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New techniques: a roadmap
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Medicine, Shandong University, Jinan, China
Hepatocellular carcinoma (HCC) is one of themost common cancers worldwide.

The absence of effective early diagnostic methods and the limitations of

conventional therapies have led to a growing interest in immunotherapy as a

novel treatment approach for HCC. The liver serves as an immune organ and a

recipient of antigens from the digestive tract, creating a distinctive immune

microenvironment. Key immune cells, including Kupffer cells and cytotoxic T

lymphocytes, play a crucial role in HCC development, thus offering ample

research opportunities for HCC immunotherapy. The emergence of advanced

technologies such as clustered regularly interspaced short palindromic repeats

(CRISPR) and single-cell ribonucleic acid sequencing has introduced new

biomarkers and therapeutic targets, facilitating early diagnosis and treatment of

HCC. These advancements have not only propelled the progress of HCC

immunotherapy based on existing studies but have also generated new ideas

for clinical research on HCC therapy. Furthermore, this review analysed and

summarised the combination of current therapies for HCC and the improvement

of CRISPR technology for chimeric antigen receptor T cell therapy, instilling

renewed hope for HCC treatment. This review comprehensively explores the

advancements in immunotherapy for HCC, focusing on the use of

new techniques.

KEYWORDS
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1 Introduction

The mortality rate attributed to liver cancer is projected to exceed one million by 2030

(1). The Global Cancer Observatory data reveals that in 2018, China accounted for 46.6% of

newly diagnosed cases and 47.1% of deaths related to liver cancer (2). Hepatocellular

carcinoma (HCC) and cholangiocarcinoma are the predominant forms of primary liver

cancers, accounting for approximately 75% and 6% of cases, respectively (3).
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Despite the availability of surgical resection or liver

transplantation as treatment options for liver cancer, their

effectiveness is limited due to high recurrence rates after resection

and low surgical and transplant eligibility ratios becausemost patients

are diagnosed at an advanced stage where curative treatment is not

recommended (4, 5). Therefore, a combination of radiotherapy,

chemotherapy, hormonal therapy, and targeted therapy is often

necessary. Advancements have been made in chemotherapy and

targeted therapy for HCC. For instance, the combination of

gemcitabine and cisplatin as a first-line treatment is more effective

than gemcitabine alone (6). Lenvatinib, approved in 2017, has shown

an overall survival (OS) of 13.6 months and progression-free survival

(PFS) of 7.4 months (7). Nevertheless, the overall outcomes remain

discouraging. Immunotherapy has gained attention in the medical

community considering its recent success in treating solid tumours,

which have traditionally been considered immune-cold (8).

Since the initial testing of the first inhibitor of the immune

checkpoint, cytotoxic T lymphocyte-associated protein 4 (CTLA-4),

against HCC in 2008 (9), subsequent discoveries have unveiled a series

of immune checkpoints, including programmed cell death protein 1

(PD-1)/programmed cell death ligand 1 (PD-L1), lymphocyte

activation gene 3 (LAG-3), and T cell immunoglobulin and mucin-

domain containing-3 (Tim-3). Researchers have been actively

investigating whether inhibitors targeting these checkpoints hold

practical clinical significance for HCC treatment. However, the

progress of immunotherapy for HCC has been hindered by the

absence of early diagnostic methods for HCC and the unique

immune microenvironment in the liver, which is an immune-tolerant

organ (10). Despite notable advancements in HCC immunotherapy,

particularly the approval of nivolumab for HCC treatment in 2017, a lot

remains to be done. Therefore, this review summarises and prospects
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the current research progress achieved through the application of

clustered regularly interspaced short palindromic repeats (CRISPR),

ribonucleic acid sequencing (RNA-seq), and other novel technologies in

HCC immunotherapy, focusing on aspects such as the immune

microenvironment, biomarkers, and therapeutic targets.
2 Overview of the immune
microenvironment in the liver

The immune microenvironment of the liver exhibits distinct

characteristics when compared with other organs. Being an immune-

tolerant organ, the liver harbours several immunocompetent cells,

including Kupffer cells (KCs), liver sinusoidal endothelial cells, and

hepatic stellate cells as well as lymphocytes such as natural killer

(NK), gamma-delta T cells, and dendritic cells (DCs) (11). The liver’s

immune response is unique due to its chronic exposure to bacterial

components and dietary antigens from the gastrointestinal tract. It

must strike a balance between food tolerance and microbial antigens

to prevent excessive inflammation caused by non-pathogenic

antigens while maintaining the ability to respond rapidly and

aggressively to pathogenic antigens and tumour cells (12, 13). This

article primarily discusses the different cell types and cytokines

present in the immune microenvironment, focusing on their role in

inflammation and HCC development. (Figure 1).
2.1 KCs

For several years, KCs were regarded as potent weapons against

liver cancer, exhibiting macrophage-like functions such as
FIGURE 1

The landscape of the tumour immune microenvironment of HCC. The interaction of typical cells and factors in the HCC immune microenvironment
could result in HCC progression. (Notes: HCCs, hepatocellular carcinoma; Tregs, regulatory T cells; TAMs, tumour-associated macrophages; TANs,
tumour-associated neutrophils; CTLs, cytotoxic T lymphocytes; MDSCs, myeloid-derived suppressor cells; NK, natural killer cell; KC, Kupffer cell;
HIF-1a, hypoxia inducible factor-1a; IL-1b, interlenkin-1b; IL-6, interlenkin-6).
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phagocytosis, antigen presentation, cytotoxicity, and cytokine

secretion. On one hand, KCs can bind to HCC cells and present

them to T cells, thereby enhancing the death of tumour cells (14).

On the other hand, cytokines such as tumour necrosis factor-a
(TNF-a) and interleukin (IL)-1b secreted by KCs can recruit

cytotoxic T lymphocytes (CTLs) to target HCC cells. Zhang et al.

(15) reported that KC-derived IL-10 could maintain immune

homeostasis in the liver by inhibiting TNF-a and nitric oxide

production by KCs. However, recent studies have focused on

promoting the effects of KCs on HCC. It has been revealed that

galectin-9, produced by KCs, is a natural ligand for Tim-3. Galectin-

9 triggers the expansion of CD4+ CD25+ forkhead box P3 (FOXP3)+

CD127 (low) regulatory T cells (Tregs), the contraction of CD4+

effector T cells, and the apoptosis of CTLs in the HCC immune

microenvironment, thereby promoting HCC development (16).

Thus, further exploration of the mechanisms of action of KCs is

crucial, considering their significance as a key cell in maintaining

HCC immune microenvironment homeostasis.
2.2 Tumour-infiltrating lymphocytes

TILs play a crucial role in the antitumour immune response

within solid tumours. They affect several cytokines and adaptive

immune cells. Additionally, they modulate angiogenesis and innate

immune response, thereby influencing HCC development. Several

studies have demonstrated that a higher degree of lymphocyte

infiltration in patients with liver cancer following surgery correlates

with a lower recurrence rate and improved prognosis (17).

Consequently, TILs have long been regarded as key components of

the body’s immune response (17). However, Gao et al. (18) reported

no correlation between CD3+, CD4+, CD8+, TILs, and OS or disease-

free survival. Instead, the balance between Tregs and cytotoxic T cells

within the tumour is a promising independent predictor of survival

and HCC recurrence. Therefore, it suggests that the prognosis of

cancer is the outcome of collective interactions among various cells in

the tumour microenvironment.
2.3 CTLs

The CTLs in HCC are primarily CD8+ T cells. Within the

tumour microenvironment, CD8+ T cells are stimulated by specific

signals, which transform them into CTLs capable of producing

interferon-g (IFN-g). This IFN-g production aids in promoting

inflammatory cytokine production and eliminates tumour cells.

Notably, HCC tumours exhibit a significant infiltration of CD8+

CXC motif chemokine receptor 5 (CXCR5)+ T cells, and their

presence is indicative of a favourable outcome (19). Moreover, T

cells with CD8+ CXCR5+ receptors produce IL-21, which prompts B

cells to differentiate into immunoglobulin (Ig) G-producing

plasmablasts, thereby contributing to humoral immunity in HCC

(19). However, a recent study has highlighted the role of immune

checkpoint signalling in inducing an inhibitory effect on CTLs. The

upregulation of inhibitory pathways, such as PD-1 and LAG-3,
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synergistically contributes to autoantigen and tumour antigen

tolerance, thereby resulting in severe exhaustion of CTLs (20, 21).
2.4 Tumour-associated macrophages

TAMs are immune cells that inhibit antitumour immunity

while promoting tumour progression and facilitating evasion

from the tumour microenvironment (22). TAMs exist in two

distinct phenotypes: M1-type TAMs, which are tumour

suppressors and M2-type TAMs, which are tumour promoters.

M1-type TAMs are induced by IFN-g and/or lipopolysaccharides,
enabling them to combat pathogens and control tumours. M2-type

TAMs are induced by IL-4 and IL-13, leading to the release of

immunosuppressive cytokines such as arginase 1, transforming

growth factor-b, and IL-10, which promote tumour development

while suppressing the immune response (23). M2-type TAMs

produce IL-10, which is a potent inhibitory mediator. In HCC,

besides IL-10 released by TAMs impairs the cytotoxicity of

downstream CD8+ T cells and NK cells, increases the frequency

of FOXP3+Tregs within tumours, and inhibits the activation of

CD4+ CD25− T cells (24, 25). The immunosuppressive effect of

TAMs underscores the importance of investigating TAMs when

studying tumourigenesis mechanisms and immunotherapy.
2.5 Tumour-associated neutrophils

The HCC infiltrated by TANs is associated with poor clinical

outcomes, similar to TAMs. TANs can be classified into two types:

N1 and N2. N1-type TANs possess cytotoxic properties that can

inhibit tumour development, whereas N2-type TANs possess strong

immunosuppressive abilities that promote tumour development

(26). Exposure to TANs can induce a more malignant phenotype

in HCC cells, enhancing their stemness, and attracting

immunosuppressive macrophages and Tregs (27, 28).

Furthermore, TANs contribute to the inhibition of antitumor

immunity by producing nitric oxide through TNF-a activation

(29). Overall, TANs play a significant role in immunosuppression

within the tumour microenvironment of HCC. However, further

investigation is required to elucidate their relationship with

HCC components.
2.6 Tregs

Tregs, a subset of CD4+ T cells, play a crucial role in suppressing

the immune response during HCC development. Tregs recruit and

inhibit tumour-specific T cell activity within the tumour

microenvironment. This promotes immune tolerance in tumour

cells, allowing them to evade immune surveillance and clearance. In

the context of HCC, Tregs could impair the function of CD8+ T

cells by inhibiting the CD8+ T cell effector functions, including

degranulation, perforin production, and granzyme production (30).

The effect of Tregs on HCC treatment suggests that certain
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immunotherapeutic approaches might be less effective in HCC

patients with significant Treg infiltration (31). Therefore, it is

crucial to acknowledge the significant role of Tregs in

HCC treatment.
2.7 Myeloid-derived suppressor cells

MDSCs constitute a heterogeneous population of immature

myeloid cel l s that play a crucia l role in promoting

immunosuppression and angiogenesis. MDSCs can enhance the

cancer stem cell gene expression, thereby promoting cancer

stemness, metastatic potential, and tumourigenicity (32). MDSC

infiltration is induced by various tumour-derived cytokines, such as

granulocyte colony-stimulating factor, granulocyte-macrophage

colony-stimulating factor, vascular endothelial growth factor, and

monocyte chemotactic protein 1 (33). Liu et al. (34) observed that

an increase in the number of monocytic MDSCs was associated with

a decrease in TILs and an increase in tumourigenicity. In the

context of HHC treatment, MDSCs exhibited significant

reduction following combined radiotherapy and IL-12 therapy,

consequently enhancing the manageability of HCC (35). Hence,

further investigation of MDSCs is imperative to develop novel

therapeutic strategies for liver cancer.
2.8 Main cytokines associated with
HCC development

In the context of liver injury or infection, a robust protective

response is initiated by a network of cytokines, chemokines, and

growth factors involved in various interconnected inflammatory

signaling pathways, the aberrant regulation of these pathways can

result in the development of liver cancer. Simultaneously, the

immune microenvironment of liver cancer facilitates the

interaction among diverse immune cells via the intricate and

interdependent secretion of cytokines.

In their investigation of the anoxic microenvironment of liver

cancer, Zhang et al. (36) discovered that hypoxia inducible factor-

1a (HIF-1a), a crucial transcriptional factor associated with

hypoxia and inflammation, can stimulate the excessive expression

of IL-1b in TAM. Furthermore, the study revealed that IL-1b can

induce the production of HIF-1a in HCC. The overexpression of

IL-1b has been found to facilitate the process of epithelial-

mesenchymal transition (EMT) in HCC. Additionally, the release

of IL-1b was observed to be augmented by the presence of necrotic

HCC cell debris, which activated TAMs through the TLR4/TRIF/

NF-kB signaling pathway. The positive feedback mechanism

ultimately facilitated the onset of EMT and stimulated HCC cells

to undergo metastatic progression.

The study conducted byWillscott E Naugler (37) and colleagues

aimed to examine the sex-based disparities in HCC by

administering diethylnitrosamine (DEN), a chemical carcinogen,

to mice. The exposure to DEN was found to stimulate the

production of IL-6 in KCs in a MyD88-dependent manner,
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reaction was observed to be higher in male mice. The

implementation of this pathway significantly mitigate the gender

disparity in the incidence of HCC. The present study effectively

elucidated the crucial involvement of IL-6 in the pathogenesis

of HCC.

Yuan et al. (38). published a study indicating that lncRNA-

activated by TGF-b (lncRNA-ATB) facilitated the upregulation of

ZEB1 and ZEB2 through competitive binding to miR-200,

ultimately leading to EMT and invasion. Furthermore, the

lncRNA-ATB facilitated the organ colonization of disseminated

tumor cells through binding IL-11 mRNA, autocrine induction of

IL-11, and triggering STAT3 signaling. The significant contribution

of these cytokines in the proliferation and dissemination of HCC

warrants further investigation for potential clinical implementation.
3 HCC biomarkers

The implementation rate of early cancer detection programs for

HCC remains low, and the recommended surveillance tools are not

performing optimally (39). Furthermore, the gold standard of

surveillance method (i.e., abdominal ultrasound with or without

serum alpha-fetoprotein), fails to detect approximately 63% of

early-stage tumours (39). Cholangiocarcinoma diagnosis

encounters similar challenges. The use of biomarkers is a crucial

aspect of managing patients with cancer as it can improve survival

rates and optimise treatment approaches. There are three specific

clinical areas, namely, risk stratification and early detection,

prognosis prediction, and response prediction, where the demand

for biomarkers is particularly urgent (40).

Following the Food and Drug Administration (FDA) approval

of sorafenib (41), several systemic agents, mostly tyrosine kinase

inhibitors, have been studied in phase 3 trials as first- and second-

line treatments, resulting in improved survival rates (1). However,

unlike sorafenib, PD-1 immune checkpoint inhibitors (ICIs), such

as nivolumab (42) and pembrolizumab (43), did not meet their

primary endpoints in phase III trials (44, 45). Consequently,

extensive research efforts have been dedicated to identifying

biomarkers that can predict the response to ICIs. Currently,

multiple biomarkers have been identified that hold the potential

in predicting a patient’s response to an ICI, which are further

summarised below.
3.1 CD8+ PD-1+ CD161+ T cells

RNA-seq is a next-generation sequencing technique that allows

for the analysis of RNA presence and quantity in a biological

sample, providing insights into the dynamic changes in the

cellular transcriptome (46, 47).

Li et al. (48) compared the differential expression levels of 35

surface markers and performed a diffusion map analysis. They

found that CD8+ PD-1+ CD161+ T cells exhibited a proliferative

and active phenotype, while CD8+ PD-1+ CD161− T cells exhibited
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a progressively exhausted and aged phenotype. Deep single-cell

RNA-seq (scRNA-seq) analysis revealed that the co-expression of

PD-1, T cell immune receptor with Ig and immunoreceptor

tyrosine-based inhibitory motif domains, and LAG-3 indicated

the exhausted state of CD8+ PD-1+ CD161− cells. Through

multiplex immunofluorescence staining, they demonstrated that

higher levels of CD8+ PD-1+ CD161+ T cells in non-tumour

adjacent tissues were associated with a favourable outcome

following tumour resection. Furthermore, patients with an

abundance of CD8+ PD-1+ CD161+ T cells near the cancer site

showed improved response to anti-PD-L1 treatment. These findings

provide compelling evidence that this cell holds potential as a

prognostic indicator.
3.2 PD-L1

Theoretically, the efficacy of PD-1/PD-L1 inhibitors could be

predicted based on the PD-L1 expression (Figure 2). However, the

complexity of the tumour microenvironment in HCC, including the

presence of hepatitis and cirrhosis, as well as the classification of

PD-L1, might undermine the reliability of PD-L1 as a predictor for

the effectiveness of ICIs (49). The findings from CheckMate 040

(42) and CheckMate 459 (50) trials highlight the need for further

investigation to determine the relationship between baseline PD-L1

expression levels and treatment benefits in HCC.
3.3 Tumour mutation burden

TMB refers to the total number of somatic gene coding errors,

base substitutions, gene insertions, or deletions detected per million
Frontiers in Immunology 05
bases (51). Kim et al. (52) reported that a higher TMB was

associated with an increased number of neoantigens that can be

recognised by T cells, resulting in improved immunotherapy

outcomes. Tumour-specific mutations produce highly

immunogenic neoantigens, rendering tumour types with a high

TMB more receptive to immunotherapy, thereby improving the

treatment outcomes for patients. Therefore, neoantigens can serve

as biomarkers and targets of tumour immunotherapy for predicting

efficacy (53).
3.4 Circulating tumour
deoxyribonucleic acid

In HCC or metastatic cancer cells , ctDNA carries

comprehensive mutational information. It provides a precise and

sensitive reflection of the tumour burden and enables the prediction

of treatment response (54). It is known that patients with cancer

have circulating free DNA in their plasma. In recent years, there has

been significant interest in using ctDNA for specific clinical

purposes, including early cancer diagnosis, prediction of

treatment efficacy, and monitoring of metastasis.

The somatic mutations observed in HCC primarily stem from

three key factors: telomere integrity (telomerase reverse

transcriptase promoter, 55%), cell cycle regulation (tumour

protein 53, 30%), and Wnt signalling (catenin beta 1, 30%) (55).

Another study (56) reported that the frequency of these somatic

mutations remains consistent in advanced HCC and early-stage

HCC, suggesting their potential as predictive markers for primary

drug resistance to systemic therapy. However, the number of

patients with HCC enrolled in ctDNA clinical trials remains
FIGURE 2

Mechanism of action of immune checkpoint inhibitors. Immune checkpoint inhibitors can restore the ability of T cells to eliminate tumour cells by
blocking the binding of immune checkpoints to ligands.
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limited, and further investigation is required to establish the

correlation between ctDNA and HCC progression.
4 Therapeutic targets for HCC

The investigation of the tumour microenvironment and

immunotherapy in patients with HCC has been ongoing for

several years. However, the research progress has not been

satisfactory, and the clinical outcomes of immunotherapy in HCC

have been suboptimal. Multiple factors might have contributed to

these outcomes; however, one crucial aspect is the reduced

immunogenicity of hepatocellular tumours. First, the liver

exhibits immune tolerance due to exposure to dietary and

gastrointestinal antigens (57). Second, the continuous stimulation

of de novo antigens in HCC, along with the presence of

immunosuppressive cell populations in the tumour tissues, creates

an immunosuppressive tumour microenvironment. Moreover,

patients with HCC tend to have an elevated number of Tregs in

liver cancer tissues compared with normal tissues, and a higher Treg
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count is associated with a poorer prognosis (58, 59). Tregs can

inhibit the function of CD8+ T cells, which monitor and eliminate

tumour cells. Additionally, Han et al. (60) identified a new subset of

regulatory CD14+ CTLA-4+ DCs in patients with HCC that produce

high levels of IL-10 and indoleamine 2, 3-dioxygenase to inhibit the

immune response of T cells. Furthermore, continuous antigen

stimulation leads to the up-regulation of co-inhibitory signalling

molecules such as CTLA-4, PD-1, and LAG-3 on tumour-specific

lymphocytes, rendering T cells unresponsive (61, 62). Therefore,

finding strategies to overcome the immunosuppressive

microenvironment in HCC and using new technologies to

identify therapeutic targets for HCC have become crucial research

objectives that require attention.
4.1 Aryl hydrocarbon receptor

DNA sequences called CRISPRs are found in the genomes of

bacteria and archaea (63). CRISPR-associated protein 9 (Cas9) uses
FIGURE 3

The mechanism of action of the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) gene editing
tool. Exogenous deoxyribonucleic acid (DNA) is processed and integrated into the CRISPR array. Trans-activating CRISPR ribonucleic acid (RNA)
formed by transcription and pre-CRISPR RNA bind to each other, and form a complex with Cas9 formed by translation. Through base pairing,
exogenous genes in the DNA sequence are specifically bound and excised.
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CRISPR sequences as a guide to cleave specific DNA strands that

are complementary to these sequences. CRISPR-Cas9 can be used to

edit genes within living organisms (Figure 3).

Primary HCC is one of the most common malignancies

worldwide, and aflatoxin serves as a significant risk factor in its

occurrence and progression. Using CRISPR-Cas9 genetic screens,

Zhu et al. (64) identified targets for aflatoxin B1 (AFB1), with AHR

being among the most notable findings. The formation of AFB1

adducts (cytochrome P450 metabolises AFB1 to AFB1-8, 9

epoxides, and subsequently reacts with DNA to form adducts)

plays a crucial role in the development of aflatoxin-induced HCC.

Immunofluorescence staining conducted by Zhu et al.

demonstrated a significant reduction in the AFB1 adduct levels in

AHR knockdown cells, indicating that AHR is targeted by AFB1.

Additionally, the AHR knockdown cells exhibited enhanced

tolerance to high concentrations of AFB1. Furthermore, patients

with HCC expressing high levels of AHR exhibited improved

responses to anti-PD-L1 therapy, suggesting that this treatment

approach holds promise for AFB1-related HCC. Consequently,

AHR can serve as a potential marker for PD-L1-based

immunotherapy in patients with HCC.
4.2 CD74

CD74, a major histocompatibility complex (MHC) class II

chaperone, was originally identified in MHC class II-positive cells,

such as DCs, monocytes, macrophages, and B cells, among others

(65). Recent studies have indicated that CD74 holds promise as a

potential therapeutic target for malignant tumours (65, 66). In a

study focusing on HCC, Xiao et al. (67) observed a significant

distribution of CD74 in macrophages and found a positive

correlation between CD74+ macrophage infiltration and CD8+ T

cell activation via scRNA-seq and immunohistochemical analysis.

Additionally, blocking CD74 resulted in impaired CD8+ CTL

proliferation and antitumour activity. Therefore, CD74 emerges

as a prognostic indicator for patients with HCC patients and might

serve as a biomarker and potential therapeutic target.
4.3 PD1/PDL1

PD-L1 is a crucial ligand for PD-1. Within human HCC tissues,

CD8+ T cells and KCs express high levels of PD-1 and PD-L1 (68).

The interaction occurs when PD-1 on the surface of CD8+ T cells

binds to PD-L1 on the surface of KCs. Subsequently, tyrosine

residues within the cytoplasmic domain of PD-1 become

phosphorylated, resulting in the recruitment of Src homology 2

domain-containing protein-tyrosine phosphatase-2 (SHP-2). SHP-

2 then dephosphorylates key proteins, such as z chain-associated

protein kinase 70 and phosphatidylinositol 3-kinase, downstream of

the T cell receptor (TCR) and CD28 (69). This inhibits the

cytotoxicity mediated by effector T cells and results in their

functional impairment.

High PD-L1 expression in HCC is associated with a poorer

prognosis (68). This observation suggests that targeting the PD-L1/
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PD-1 immune checkpoint could be a viable strategy for HCC

treatment. In a study by Lu et al. (70), The CRISPR-Cas9 tool

was used to cut the gene encoding PD-1 in non-small cell lung

cancer immune cells. These modified immune cells were then

expanded in vitro and reinjected into the patient, demonstrating

an enhanced ability of the treated immune cells to respond to

tumour cells. A similar approach can be used to study PD-1/PD-L1

target-based treatment for HCC.

Nivolumab, a monoclonal antibody targeting PD-1/PD-L1,

functions by restoring the antitumour abilities of T cells (71). Data

from the CheckMate 040 study, which evaluated nivolumab as a first-

line therapy for advanced HCC demonstrated an objective response

rate (ORR) of 20% and a mean OS of 28.6 months (42). In the

CheckMate 459 study, a randomised controlled trial comparing

nivolumab with sorafenib (44), it was found that although first-line

treatment with nivolumab did not significantly improve OS

compared with sorafenib, it exhibited a lower incidence of grade 3

to 4 treatment-related adverse events and improved quality of life in

patients with advanced HCC. Consequently, nivolumab might serve

as an alternative treatment option for patients with HCC who cannot

undergo tyrosine kinase inhibitor therapy or antiangiogenic therapy.
4.4 CTLA-4

CTLA-4, a CD28 homolog, inhibits T cell response by directly

delivering an inhibitory signal to the T cell (72). The CTLA-4

protein alters intracellular T cell signalling and prevents CD28 from

binding to CD80 and CD86, which is essential for optimal T cell

activation (73, 74). Furthermore, studies have revealed that the

presence of CTLA-4 decreases helper T cell activity while increasing

Treg activity (75). Tregs rely on CTLA-4 to suppress immune

responses by inhibiting the ability of antigen-presenting cells to

activate other T cells. Additionally, depleting CTLA-4 in Tregs

affects their suppressor function and promotes tumour immunity

(76, 77). Despite these findings, the anti-CTLA-4 monoclonal

antibody tremelimumab did not demonstrate significant clinical

effects (9). Therefore, further investigation is warranted to explore

immunotherapy regimens targeting CTLA-4.
4.5 Other new targets

LAG-3 serves as an important inhibitory immune checkpoint.

CD8+ T cells express LAG-3, which binds to MHC class II

molecules (78). Studies have demonstrated that the up-regulation

of LAG-3 expression is associated with T cell effector dysfunction

(79). Additionally, blocking LAG-3 expression has been shown to

enhance the proliferation of CD8+ and CD4+ TILs in vitro and affect

cytokine production (80). Regarding LAG-3 target-based therapy,

Zhou et al. (80) reported that T cells respond to HCC tumour

antigens when treated with antibodies against PD-L1, Tim-3, or

LAG-3. Combining these antibodies might offer additive effects,

suggesting the potential for advancing HCC treatment research.
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TAMs express Tim-3, which promotes HCC growth (81). Large

numbers of Tim-3+ TILs and Tim-3+ TAMs in HCC lesions are

associated with reduced survival and increased recurrence, leading

to a poor prognosis (82). Similar to LAG-3, the blockade of Tim-3

targets can enhance the function of effector T cells, promote

cytokine release, and inhibit tumour progression (20). However,

the exact efficacy of targeting Tim-3 in HCC treatment remains

uncertain. Ongoing research is investigating the use of the anti-

Tim-3 antibody Cobolimab (83).
5 Treatment strategies for HCC

The primary treatment methods for HCC include surgical

resection and local ablation (84); however, they have certain

limitations. Surgical resection is often associated with a high

recurrence rate, ranging from 40% to 70% after surgery (1, 85).

Additionally, most HCC cases are diagnosed at an advanced stage,

often accompanied by cirrhosis and other diseases, making surgical

treatment unsuitable for these patients. Therefore, the identification

of new and effective treatment strategies is crucial. Immunotherapy

has emerged as a breakthrough in the treatment of advanced liver

cancer since 2017 (86). It aims to activate the immune system,

modify the tumour immune microenvironment, and use the body’s

immune function to treat tumours. Previous studies have focused

on monotherapy targeting key molecules in HCC, such as PD-1,

CTLA-4, and LAG-3. This section primarily highlights the

advancements and efficacy of ICIs in combination therapy for HCC.
5.1 Combination therapy

Compared to monotherapy with ICIs, combination therapy can

target multiple immune checkpoint pathways, resulting in

improved patient outcomes. However, it is essential to consider

not only the increased efficacy associated with combination therapy

but also its clinical significance and potential for increased drug

toxicity and immune-related adverse events. The Checkmate 040

trial (87) evaluated the safety and efficacy of nivolumab plus

ipilimumab in patients with advanced HCC treated with

sorafenib. The overall ORR and disease control rate were 31.0%

and 49.0%, respectively, and the combination regimen

demonstrated acceptable safety. Consequently, the FDA approved

this regimen in 2020 for patients with advanced HCC who had

previously received sorafenib. In a phase I/II trial (NCT02519348),

tremelimumab plus durvalumab (T300+D) was compared with

tremelimumab or durvalumab monotherapy (88). The results

revealed a median OS (95% confidence interval [CI]) of 18.7

(10.8–27.3) months and a confirmed ORR (95% CI) of 24.0%

(14.9–35.3) for the T300+D regimen, indicating superior efficacy

compared to monotherapy. Moreover, the T300+D regimen

exhibited higher levels of CD8+ lymphocyte proliferation while

maintaining acceptable tolerability compared with monotherapy.

These studies suggest that combination regimens with ICIs

demonstrate a promising benefit-risk profile and hold the

potential for advancing therapeutic strategies for HCC.
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Furthermore, ICIs can be combined with other treatment

modalities, including targeted therapy. In a phase III study of

IMbrave150 conducted in May 2020, the combination of

atezolizumab and bevacizumab (A+T) was superior to sorafenib

monotherapy (89). Similarly, the IMbrave150 China cohort results,

published during the European Association for the Study of the Liver

summit in the same year suggested that the A+T regimen might be

particularly suitable for the Chinese population (90). ICIs can also be

used in conjunction with transarterial chemoembolisation (TACE).

In a phase I trial combining ICIs and TACE, the efficacy of

nivolumab plus drug-eluting bead TACE was demonstrated,

showing a partial response of 22%, a stable disease rate of 78%,

and a 12-month OS rate of 71% in nine patients.

TGF-b serves a dual role in solid tumor progression by promoting

EMT and creating a conducive tumor microenvironment for growth

and metastasis (91). Recent preclinical investigations have

demonstrated that TGF-b impedes the efficacy of tumor

immunotherapy by hindering T cell infiltration into the tumor

center. However, the combination of TGF-b blockade and anti PD-

L1 antibodies exhibits a clear antitumor synergy (92). In a phase II trial,

Galunisertib (LY2157299), a TGF-bR1 inhibitor, exhibited satisfactory

safety and extended overall survival outcomes when administered in

conjunction with sorafenib, indicating its efficacy as a second-line

treatment for hepatocellular carcinoma (93). Presently, a clinical trial is

underway to evaluate the effectiveness of combining Galunisertib with

nivolumab (anti-PD-1) for the treatment of relapsed or refractory HCC

with elevated alpha-fetoprotein (AFP) levels of ≥200 ng/mL

(NCT02423343). In preclinical trials, M7824, a bifunctional

checkpoint inhibitor targeting both PD-L1 and the extracellular

domain of TGFbR2 (TGF-b trap), promotes the activation of CD8 T

cells and NK cells and has demonstrated superior results compared to

monotherapy with anti-TGF-b or anti-PD-L1 in preclinical trials (94).

Preliminary data from two dose-escalation phase I studies

(NCT02699515, NCT02517398) indicate that M7824 demonstrates a

manageable safety in patients with advanced solid tumors, including

hepatocellular carcinoma (95, 96). Another PD-L1/TGF-b bispecific

antibody, Y101D, is currently being evaluated in a phase 1 clinical trial

targeting solid tumors (NCT05028556).

Immune checkpoint inhibitors in combination with

chemotherapy can synergistically enhance the efficacy of various

malignant tumors. In an open-label, multicenter phase Ib/II study

(NCT03092895), treatment-naïve patients with advanced primary

hepatocellular carcinoma received camrelizumab (anti PD-1) in

combination with FOLFOX4 (fluorouracil+calcium folinate

+oxaliplatin) or GEMOX (gemcitabine and oxaliplatin) regimen

showed good safety, tolerability and preliminary antitumor activity

(97). Meanwhile, a prospective, randomized, double-blind,

multicenter phase III study to determine the efficacy and safety of

camrelizumab plus FOLFOX4 versus placebo plus FOLFOX4 in

HCC (NCT03605706) is currently ongoing.

Additionally, ICIs can be combined with radiotherapy and other

treatment modalities, which are beyond the scope of this discussion.
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5.2 Hotspot therapy — chimeric antigen
receptor T cells

In cancer immunotherapy, CRISPR-Cas9 technology has

revolutionised the generation of CAR-T, which represents a

r emarkab le app l i c a t ion o f th i s t e chno logy . CAR-T

immunotherapy involves the genetic modification of T cells using

lentiviruses or retroviruses. These genetically modified T cells

express CARs and undergo significant expansion upon

recognition of specific antigens in vitro (98, 99). After reaching

the desired number of treatments, these T cells are adoptively

reinjected into the patient. CAR-T cells with CARs, can penetrate

the complex tumour microenvironment and target high-affinity

antigens on the tumour cell surface to kill the tumour cell. However,

inhibitory surface receptors on T cells, such as PD-1, CTLA-4, and

LAG-3, can impede the efficacy of CAR-T. CRISPR-Cas9 can knock

down the genes encoding these surface receptors and inhibit their

effects, thereby enhancing the effector capacity of CAR-T. Guo et al.

(100) demonstrated that disrupting endogenous PD-1 expression

using CRISPR-Cas9 technology improved the antitumour activity,

invasiveness, and persistence of CAR-T, thereby yielding significant

therapeutic benefits in HCC treatment. Additionally, Zhang et al.

(101) successfully constructed CAR-T with LAG-3 receptor

knockout, suggesting that exploring the construction of CAR-T

with a double knockout of PD-1 and LAG-3 might result in

improved outcomes. Considering that xenoinhibitory rejection

can be triggered by human leukocyte antigen-I (HLA-I) on the

surface of T cells, Ren et al. (102) developed universal CAR-T by

genetically modifying them to have defective TCR and HLA-I

expression, effectively preventing xenograft rejection. This

universal CAR-T can be used for multi-patient therapy, exhibiting

potent antitumour properties.
6 Future perspectives

This article provides an overview of the current research trends

and advancements in identifying novel biomarkers and therapeutic

targets for HCC. Additionally, the immunotherapy strategies

commonly used for HCC, such as CAR-T therapy, were briefly

reviewed. Based on the existing ICIs, this study aimed to explore

more effective drug utilisation and clinical treatment strategies. In a

phase Ib trial involving 100 patients with untreated, unresectable

HCC, a combination of the multikinase inhibitor lenvatinib and the

ICI pembrolizumab demonstrated excellent antitumour efficacy with

an ORR of 46%, a median PFS of 9.3 months, and a median OS of

22.0 months (103). The enrolment for a phase III trial comparing this

regimen to lenvatinib monotherapy has been completed (LEAP-002;

NCT03713593), which will further evaluate the safety, therapeutic

efficacy, and risk-benefit profile of this protocol. Additionally, early

results from clinical studies, such as CheckMate 459 (44), comparing

nivolumab vs. sorafenib (ORR 15% vs. 7%, median PFS 3.7 vs. 3.8

months) and IMbrave 150 (104), comparing atezolizumab plus

bevacizumab vs. sorafenib monotherapy (ORR 30% vs. 11%,

median PFS 6.8 vs. 4.3 months), have yielded promising outcomes.
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It is anticipated that these therapeutic strategies will pave the way for

significant advancements in HCC treatment.

By employing comprehensive CRISPR-Cas9 screening

throughout the entire genome, progress can be made in

identifying novel and more effective immune checkpoints and

immune targets that influence HCC progression. This approach

allows us to explore the efficacy of clinical drugs targeting these

checkpoints or targets with improved effectiveness. It is anticipated

that untapped technologies, not yet applied to HCC research, could

play vital roles in advancing HCC immunotherapy. One such

technology is digital spatial profiling (DSP), which offers a

superior research method compared with scRNA-seq for

detecting gene expression levels and acquiring their spatial

location in situ (105). This circumvents the loss of spatial

heterogeneity in tumours (106). Notably, Brady et al. (107) used

DSP to analyse the tissue cells from metastatic prostate cancer

(mPC) and discovered that low CTLA-4 and PD-1/PD-L1

expression was consistent with the low reactivity of patients with

mPC to ICIs. Furthermore, the high expression of CD276/B7-H3

and Tim-3 suggested that DSP holds promise for discovering

potential immune targets. In the future, it is envisioned that DSP

will be used to analyse immune cells in situ within the complex

immune microenvironment of HCC, thereby uncovering novel

immune checkpoints that are more conducive to HCC treatment.
7 Conclusions

HCC is a highly prevalent malignant tumour in China. Its

unique immune microenvironment, coupled with the lack of early

diagnostic methods, has posed challenges in developing effective

clinical treatments for many years. Immunotherapy has emerged as

a promising approach for advanced HCC and has garnered

significant attention from researchers. In addition to known

immune checkpoints (PD-1/PD-L1, CTLA-4, and LAG-3) and

biomarkers (TMB and ctDNA), novel biomarkers and immune

targets such as AHR, CD74, CD8+ PD-1+ CD161+ T cells have been

discovered via CRISPR and scRNA-seq. These discoveries provide a

new research direction for early diagnosis and treatment of HCC.

Combinations of ICIs or ICIs with targeted therapy have

demonstrated practical clinical efficacy in HCC treatment.

Moreover, research efforts have focused on the CRISPR-based

knockdown of genes encoding immune checkpoints to enhance

the effectiveness of CAR-T, representing a significant research

direction. In the future, CRISPR, DSP, and other emerging

technologies might provide novel therapeutic approaches for

HCC, instilling hope for improved survival outcomes among

patients with HCC.
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