lactate is a driver of M2 polarization from either M0- or

M1-MFs. Interestingly, the lactate-treated M2-MFs had increased

capacity to kill MTB possibly through autophagy (94). However, it

remains unclear how histone lactylation is regulated and whether it

causes histone acetylation to promote autophagy during TB.
Acetyl-CoA production from glycolysis
is regulated by protein acetylation
and sirtuins

Proteins acetylation dictates how cells choose glycolytic versus

oxidative metabolism as a function of energy availability and then

determine storage or utilization of carbon source (126, 127). Being a

fundamental building block for fatty acid synthesis, ac-CoA is a

necessary co-substrate of protein acetyltransferases to provide acetyl

groups for acetylation of proteins, mostly on the ϵ-amino group of
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lysine, but also on the hydroxyl groups of serine, threonine, and

tyrosine specifically among bacteria (128). Though it can be formed

by fatty acid b-oxidation, amino acid catabolism, and break-up of

citrate, ac-CoA is mainly produced by glycolysis (129, 130). Many

enzymes in glycolysis, TCA cycle and proteins in mitochondria are

the substrates of histone acetyltransferases whose acetylation sites

have been identified by proteomics; nearly two-thirds of glycolic and

TCA cycle enzymes show acetylation sites (14). Acetylation promotes

or inhibits the activities of these enzymes, thereby increasing or

decreasing the production of metabolites (129, 131). For instance,

the enzymatic activity of phosphoglycerate mutase-1 (PGAM1), a

protein critical for glycolysis, is regulated by glucose availability and

SIRT1-dependent reversible deacetylation (15). When glucose is

available, acetylation of PGAM1 stimulates catalysis. When glucose

is restricted, SIRT1 levels increase, leading to deacetylation of PGAM1

and decrease in its enzymatic activity (15). Another positive

correlation between acetylation and enzymatic activity is SIRT2

expression during iPSC reprogramming when OCT4 induces miR-

200c-5p to suppress the expression of SIRT2 via microRNA binding

sites in its coding sequence. As a result of downregulation of SIRT2,

the activities of glycolytic enzymes (ALDOA, GAPDH, PGK1, ENO1

and PKM1/2) are increased due to elevated acetylation levels of these

proteins (132). In contrast, acetylation of some glycolic enzymes can

reduce their activity. It was reported that PKM2, a pyruvate kinase

which is involved in the last step of glycolysis to produce pyruvate and

ac-CoA, is acetylated at K305 by p300/(CREB binding protein)

associated factor (PCAF) resulting in a decrease of its enzymatic

activity (133). Moreover, acetylation of PKM2 enhanced its

interaction with HSC70 and promoted its lysosome-dependent

degradation via chaperone mediated autophagy under high glucose

intake (133). Deacetylation at K305 by SIRT2 inhibits the pyruvate

kinase of PKM2 by promoting its tetramerization (134), whereas

deacetylation at K433 by SIRT6 inhibited the pyruvate kinase of

PKM2 by suppressing its nuclear localization (135). The decrease of

both enzymatic activity and protein level resulted in the accumulation

of glycolytic metabolites upstream of PKM2, including FBP (fructose-

1, 6-bisphophate) and G6P (glucose-6-phosphate). FBP was then

found to couple with glycolytic flux to activate Ras and its

downstream targets MEK and ERK driving autophagy (136); in

contrast, G6P inhibited autophagy during glucose depletion (101,

102, 137). Interestingly, desuccinylation at K311 by SIRT5 counters

acetylation at K355 and K433 to activate the pyruvate kinase of PKM2

by promoting its tetramer-to-dimer transition and nuclear

localization, thereby blocking macrophage IL-1b production and

preventing dextran sulfate sodium (DSS)-induced colitis in mice

(138). These observations suggest that glucose metabolism and ac-

CoA production are regulated by the acetylation states of glycolytic

enzymes and sirtuin proteins play a major regulatory role.

Histone acetylation is responsive
to metabolite levels
and regulates autophagy

Acetylation of histones is a critical epigenetic modification that

changes chromatin architecture and regulates gene expression. Many

studies show that metabolism regulates acetylation, and, the changes
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in glucose metabolism can regulate histone acetylation (12, 13, 139).

Using multiplexed stable isotopic labeling by amino acids in cell

culture (SILAC)-based proteomics, Locasale’s lab found that the

acetylation levels of half of identified histone acetylation sites and

lysine acylation modifications at these sites were modulated by the

rate of glycolysis and that histone acetylation levels were strongly

correlated with ac-CoA levels and inversely associated with the ratio

of ac-CoA to free CoA (11). However, glycolysis-generated, ac-CoA-

dependent histone acetylation was competitively regulated by citrate-

generated ac-CoA by ATP-citrate lyase (ACLY) (140–142). Moreover,

the production of ac-CoA seems to be counter-balanced by utilization

of ac-CoA to form lactate from pyruvate via LDH, reaction with OAA

to form citrate entering the TCA cycle, acetylation of amino acids, and

synthesis of fatty acids and other molecules in various metabolic

pathways. Therefore, histone acetylation regulates metabolism and

macrophage activation, whereas acetylation is fine-tuned by

metabolism in polarized macrophages (143, 144). LPS/IFN-g
promotes polarization towards M1-MFs characterized by up-

regulated glycolysis and production of pro-inflammatory cytokines,

such as IL-1b whose expression is enhanced by histone acetylation

(145). The acetylation was thought to be due to the increased

production of ac-CoA from elevated glucose metabolism and

upregulated ACLY that reciprocally up-regulates glycolytic gene

expression (146, 147). Higher levels of histone acetyltransferase

MOF expression and acetylation at histone H4K16 were detected in

inflammatory macrophages at the wound sites of diet-induced-obese

mice compared to the anti-inflammatory macrophages in the healing

phase (148). In addition, ACLY-mediated citrate metabolism in the

TCA cycle contributes to the production of ROS and RNS in

inflammatory cells (149). In contrast, Noe and co-workers reported

that ACLY activation also promoted naive M0 to M2 polarization

through the lactate-citrate-ac-CoA route for histone acetylation in

tumor microenvironments (TME) (125). It remains unclear whether

data from animal studies can be translated to humans although, some

studies do reveal a positive correlation. For example, Vlad et al. found

that histone acetylation, the expression of histone acetyltransferases

p300, and the expression of NADPH oxidase-5 (Nox5) were all

elevated in human atherosclerotic specimens. They were co-

localized in the area of CD45+/CD68+ immune cells and lipid-rich

deposits within atherosclerotic plaques (150); in these

microenvironments, increased glucose intake and enhanced

glycolysis were proposed (151). Consistently, ACLY was activated

in inflammatory macrophages and human atherosclerotic plaques

(152). In contrast, inhibition or silencing of Slc25a1, a transporter of

citrate, resulted in decreased production of NO, ROS, and PGE2 in

U937 cells (153) and inhibition of ACLY had the same effects (154).

However, the role of ACLY in macrophage polarization was

challenged by Namgaladze et al. who found that silencing ACLY

expression using CRISPR/Cas9 in human THP-1 cells did not

attenuate IL-4 induced gene expression as ACLY inhibitors did and

concluded that ACLY might not be the major regulator of

nucleocytoplasmic ac-CoA contributing to IL-4-induced M2-MF
polarization of human macrophages (155). Erika Palmier and

coworkers performed 13C tracing experiments using [U-13C]-

glucose and glutamine and found that NO inhibited mitochondrial

aconitase (ACO2) resulting in blockade of TCA, and that

inflammatory macrophages rerouted pyruvate away from pyruvate
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dehydrogenase (PDH) in an NO-dependent but hypoxia-inducible

factor 1a (HIF1a)-independent manner. This process promoted

glutamine-based anaplerosis which sustained the TCA cycle using

the glutamine generated aKG and OAA from pyruvate carboxylation

(80). This suggested that ac-CoA generated from glycolysis would be

reduced resulting in decreased histone acetylation in M1-MFs due to

NO-mediated inhibition of PDH. This is an intriguing cross

regulation by NO in M1-MFs that needs additional investigation.

Besides production of ac-CoA from metabolism, histone

acetyltransferases themselves also determine the acetylation level of

histones and expression of autophagy genes. Fullgrabe et al.

demonstrated that induction of autophagy by starvation or

rapamycin inhibition of mTOX was coupled to reduction of histone

H4 lysine 16 acetylation (H4K16ac) through downregulation of the

histone acetyltransferase hMOF/KAT8/MYST1 in both mouse

embryonic fibroblasts (MEF) and human transfected cells (156).

However, downregulation of histone acetylation and hMOF also led

to a transcriptional repression of autophagy genes based on a

feedback mechanism, preventing chronic autophagy that could lead

to cell apoptosis (156).
Sirtuins and NAD+ regulate protein/
histone deacetylation and autophagy-
mediated killing of bacteria

Sirtuins and antimicrobial mechanisms

Sirtuins, the class III histone deacetylases (HDAC), are crucial

regulators of inflammation and immune cell metabolism and function

(157–159). Metabolism is controlled not only by histone acetylation

but also deacetylation. Activities of sirtuins are dependent of NAD+,

NADH, or their ratio as NAD+ is their essential co-substrate (160).

There are seven currently known sirtuins (SIRT1-7). Each sirtuin

isoform is located at a specific compartment of the cell and has its

specific preferred substrate. SIRT1, SIRT6, and SIRT7 are

predominantly located in the cell nucleus (161). SIRT1 also exists

in cytosol and is a master metabolic regulator and the most studied

sirtuin protein so far; it is downregulated in cells with high insulin

resistance and its overexpression increases insulin sensitivity (162–

164). High concentration of glucose significantly downregulates

SIRT1 expression at both mRNA and protein levels, which is

related to upregulation of pro-inflammatory cytokines, IL-1b and

TNF-a in RAW264.7 macrophages (165). On the other hand, SIRT1

is up-regulated under calorie-restrict conditions known to extend life-

span (166, 167). SIRT1 also stimulates autophagy by deacetylating

autophagy-related proteins (ATG) including ATG5, ATG7, and LC3

which are required for autophagy in cultured cells, embryonic and

neonatal tissues (168, 169). SIRT1-dependent mechanism of

autophagy induction is not clear; it may stabilize ATG proteins by

forming a complex with them to prevent from degradation or prevent

deacetylation at the promoters of ATG5 and ATG7 genes by other

sirtuins due to its usage of NAD+ thereby activating expression of

ATG5 and ATG7 (170). SIRT1 can also promote autophagy by

activating AMPK to improve mitochondrial function (171),

inhibiting the mTORC1 signaling pathway (172), and enhancing
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transcriptional activities of FOXO1 and FOXO3 through their

deacetylation (169). Cheng and co-workers reported that MTB

infection down-regulated SIRT1 in animal models and patients with

active TB. Activation of SIRT1 by its activators, such as Resveratrol,

not only induced autophagy but also dampened MTB-mediated

chronic inflammation via deacetylation of RelA/p65 and impaired

binding of RelA to the promoter of inflammatory genes (173). Similar

results were obtained by others using mouse models (174). Another

mechanism of the anti-TB property of SIRT1 was revealed by Yang,

et al. who found that activation of SIRT1 prevented cell death in

MTB-infected macrophages through BAX and GSK-3b (175, 176). In

addition, SIRT1 activators also enhanced anti-TB drug efficacy (173).

Interestingly, SIRT1 inhibition by sirtinol has also been reported to

induce autophagy and autophagic cell death in MCF-7 cells (177).

The mechanism is not known. Off target effects on NAD+

biosynthesis and/or salvage pathways is possible, since an enhanced

activation of these pathways increases autophagy (178). SIRT6 is

essentially a deacetylase of histones H3 and H4, which changes

chromatin density and regulates gene expression and is required for

normal base excision repair and double-strand break repair of DNA

damage in mammalian cells (179). SIRT6, together with histone

H3K9 methyltransferase G9a, participate in inflammatory response

in macrophages, contribute to the IFN-sterol antiviral activity, and

play an active role in inflammation-mediated glucose intolerance

during obesity (180, 181). SIRT6 seems to facilitate MTB survival in

macrophages by epigenetically modulating host cholesterol

accumulation (182). SIRT7 was originally found to facilitate the

transcription of DNA by DNA polymerase I, DNA polymerase II,

and DNA polymerase III (183, 184). It has recently been found as a

nutrient sensor similar to SIRT1 during glucose starvation or calorie-

restricted diet and its depletion causes impaired activation of

autophagy (185). The effects of SIRT7 on tuberculosis

remain unclear.

SIRT2 is mainly cytoplasmic and also exists in nuclei where it can

deacetylate histones. SIRT2 suppresses T cell metabolism by targeting

key enzymes involved in glycolysis, TCA cycle, fatty acid oxidation,

and glutaminolysis. SIRT2-deficient murine T cells and SIRT2

blockaded human tumor-infiltrating lymphocytes showed increased

glycolysis and oxidative phosphorylation, enhanced proliferation and

effector functions and thereby superior antitumor activity (186).

SIRT2 dysregulated autophagy in high-fat-exposed mouse immune-

tolerant and hypo-inflammatory macrophages (187). We found that

the expression of SIRT2 was higher in MTB-infected human

peripheral blood derived M2-MFs which had lower autophagy

activity than M1-MFs infected with MTB (6). Pharmaceutical

inhibition of SIRT2 increased autophagy and killing of MTB by

M2-MFs; morover, SIRT2 blockade combined with anti-TB drug

dramatically increased MTB clearance in macrophages (6) (our

unpublished data). Although Cardoso, et al. claimed that SIRT2

blockade only had a transient effect on MTB infection of mice

(188), it is likely that human and mouse macrophages differ in

sirtuin dependent regulation.

SIRT3, SIRT4, and SIRT5 are all found in the mitochondrial

compartment and therefore implicated in regulating metabolic

processes by deacetylating mitochondrial proteins. SIRT3 showed

anti-inflammation property and mitigated endotoxin-induced acute

lung injury (189). In MTB-infected macrophages, SIRT3 is down-
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regulated resulting in reduced expression of SIRT3-target genes

including IDH2 and ETC complex I subunits and consequent

accumulation of isocitrate, reduction of ETC complex I and II

activity, lower GSH/GSSG ratio, and increase mtROS, promoting

cell death (190). Paradoxically, activation of SIRT3 is necessary for

autophagy and can provide protection for mitochondria in MTB-

infected macrophages (191). However, anti-TB activity of SIRT3 is

dependent on its genetic variants; for example, the minor allele

genotype (A carriers) of rs3782118 shows a decreased risk of TB

susceptibility, whereas the haptotype AGAAG (containing the major

allete G of rs3782118) is associated with an increased risk of TB (192).

SIRT4 is a mitochondrial ADP-ribosyltransferase that inhibits

mitochondrial glutamate dehydrogenase 1 (GLUD1) activity,

thereby downregulating insulin secretion in response to amino

acids (193). SIRT4 shows opposite activity of SIRT1 and SIRT3

(194) and it counters SIRT1 and SIRT3 activity by suppressing

their expression by rebalancing glycolysis and glucose oxidation

during recovery of acute inflammatory response in monocytes (195).

SIRT5 exhibits multiple enzymatic activities, as it is a deacetylase,

desuccinylase, and demalonylase, and capable of removing acetyl,

succinyl, and malonyl groups from the lysine residues of proteins

(196, 197). SIRT5 has dual functions of increasing ammonia

production via promoting glutaminolysis and removing it by

activating urea cycle. SIRT5 deacetylates and regulates carbamoyl

phosphate synthetase (CPS1), the rate-limiting and initiating step of

the urea cycle in liver mitochondria and therefore plays a critical role

in ammonia detoxification (14, 197). On the other hand, SIRT5

stabilizes glutaminase (GLS) by desuccinylation, the enzyme

transforming glutamine into glutamate generating ammonia (198).

As ammonia is a diffusible regulator of autophagy (199), the

regulation of autophagy by SIRT5 may be dependent on net

ammonia concentrat ion produced and consumed from

glutaminolysis and urea cycle. Indeed, Polletta et al. demonstrated

that in human breast cancer MDA-MB-231 and mouse myoblast

C2C12 cell lines, ammonia production was increased when SIRT5

was silenced and decreased in SIRT5-overexpression cells (200).

Morover, when GLS was activated by SIRT5, production of

ammonia was increased and consequently autophagy activity was

increased, whereas inhibition of SIRT5 decreased both ammonia

production and autophagy (200). SIRT5 is therefore appears to be a

potential regulator of autophagy and has additional, tangential effects

like desuccinylation of mitochondrial proteins (201). Desuccinylation

of ETC complex I and II occurs upon the binding of SIRT5 to the

mitochondria-exclusive phospholipid-cardiolipin, which maintains

the integrity of ETC residing on the inner mitochondrial membrane

hence promoting the oxidation of NADH into NAD+ and the

production of ROS and ATP (202, 203). Further, SIRT5 can

desuccinylate glycolytic enzyme PKM2 causing its deactivation; in

LPS activated but SIRT5 knock-out macrophages, IL-1b production

was boosted due to an increase in succinylation of PKM2,

demonstrating that SIRT5 is related to anti-inflammation (138). In

our studies, we found that SIRT5 was up-regulated in MTB-infected

and -uninfected human M1-MFs in contrast to SIRT2 which was up-

regulated in M2-MFs (6). We found that both inflammatory IL-1b
production and autophagy were up-regulated in MTB infected M1-

MFs unlike mouse macrophages (6, 96), and in contrast with Wang,

et al. (138), we found that SIRT5 was related to a pro-inflammatory
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response. These issues underscore sirtuin- dependent differences

between human and mouse macrophages. In cancer studies, SIRT5

was found to be downregulated in gastric cancer tissues and it

enhanced autophagy via the AMP-activated protein kinase-mTOR

signaling pathway (204). From these observations, we propose a

tentative conclusion, though debatable, that of the seven sirtuin

proteins, SIRT1, 3, 5, and 7 perform a protective function against

infections with MTB whereas, SIRT2, SIRT4 and SIRT6 interfere with

macrophage pathways facilitating pathogen survival. However, it is

also likely that sirtuins are interdependent and compete with the

shared resource of NAD+; for example, activity of one sirtuin protein

may be enhanced by inhibition of another one. An example is that

SIRT5 counters the inhibitory effects of SIRT2 and enhances the

innate immune responses in macrophages by blocking SIRT2-

dependent deacetylation of RelA/p65 activating NF-gB and

increased production of downstream cytokines (205).
Sirtuins and arginine metabolism

An intriguing effect of SIRT5 is its ability to regulate arginine

metabolism and NO production. As discussed above, SIRT5

deacetylates, desuccinates, and deglutarylates CPS1 to promote the

formation of carbamoyl phosphate from ammonia in the urea cycle

(196, 197). This process potentially increases the synthesis of

citrulline because of interaction between carbmoyl phosphate and

ornithine (Figure 4). Interestingly, acetylated glutamate (NAG)

additively activates CPS1 (206). With the aid of catalytic enzyme

arginosuccinate synthetase (ASS1), citrulline reacts with aspartate to

form arginosuccinate which is then converted into arginine and

fumarate by argininosuccinate lyase (ASL). Both ornithine and

aspartate can be acetylated in macrophages. Therefore, it appears

that acetylation of amino acids (glutamate, aspartate, and ornithine)

and SIRT5 are involved in the conjugated urea cycle and arginine

metabolism cycle. Nitric oxide, the RNS (reactive-nitrogen-species)

precursor, is produced by arginine oxidation with the help of iNOS/

NOS2. Increased citrulline can replenish arginine consumption for

oxidation (207). We propose that an identification of the targets and

functions of SIRT5 using mouse liver and human kidney cells can

shed a light on the role of SIRT5 during macrophage activation

and polarization.

In this direction, we measured mRNA expression of SIRT5 which

was significantly higher in MTB-infected and uninfected M1-MФs

than in M2-MФs cultured under identical conditions (6). Because we

had detected that a majority of the proteins in the ETC complex I in

M1-MФs was up-regulated (86), we suspected that not only

desuccinylation by SIRT5 but also protein expression of ETC

complex I promote NADH oxidation into NAD+ and ROS in M1-

MФs. We also found an inverse relationship between acetylated

amino acids and acetylated histones (86). Therefore, we speculated

that acetylation of amino acids and acetylation of histones might

compete for ac-CoA to fulfill acetylation; in M1-MФs, glycolysis

generated acetyl-CoA cannot enter the partially blocked TCA cycle

but is consumed by acetylation of amino acids as a consequence of

which, the supply of ac-CoA for acetylation of histones is diminished.

Another possibility is that histone acetylation was reduced by

deacetylation with increased production of NAD+ by ETC complex
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I (86). Interestingly, acetylated aspartate (NAA), glutamate (NAG)

and ornithine (NAO) were not only enriched in M1-MФs but were

also connected with arginine metabolism (Figure 4). Both NAO and

methylated arginine inhibit iNOS/NOS2 required for the production

of NO (208–211). In addition, arginine is metabolized into citrulline

releasing NO to form RNS that is upregulated in M1-MФs. These

intriguing data led us to the tantalizing questions: how does SIRT5

regulate acetylation of amino acids and histones to leverage arginine

metabolism and further, how is RNS production regulated by SIRT5

via arginine metabolism?

We note here that, bacteria including Mtb can synthesize arginine

from glutamate by acetylation. NAG which is synthesized from

glutamate by ArgA and NAO which is synthesized from NAG-5-

semialdehyde by ArgD, are the important intermediates. Because

mutation dependent loss of function for ArgA or ArgD led to

antibiotic resistance in bacteria (212), it appears important to

determine, how amino acid acetylation in macrophages is regulated

by SIRT5 to replenish NAG and NAO during urea and arginine

cycles in relation to drug resistance. Additional studies are warranted

in this area.
Sirtuins and tryptophan metabolism

Deacetylation activities of sirtuins are regulated by the availability

of NAD+. Two and three molecules of NAD+ are respectively

consumed in glycolysis and TCA cycle. NAD+ can be recovered

from NADH oxidation, pyruvate reduction to lactate, and the redox

reaction in ETC complex I. NAD+ can also be de novo synthesized
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salvage pathway (Figure 5). Thus, the overall level of NAD+ is well

regulated under physiologic conditions to maintain optimal

metabolism, appropriate energy production, and proliferation.

Isotope tracing studies performed by Minhas et al. revealed that

macrophage NAD+ was derived substantially from kynurenine

pathway of tryptophan metabolism to maintain normal innate

immune functions, whereas breakdown of this de novo NAD+

synthesis pathway could occur after LPS stimulation. They also

demonstrated that inhibiting the expression of quinolinate

phosphoribosytransferase (QPRT) decreased NAD+ level and

caused innate immune dysfunction during aging and age-related

diseases (213). Another study by Cameron et al. indicated that

synthesis of NAD+ by the salvage pathway drove an immediate

macrophage inflammatory response to LPS (214). The mechanistic

insight was that LPS-induced ROS caused DNA damage through

heightened expression of CD38 and increased PARP activity, a

process which consumes NAD+ to trigger the salvage pathway for

repletion of NAD+ (214, 215).

Using triomics to analyze IFN-g activated but rested and

uninfected human donor derived M1-MFs, we found significantly

increased expression of QRPT and the production of Niacin (aka,

nicotinic acid or vitamin B3) which is the precursor of NAD+; this

indicated up-regulated de novo NAD+ synthesis through tryptophan

metabolism. We proposed that elevated NAD+ level would result in

an increased deacetylation by sirtuins and thereby decreased histone

acetylation. Indeed, we found decreased histone acetylation in

uninfected M1-MFs using mass spectrometric measurements (86).

However, during MTB infection, we propose that NAD+ level could
FIGURE 4

Sirtuin5 plays a vital role in arginine metabolism during macrophage activation and polarization. Arginine is converted into citrulline to release NO in M1-
MFs where iNOS/NOS2 is up-regulated, whereas arginine is converted into ornithine in M2-MFs where ARG1 is up-regulated. In addition, arginine
metabolism is regulated by glutamine metabolism which is involved in the urea cycle by N-acetylglutamate (NAG). NAG which is an allosteric activator
and is required for the initial and rate-limiting enzyme of the urea cycle, carbamoyl phosphate synthetase 1 (CPS1). The formation of this unique co-
substrate from glutamate and acetyl Coenzyme-A is catalyzed by NAG synthase (NAGS). Sirtuin-5 (SIRT5) desuccinates and activates CPS1 to promote
the formation of carbamoyl phosphate from ammonia. Carbamoyl phosphate can modify ornithine to form citrulline through the enzyme ornithine
transcarbomoylase (OTC). Citrulline can react with aspartate facilitated by the catalytic enzyme arginosuccinate synthetase (ASS1) to form
arginosuccinate, which can return to arginine and fumarate through argininosuccinate lyase (ASL). Both aspartate and ornithine can be acetylated to
form acetylated aspartate (NAA) and acetylated ornithine (NAO). Asymmetric di-methylated arginine (ADMA/Rme2) can be hydrolyzed by enzyme
dimethylarginine dimethylaminohydrolase (DDAH) into citrulline and dimethylamine. In bacteria, arginine biosynthesis can start with glutamate
acetylation and a set of bacterium-specific catalytic enzymes (ArgA-H) are involved. Additional Symbols: NAT8L, N-acetyltransferase 8 like; PRMT,
Protein arginine methyltransferase.
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be depleted by glycolysis or the inhibition of NAD+ salvage pathway

by tuberculosis necrotizing toxin (TNT) resulting in the death of

macrophages (216, 217). Further, NAD+ replenishment alone or its

combination with resveratrol (RSV) or cyclosporin A (CsA) can

counter the toxicity of TNT and protect macrophages from MTB-

induced cell death (173, 216, 218). Others found that NAD+ levels can

also be raised by treatment with fatty acid oxidation inhibitors such as

Trimetazidine (TMZ) which induced NADPH oxisase and autophagy

mediated control of tuberculosis (219). Together, these data suggest

that cellular NAD+ concentration controls both sirtuin deaceylase

activity and antimycobacterial function of macrophages.
Pharmacological modulation of sirtuins to
increase antimicrobial mechanisms

Sirtuins have been found as potential immunotherapeutic targets

against tuberculosis because of their regulation of central energy

metabolism via NAD+-dependent deacetylation. It has been
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reported that MTB infection depleted NAD+ level and perturbed

sirtuin activity in MFs (173, 190, 191, 217). Others reported that

inhibition of SIRT2 with AGK2 restricted the growth of both dug-

sensitive and -resistant strains of MTB and enhanced the efficacy of

anti-TB drug Isoniazid in the mouse model of infection (220). In

contrast, SIRT1 activators, such as resveratrol (RES), achieved a

similar outcome by reducing lung pathology, chronic inflammation,

and enhanced the efficacy of anti-TB drugs (173). As previously

noted, hMOF is a specific histone H4K16 acetyltransferase; low

activity of hMOF and low H4K16 acetylation is related to

starvation-induced autophagy, which causes chronic repression of

autophagic genes (156). SIRT1 is a H4K16 specific deacetylase.

Mechanistically, activation of SIRT1 may keep the global H4K16

acetylation at low levels but on the other hand, it may deacetylate and

activate ac-coA synthetase 1 (AceCS1) accumulating ac-CoA from

acetate (221). Moreover, SIRT1 can also deacetylate hMOF to

facilitate its binding to the chromatin at the promoters of

autophagic genes promoting H4K16 acetylation due to increase in

AceCS1 derived ac-Co-A (222). In murine J2-macrophages, the
FIGURE 5

Regulation of Histone acetylation and deacetylation by metabolism-generated acetyl-CoA and NAD+. Acetyl-CoA is an essential co-substrate of histone
acetyltransferase (HAT) that is mainly generated from glycolysis and fatty-aid b-oxidation; it is required for histone acetylation, amino acid acetylation
including forming n-acetyl-aspartate (NAA), n-acetyl-glutamate (NAG), and n-acetyl-ornithine (NAO), and fatty-acid synthesis. NAD+ is an essential co-
substrate of NAD+-dependent histone deacetylases that includes Sirtuin proteins. NAD+ is consumed by glycolysis (2 molecules) and TCA cycle (3
molecules), whereas it is regenerated from NADH oxidation via conversion of pyruvate into lactate and through ETC complex I. NAD+ is biosynthesized
from quinolinic acid, the end product of tryptophan metabolism, catalyzed by the rate-limiting enzyme quinolinate phosphoribosyl transferase (QPRT).
The NAD+ de novo biosynthesis pathway is coupled with and regulated by the NAD+ salvage pathway. Regulation of NAD+ usage and production in MFs
controls Sirt deacetylase activity, and hence, histone acetylation level. Additional Symbols: ACLY, ATP-citrate lyase; NAM, niacinamide; NAMPT,
nicotinamide phosphoribosylransferase; NMN, nicotinamide mononucleotide; NMNAT, nicotinamide nucleotide adenylyltransferase; Orn, ornithine;
PHGDH, phosphoglycerate dehydrogenase; p-Pyr, phosphopyruvate.
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mRNA expression levels of SIRT1, SIRT3, SIRT5, and SIRT7 were all

decreased at 24 hr post-infection of TB, which was also validated

using mouse bone marrow derived macrophages (BMDM) (190). A

detailed study of SIRT3 demonstrated that, over-expression of SIRT3

or treatment with SIRT3 activator Honokiol prevented MTB from

inducing mitochondrial ROS accumulation in murine BMDM and

cell death, whereas reduced expression of SIRT3 in Sirt3-/- mice

increased bacterial burden (190). A similar report revealed that

SIRT3 enhanced anti-TB defense through coordinated

mitochondrial and autophagic functions (191). SIRT7 has

protective effects against TB-infection through regulation of NO

production and apoptosis demonstrated using an in-vitro model

(223). Prakhar et al. observed restricted growth of TB and

development of granulomatous lesion in the lungs and spleen of

SIRT6 heterozygous mice infected with TB (182). Together these data

suggest that the activators of SIRT3, SIRT5 and SIRT7 are potential

anti-TB drugs in addition to the SIRT1 activator-Resveratrol. In

contrast, we found that SIRT2 blockade increases autophagy-

mediated killing of MTB. Of note, there are no data on whether

SIRT4 contributes to anti-tuberculosis immunity.
Prospects for sirtuin modulators as drugs
against tuberculosis

Despite reports that sirtuin inhibitors or activators in

combination with the FDA-approved frontline anti-TB drugs

enhance killing of drug resistant and dormant TB (173, 220, 224),

none has been approved by FDA. Metformin is a direct SIRT1

activator based on computational modeling and experimental

validation (225). Although it is not a TB-specific drug, it shows

therapeutic efficacy for patients who have comorbidity of TB and

diabetes and can be used as a pure adjunctive therapy for TB (226).

Because, small chemical compounds that modulate sirtuin function

have been pursued as anticancer agents (227), we propose that efforts

should be made to use a combination of sirtuin activators and

inhibitors to treat tuberculosis in combination with existing therapies.

Beside sirtuin proteins, the NAD+ biosynthesis pathway may also

be a promising target for tuberculosis therapy. Recent elucidation of

the mechanism of isoniazid (INH), a frontline anti-TB drug, indicated

that INH couples with NADH catalyzed by KatG to form the active

INH-NAD adduct, which in turn, binds tightly to the enoyl-acyl

carrier protein reductase InhA so that the synthesis of mycolic acid

for mycobacterial cell wall formation is inhibited (228). As MTB

depends solely on its own de novo pathway to meet its NAD+ demand

(229), MTB-QPRT provides an attractive target for designing novel

anti-TB drugs (230). Coincidentally, NAD+ in the host M1-MF is

significantly higher than M2-MFs to maintain autophagy and

bactericidal activity. Because of QPRT occurs in both host

macrophages and MTB, its non-specific inhibition would decrease

autophagy mediated killing capacity of macrophages. As crystal

structures of both human and MTB derived QPRT have been

elucidated (229, 231), to avoid toxicity, a drug to selectively target

MTB-QPRT but not human-QPRT based on their structural

difference at the substrate binding sites would be crucial. Quinolinic

acid (QA) is the first intermediate in the de novo pathway of NAD+

biosynthesis that is common to all organisms and is mainly produced
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by the degradation of tryptophan in most eukaryotes. In contrast, in

prokaryotes, including MTB, it is mainly produced from L-aspartate

and dihydroxyacetone phosphate by the enzymes encoded by nadA

(quinolinic acid synthetase) and nadB (L-aspartate oxidase) (232).

Therefore, we propose that a drug to target nadA/B may be an

alternative to QPRT inhibitors to control tuberculosis (233).
Sirtuins intersect the serine
biosynthesis, one-carbon metabolism,
and methylation of DNA and histones

The biosynthesis of serine starts with the oxidation of 3-

phosphoglycerate (an intermediate from glycolysis) by NAD+ to 3-

phosphohydroxypyruvate and NADH catalyzed by phosphoglycerate

dehydrogenase (PHGDH), which is a rate-limiting enzyme (Figures 5,

6); the other two are Phosphoserine aminotransferase (PSAT) and

Phosphoserine Phosphatase (PSPH). Since NAD+ is required for

facilitating the functions of both PHGDH in serine biosynthesis and

GAPDH in glycolysis, serine biosynthesis competes with the glycolysis

pathway. Supporting this concept, serine deprivation in LPS-Simulated

macrophages caused a reduction of pyruvate, decreased NAD+/NADH

ratio, and decreased ROS level, partially resembling M2-MF phenotype

but still maintaining a pro-inflammatory cytokine profile of M1-MFs
(234). However, Rodrigues et al. reported that serine is required for LPS

induction of IL-1b mRNA expression but not inflammasome activation,

because serine is used for conversion to glycine that is needed for

macrophage GSH synthesis to support IL-1b production (235). Serine

is required for the growth of MTB (236). Serine is converted to glycine by

SHMT1 in the cytosol and SHMT2 in the mitochondria, which then

donates one carbon to the folate cycle adjacent to the methionine cycle

throughmethionine synthase (MTR) that in turn, requires vitamin B12 as

a co-substrate. In the methionine cycle, SAM is synthesized from S-

Adenosyl Homocysteine (SAH) with the donation of a methyl group

frommethionine. SAM is an essential co-substrate of methyltransferases,

and provides the methyl group for methylation of histone, DNA and

other biological compounds in the cells. In M1-MFs, up-regulated
glycolysis would increase the supply of 3-phosphohydroxypyruvate for

serine biosynthesis. Because nitric oxide in M1-MFs is toxic to vitamin

B12, the transportation of B12 crossing the cell membrane is inhibited by

hypoxia, and the mitochondrial citramalyl-CoA lyase (CLYBL) appears

to be indirectly involved in the inhibition of vitamin B12 metabolism,

depletion of B12 and as expected, subsequent inactivation of methionine

synthase (MTR). As a result, one-carbon metabolism is hindered

resulting in reduced formation of SAM and consequently, decreased

methylation of histones or DNA (Figure 6). However, increased

extracellular methionine uptake can still be triggered via the feedback

mechanism to restore the loss. Excess methionine increases the

production of SAM and DNA methylation attenuating LPS-induced

inflammation (237). Because hypermethylation in macrophages reduces

pro-inflammatory responses, we propose that a similar mechanism may

favor the survival of MTB (238). Notably, MTB synthesizes its own

methionine and SAM from homoserine which is produced through

aspartate pathway (239, 240). Dinardo et al. performed methylation-

sensitive enzyme-quantitative PCR (MSRE-PCR) and observed that in

the PBMCs of TB-infected patients, pro-inflammatory genes including
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IL-1b and IFN-g were DNA-hypermethylated resulting in dampened

host immune responsiveness (4). MTB mediated hypermethylation of

inflammatory genes is therefore a pathogen evasion strategy.

Proteomics has identified that the one-carbon enzyme, MTHFD1L

(methylenetetrahydrofolate dehydrogenase [NADP+ dependent 1-like])

in the folate cycle, is a substrate for SIRT5 mediated desuccinylation/

malonylation and SIRT5 also interacts with SHMT2 (241–244). In SIRT5

knock-down (KD) melanoma cells, reduced H3K4me3 and H3K9me3

were observed, indicating that reduced SAM production from impaired

one-carbon metabolism of H3K4me3 and H3K9me3 sense the SAM

levels in the cells (243, 245). SIRT5 also desuccinylates and activates

SHMT2 to promote one-carbon metabolism and potential histone

methylation in cancer cells (244). If this is true in immune cells, one-

carbon metabolism and histone methylation would be enhanced in M1-

MFs as SIRT5 is up-regulated based on our RNA-seq data (6), which is

opposite to what we proposed: that one-carbon metabolism would be

down-regulated due to B12 depletion/MTR inactivation discussed above.

In contrast, in breast cancer, SIRT2 regulates the reversible acetylation of
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PHGDH through TIP60 and promotes the binding of PHGDH and

RNF5 to induce PHGDH degradation and reducing serine and glycine

derived from glucose metabolism via the serine biosynthesis pathway in

(246). If this information is also true in immune cells, in M2-MFs
upregulated SIRT2 would reduce serine synthesis from glucose

metabolism potentially resulting in histone hypomethylation.

Therefore, we propose that the methylation state in M1-MFs versus

M2-MF depends on which metabolic pathway is dominant- glycolysis

and glucose intake, serine biosynthesis and intake, one-carbon

metabolism and methionine intake, depending upon specific

tissue microenvironments.

In order to understand how MTB regulates lysine and arginine

methylation or other free amino acids and histones differently in M1-

versus M2-MFs, we will need to use isotope tracers and mass

spectrometry. This will allow us to monitor how methyl migration to

lysine and arginine residues from methionine/SAM produced by glucose

derived serine occurs, and to determine whether serine is synthesized

from intracellular source or directly taken up from extracellular nutrients
FIGURE 6

Histone methylation through one-carbon metabolism and serine biosynthesis in macrophages. Serine is biosynthesized from 3-phophoglycerol (3PG), an
intermediate of glycolysis, by phosphoglycerol dehydrogenase (PHGDH) to form phosphopyruvate (p-Pyr) and catalyzed by phosphoserine
aminotransferase (PSAT) to form phosphoserine (p-Ser) and then phosphoserine phosphate (PSPH) to form serine. With the aid of catalytic enzyme
serine hydroxymethyltransferase (SHMT), serine is further converted into glycine donating one-carbon (a methyl group) to the tetrahydrofolate (THF) in
the folate cycle to form sequentially 5, 10-methylenetetrahydrofolate (5,10-meTHF) and 5-methyl-tetrahydrofolate (meTHF); the methyl group of the
latter is transferred to homocysteine (Hcy) to form methionine (Met) and S-adenosyl-methionine (SAM). SAM is the co-substrate of methyltransferases
for DNA and histone methylation. Methionine and serine can also be respectively delivered from extracellular environment to the cells by their
transporters, L-type amino acid transporter/solute carrier family member 5 (LAT1/SLC7A5) and alanine/serine/cysteine/threonine transporter 1 (ASCT1).
The methyl transfer from meTHF to Hcy needs methionine synthesis (MS/MTR) and its co-substrate vitamin B12. In M1-MFs, elevated nitric oxide (NO)
poisons vitamin B12 causing deactivation of MTR and the disruption of one-carbon metabolism, resulting in reduced Met and SAM for histones/DNA
methylation. In Mycobacterium tuberculosis MTB) infected MFs, independent of vitamin B12, the pathogen can bypass the one-carbon metabolic
pathway to synthesize methionine and SAM through homoserine, a product of aspartate metabolic pathway.
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in naïve versus polarized macrophages. Additionally, using isotope-

labeled aspartate, we may be able to trace the methyl group migrating

through the aspartate-homoserine-homocysteine route to lysine and

arginine in MTB infected macrophages (Figure 6). We will then have a

clear picture of methylation and epigenetic profiles differentially affected

by metabolism in naïve or polarized macrophages infected with MTB.
Conclusion and perspectives

Glycolysis not only generates energy (ATP) to meet the demand

of cells for their surviving but also controls the homeostasis of NAD+

which prevents cells from death and is an essential co-substrate of

sirtuin proteins, the type-III histone deacetylases. Importantly,

glycolysis is also a source of directly or indirectly producing ac-

CoA and SAM, the co-substrates of histone acetyltransferases and

methyltransferases respectively. Upregulated glycolysis in M1-MFs

generates increased ac-CoA from pyruvate and thereby increased

histones acetylation which is counter-regulated by NAD+. NAD+ is

consumed in glycolysis and TCA cycle and other redox processes. It is

also reproduced by oxidation in metabolic pathways such as lactate

synthesis from pyruvate and ETC. Increased NAD+ from de novo

synthesis and the NAD+ salvage pathway would tip the balance

towards hypoacetylation. Glycolysis also links to serine biosynthesis,

a fuel for one-carbon metabolism, and the synthesis of SAM for

histone/DNA methylation. Metabolic switch between M1- and M2-

MFs therefore causes an imbalance of co-substrates (ac-CoA and

SAM) of histone acetyltransferases and methyltransferases thereby

changing the landscapes of acetylation and methylation of histones

and proteins in the metabolic pathways. Consequently, metabolism

controls macrophage gene expression, the production of anti-

mycobacterial oxidants, and autophagy during pathogen infection.

Since the co-substrates produced by metabolites from glucose are

regulated by other metabolic pathways, future work needs to be

focused on the dynamic correlation between metabolism and

histone modifications through measurement of the levels of co-

substrates produced in polarized macrophages and the states of

histone modifications on a time scale. For example, we can use

stable isotope labeled glucose as the major probe during early and

late phase of infection. It is also important to seek an insight into the
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impact of glucose metabolism on the expression of cytokines and

autophagy genes regulated by co-substrates. Moreover, we can use

stable-isotope labeled glutamine and arginine, to probe the

mechanism of how sirtuin proteins control glutaminolysis and NO

production through conjunction of the urea cycle and arginine

metabolism cycle. Sirtuin proteins and their substrates are therefore

promising targets for treatment of tuberculosis and likely other

intracellular infections.
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