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Nlrp12 deficiency alters gut
microbiota and ameliorates
Faslpr-mediated systemic
autoimmunity in male mice
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Jing Zhu1, Brianna K. Swartwout1, Michael R. Edwards1,
James C. Testerman1, Jacquelyn S. Michaelis3,
Irving Coy Allen1, S. Ansar Ahmed1* and Xin M. Luo1*

1Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary
Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States,
2Department of Microbiology, College of Veterinary Medicine, Alexandria University,
Alexandria, Egypt, 3Center for Bioinformatics and Computational Biology, University of Maryland,
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NLRP12 has dual roles in shaping inflammation. We hypothesized that NLRP12

would modulate myeloid cells and T cell function to control systemic

autoimmunity. Contrary to our hypothesis, the deficiency of Nlrp12 in

autoimmune-prone B6.Faslpr/lpr mice ameliorated autoimmunity in males but

not females. Nlrp12 deficiency dampened B cell terminal differentiation,

germinal center reaction, and survival of autoreactive B cells leading to

decreased production of autoantibodies and reduced renal deposition of IgG

and complement C3. In parallel, Nlrp12 deficiency reduced the expansion of

potentially pathogenic T cells, including double-negative T cells and T follicular

helper cells. Furthermore, reduced pro-inflammatory innate immunity was

observed, where the gene deletion decreased in-vivo expansion of splenic

macrophages and mitigated ex-vivo responses of bone marrow-derived

macrophages and dendritic cells to LPS stimulation. Interestingly, Nlrp12

deficiency altered the diversity and composition of fecal microbiota in both male

and female B6/lpr mice. Notably, however, Nlrp12 deficiency significantly

modulated small intestinal microbiota only in male mice, suggesting that the sex

differences in disease phenotype might be gut microbiota-dependent. Together,

these results suggest a potential pathogenic role of NLRP12 in promoting systemic

autoimmunity in males. Future studies will investigate sex-based mechanisms

through which NLRP12 differentially modulates autoimmune outcomes.
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Introduction

Mice carrying the Faslpr mutation are models of autoimmune

lymphoproliferative syndrome (ALPS) and systemic lupus

erythematosus (SLE) (1). ALPS is a chronic autoimmune disorder

characterized by nonmalignant adenopathy and splenomegaly (2),

whereas SLE is an autoimmune disease with multisystem

involvement (3, 4). Even though the precise etiology for these

autoimmune conditions is still unclear, defective apoptosis and

expansion of unusual populations of adaptive immune cells (such as

double-negative T cells) leading to aberrant lymphoid hyperplasia

contribute to the development of autoimmunity in both ALPS (1, 5,

6) and SLE (7, 8). ALPS is primarily a disorder of T cell

dysregulation (9–12). SLE, on the other hand, involves a complex

interplay between disrupted innate immune functions (13–19) and

adaptive immune cell abnormalities (20–26) that contributes to the

perturbation of tolerance and development of immunopathogenesis

(27). Studies in recent years suggest that microbiota could also

modulate autoimmunity and alter disease management outcomes

(28, 29). While the role of gut microbial dysbiosis in ALPS remains

unknown, dysregulated gut microbiota is a feature of SLE

pathogenesis that is known to interact with both innate (30) and

adaptive (31) immune responses. We and others have previously

unraveled the dynamic changes of gut microbiota in murine lupus

and human SLE (32–36) and delineated the influence of gut

microbiota modulation on lupus outcomes in different

experimental settings (37, 38).

NACHT, LRR and PYD domains-containing protein 12

(NLRP12) is a cytoplasmic innate sensor that plays dual roles in

regulating inflammation (39). It is a checkpoint inhibitor

controlling inflammation but could also form inflammasome in a

context-dependent fashion (39). While the conditions that trigger

its regulatory functions are still to be elucidated, NLRP12 has been

shown to modulate both innate (40–42) and adaptive (43, 44)

immune responses. It is expressed in bone marrow myeloid cells

including granulocytes, macrophages and dendritic cells (45) and at

a higher level in T cells (43). Interestingly, NLRP12 has been shown

to control the activation and migration of myeloid cells (40–42).

NLRP12 negatively regulates monocyte/macrophage activation by

suppressing the nuclear factor kappa B (NF-kB) signaling (40, 41).
Impairment of NLRP12 significantly hinders the migration and

responsiveness of dendritic cells (DCs) and neutrophils to

chemokine stimulation (42). In parallel, a single missense

mutation in Nlrp12 results in defective neutrophil recruitment

(46). In addition, the absence of Nlrp12 impairs CXCL1

production by macrophages and DCs and subsequently hinders

neutrophil recruitment in response to various inflammatory stimuli

(46) (47). Moreover, while its role in B cell regulation is still to be

determined, NLRP12 could negatively regulate the activation of

various T cell subsets including Th1, Th2 and Th17 in a cell-

intrinsic manner (43, 44, 48). Importantly, NLRP12 has been shown

to regulate immune responses through modulating the gut

microbiota (49–51).

The role of NLRP12 under an autoimmune environment is not

fully understood. In fact, NLRP12 has controversial roles in
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modulating organ-specific inflammatory disorders. For instance,

it has been shown to play protective roles in colitis (52); meanwhile,

it exerts dual roles in modulating brain inflammation in

experimental autoimmune encephalitis (EAE, a mouse model of

multiple sclerosis) (53, 54). The role of NLRP12 in systemic

autoimmune disorders such as ALPS and SLE is unknown. In the

current work, we have investigated the role of NLRP12 in a Faslpr-

mediated autoimmune mouse model of ALPS and SLE, B6/lpr. We

hypothesize that NLRP12 would modulate myeloid cells and T cells

to control inflammation under this autoimmune condition.

Surprisingly, our data has shown that the deficiency of Nlrp12

ameliorates autoimmunity in our model in a sex-dependent

manner. To better understand this observation, we have also

delineated the cellular mechanisms through which NLRP12 might

shape autoimmune pathogenesis. In addition, we concurrently

observed the dynamic changes of gut microbiota upon alteration

of NLRP12 that may correlate with disease attenuation in male B6/

lpr mice.
Materials and methods

Experimental animals

All experiments were conducted in compliance with the IACUC

guidelines of Virginia Tech. Nlrp12-deficient B6/lpr was generated

by cross-breeding B6.Nlrp12-/- (42) with B6.Faslpr/lpr mice (The

Jackson Laboratory, Bar Harbor, ME). Offspring were genotyped

for both the Nlrp12 locus and Faslpr mutation (Figure S1). We

monitored the disease progression in both female and male mice

housed under specific pathogen-free environment in an AAALAC

accredited animal facility at Virginia Tech. All factors including

housing, handling, light cycle (12-hour light/dark) were consistent

for all mice, which received the hormone-free NIH-31 Modified 6%

Mouse/Rat diet. Food and water were provided ad libitum.
Assessment of renal function

The development of lupus nephritis was assessed through weekly

testing of proteinuria levels. Weekly urine samples were collected, and

proteinuria levels were measured using a Pierce Coomassie Protein

Assay Kit (Thermo Scientific) as we previously described (55).

Additionally, upon euthanasia at 39 weeks of age, kidneys were

harvested to determine the deposition of immune complexes in the

renal compartments through immunohistochemical staining for IgG

as described below. Renal deposition of complement C3 was also

determined with immunohistochemical staining.
Measurement of serum testosterone

Endpoint serum samples were sent to the Ligand Assay &

Analysis Core of the Center for Research in Reproduction (CRR)

at the University of Virginia for measurement of testosterone levels.
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Mouse serum testosterone levels were determined using

Testosterone Mouse & Rat ELISA (IBL America) following the

manufacturer’s recommendations.
Cell isolation and in vitro stimulation

Total splenocytes and bone marrow (BM) cells were isolated

and red blood cell exclusion was achieved following our previously

published protocols (55). Both Splenocytes and BM cells were

analyzed using flow cytometry as described below. Furthermore,

for in vitro generation of BM-derived myeloid cells, BM cells from

femurs were cultured at a density of 106 cells/ml for 6 days in

complete RPMI medium (RPMI 1640 supplemented with 10% fetal

bovine serum, 1 mM sodium pyruvate, 1% 100 MEM non-essential

amino acids, 10 mM HEPES, 55 mM 2-mercaptoethanol, 2 mM L-

glutamine, and 100 U/ml penicillin–streptomycin; all from Life

Technologies, Grand Island, NY) supplemented with 10 ng/ml

recombinant murine GM-CSF (PeproTech) and cultured for 6

days as previously described (56). For in vitro stimulation of BM-

derived myeloid cells, cultures were treated with 50 ng/ml or 1 mg/
ml lipopolysaccharide (LPS; eBioscience) for four hours before

analysis. At the end of the stimulation period, cells were

harvested for both flow cytometry and RT-qPCR analysis whereas

the supernatants were collected for ELISA.
Flow cytometry

Cells were initially blocked with anti-mouse CD16/32

(eBioscience) then stained with fluorochrome-conjugated

antibodies following our previously published procedures (55).

Zombie Aqua (BioLegend) staining was performed to exclude

dead cells. For quantification of B cells in total splenocytes, the

following anti-mouse antibodies were used: CD19-Pacific blue,

CD27-PE, CD138-APC-Cy7, CD44-PerCP-Cy5.5, IgD-PE-Cy7,

GL7-AF647. For splenic T cells, CD3-APC, CD4-FITC, CD8-PE,

CD44-PerCP-Cy5.5, CD62L-APC-Cy7, CD69-Pacific blue,

CXCR5-PerCP-Cy5.5, and PD-1-APC-Cy7 (BioLegend) were

used. For myeloid cell analysis, the following anti-mouse

antibodies were used: CD11b-PE, CD11c-PerCP-Cy5, F4/80-PE-

Cy7 (BioLegend), Gr1-V540 (BD Bioscience). Analysis was

performed with a BD FACSAria II flow cytometer (BD

Biosciences). Flow cytometry data were analyzed with FlowJo.
Immunohistochemistry

Spleen and kidney were harvested at the endpoint and

embedded in Tissue-Tek OCT Compound (Sakura Finetek) and

rapidly frozen in a freezing bath of dry ice and 2-methylbutane.

Frozen OCT samples were cryosectioned and unstained slides were

stored at −80°C. Immunohistochemical staining procedures

were performed as we previously described (55). Splenic sections

were stained for germinal center (GC) formation using the following

anti-mouse antibodies: CD3-APC, IgD-PE, GL7-FITC (BioLegend).
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Renal immune complex deposition was determined using anti-IgG-

PE (eBioscience) and anti-C3-FITC (Cedarlanelabs, Burlington,

Canada). Slides were mounted with Prolong Gold containing

DAPI (Life Technologies). Pictures were visualized with both an

EVOSVR FL microscope (Advanced Microscopy Group, Grand

Island, NY) and a Zeiss LSM 880 confocal microscope (Zeiss,USA,

Fralin Imaging Center, Virginia Tech). Image processing and

quantification of the fluorescent intensity were performed with

ImageJ and ZEN 2.1 Lite software. Sections from at least 3 mice

per group were quantified and the unit used for calculation was

“integrated density score.”
RNA extraction and RT-qPCR

Total RNA extraction was performed from snap-frozen pre-

weighed splenic tissue or snap-frozen cultured cells as we previously

reported (55, 57). Tissues or cell pellets were homogenized in Qiazol

lysis reagent using TissuelyserII homogenizer (Qiagen). Total RNA

was isolated using RNeasy Plus Universal Kit (Qiagen) with the

elimination of gDNA. Reverse transcription (RT) was carried out

using iScript™ Reverse Transcription Supermix (Bio-Rad).

Quantitative PCR (qPCR) was performed utilizing the Fast

SYBR® Green Master mix and the ABI 7500 Fast Real-Time PCR

System (Applied Biosystems). Relative transcript quantities were

calculated using the 2−DDCt method and normalized to the level of

the 18S rRNA housekeeping gene level. Primer sequences for mouse

Bcl6, Prdm1/Blimp1, Tnfsf13b/BAFF, Il21, Tnf, Il1b, Cxcl13, Ccl19/
MIP-3b, Ccr7, and androgen receptor are available in Table S1.
ELISA

Serum samples were obtained at euthanasia, and aliquots were

stored at −80°C until processing. Anti-doubles stranded (ds)DNA

IgG antibodies were determined following our previously reported

procedures (55). Serum BAFF, IL-6 and IFNg were determined

using ProcartaPlex™ Multiplex Immunoassay (Invitrogen)

following manufacturer’s procedures and the data were acquired

and analyzed using the Luminex FlexMAP3D™ system (Chicago,

USA). For culture supernatants, TNFa was determined using

mouse TNFa ELISA MAX kit (BioLegend) fol lowing

manufacturer’s procedures.
Microbiota sampling and analyses

Fecal microbiota samples from each mouse at the indicated time

points were obtained by taking a mouse out of the cage and

collecting a fecal pellet. To avoid cross-contamination, each

microbiota sample was collected by using a new pair of sterile

tweezers. Samples were stored at −80°C. Similarly, at euthanasia,

different intestinal sections (duodenum/jejunum, ileum, and colon)

were recovered immediately, and the contents of each section were

separately collected by manual extrusion and frozen immediately at

−80°C until use. All samples were processed at the same time.
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Sample homogenization, cell lysis, and DNA extraction were

performed as previously described (55, 58). For 16S rRNA

sequencing, the V4 region (ca. 252 bp) of 16S rRNA gene was

PCR amplified with 515F and 12-base GoLay barcoded 806R

primers (59). The purified amplicons were sequenced

bidirectionally (150 bp PE chemistry) on an Illumina MiSeq at

Argonne National Laboratory. Samples were analyzed using the R

package phyloseq (60). Reads were processed and amplicon

sequence variants (ASVs) were generated using DADA2 in R.

Reads were quality trimmed and filtered using the command

fastqPairedFilter with parameters truncLen=c(140,140), maxEE=c

( 2 , 2 ) , rm . ph i x=TRUE , maxN=0 , c omp r e s s=TRUE ,

multithread=FALSE. DADA2 was used to learn error rates,

perform sample inference, dereplicate and merge paired-end

reads, and construct a sequence table (61). Taxonomy was

assigned using the SILVA 138 ribosomal RNA (rRNA) database

training set (62) using the DADA2 functions, assignTaxonomy and

addSpecies. A total of 3327 ASVs were detected in 212 total samples.

ASVs seen fewer than three times in at least 20% of samples and

samples with fewer than 1000 reads were removed from the dataset,

resulting in 205 samples and 187 ASVs used for downstream

analyses. ASVs were aggregated at the genus level using the

phyloseq function tax_glom. Counts were used for alpha diversity

and differential abundance tests, while proportions were used to

calculate Bray-Curtis dissimilarity. Differentially abundant and

variable taxa between groups were identified using the function

differentialTest in corncob (63) and significance was assessed using

a Wald test with an FDR cutoff of 0.05. Shannon diversity was

calculated using the DivNet (64) functions divnet and testDiversity.

Bray-Curtis distances were calculated using the phyloseq function

ordinate , specifying “method=“NMDS”, distance=“bray”,

trymax=1000”. Significance was assessed using the adonis test in

the vegan package with 999 permutations.
Statistical analysis

Student’s t test was employed for the comparison between two

groups. For in vitro culture data involving more than 2 groups, two-

way ANOVA with Sidak’s multiple comparison test was employed.

Data are shown as mean ± standard error of the mean (SEM).

Significant differences were shown as *P < 0.05, **P < 0.01,

***P < 0.001, ****P < 0.0001. All analyses were performed with

Prism GraphPad.
Results

Nlrp12 deficiency ameliorates hallmarks of
autoimmunity in male B6/lpr mice

Since sex differences exist (65), where females are more

generally affected with autoimmune disease (66–68), to investigate

the roles of NLRP12 in modulating inflammation in the B6/lpr

model of autoimmunity, we monitored the disease progression in

both male and female mice. Interestingly, the deficiency of Nlrp12
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did not alter disease progression in female mice (Figures S2A, B). In

contrast, while splenomegaly was not affected (data not shown), the

gene deletion significantly mitigated several hallmarks of lupus

disease in male B6/lpr mice, including reduced proteinuria levels

(Figure 1A), decreased circulatory levels of anti-dsDNA antibodies

(Figure 1B), and reduced deposition of IgG and complement C3 in

renal compartments (Figures 1C, D), indicating sex-specific effects

of NLRP12 in modulating lupus pathogenesis. Interestingly, we

found a trending increase in both serum testosterone level (Figure

S2C) and the splenic transcript level of androgen receptor (Figure

S2D) in male Nlrp12-/- B6/lpr compared to Nlrp12+/+ (WT) B6/lpr

mice, suggesting a potential role for sex hormones.

Notably, we monitored male mice from 24 to 39 weeks of age.

WT B6/lpr mice generally develop systemic autoimmunity without

significant clinical pathology of renal inflammation or nephritis,

which was confirmed in our studies. However, Nlrp12-/- B6/lpr

mice exhibited even lower proteinuria levels that were significantly

different fromWT B6/lprmice during the earlier time window from

24 to 31 weeks of age (Figure 1A), while we could not detect

differences in proteinuria level during the later period from 32 to 39

weeks of age (Figure S1E).

Together, these findings indicate that NLRP12 might have

pathological roles in modulating systemic autoimmunity in male

B6/lpr mice. From now on, we will focus on describing male mice

unless noted otherwise.
Nlrp12 deficiency dampens B cell
activation and differentiation

We detected a significantly lower level of autoantibodies and

their renal deposition in the absence of NLRP12. Therefore, to

delineate the mechanisms through which Nlrp12 deficiency protects

against inflammation in our autoimmune model, we investigated its

effects on B cell responses. Deficiency of Nlrp12 suppressed B cell

responses in male B6/lpr mice (Figure 2). Nlrp12-/- B6/lpr mice had

significantly reduced plasma cells (gated as CD19-CD27-

CD138+IgD-) to plasmablasts (gated as CD19+/lowCD27+/

lowCD138+IgD-) ratio in total splenocytes (Figure 2A), suggesting

a blockade right before terminal differentiation of B cells. This is

consistent with a significant reduction of the splenic transcript level

of Prdm1 (Figure 2B). Interestingly, we also found a nearly

significant reduction of the transcript levels of the master

regulator of the germinal center (GC) reaction, Bcl6, in splenic

tissues of Nlrp12-deficient mice (Figure S3A). Although GC

formation shown as GL7 staining in immunohistochemically

stained splenic sections was not different (Figure 2C, Figure S3B),

there was a significant reduction of the percentage of GL7+ cells in

total CD19+ splenic B lymphocytes (Figure 2D; gating strategy is

shown in Figure S3C). Moreover, we found that Nlrp12-deficient

mice had a significantly reduced percentage of splenic T follicular

helper (Tfh) cells (Figure 2E; gated as CXCR5+PD-1+CD4+CD3+ in

Figure S3D), as well as significantly reduced staining of CD3+ cells

in the GCs (Figures 2C, S3E). Notably, the percentages of Tfh cells

were low and highly variable in the WT mice, and the deficiency of

NLRP12 further decreased the frequencies of these cells.
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Furthermore, while we only found a trending reduction of serum

IL-21 (Figure S3F), a major cytokine produced by Tfh cells (69), we

detected a significant reduction in its splenic transcript level in

Nlrp12-deficient mice (Figure 2F). These results indicate that

Nlrp12 deficiency might dampen GC reaction by suppressing the

functions of Tfh cells. Finally, we found downregulated levels of

factors assisting B cells (70) including the splenic transcript levels of

the B cell chemoattractant Cxcl13 (Figure 2G) and the circulatory

level of the B cell survival factor BAFF (Figure 2H) as well as its

splenic transcript level (Figure 2I). These results indicate that

Nlrp12 deficiency dampens terminal differentiation, GC reaction,

and survival of potentially autoreactive B cells, which might be the

reason for decreased production of autoantibodies and ameliorated

autoimmune pathologies. Further studies will elucidate whether

NLRP12 targets Bcl-6 and/or Blimp-1 to control autoreactive B

cell responses.
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Nlrp12 deficiency decreases T cell
expansion and responses

Activation of NLR proteins can shape T cell differentiation and

responses. For instance, activation of inflammasome-forming NLRs

such as NLRP3 often results in the production of proinflammatory

cytokines that could drive the differentiation of inflammatory T

cells including Th1 and Th17 (71). However, the exact

immunoregulatory functions of NLRP12 in modulating T cell

differentiation and responses are still elusive (44, 54). Since T

cells play pivotal roles in amplifying and maintaining

inflammation particularly through activating autoreactive B cells

(72), producing disease-promoting cytokines, and accumulating

autoreactive memory (73), we sought to determine how Nlrp12

deficiency modulates the frequencies and responses of different T

cell populations. Deficiency of Nlrp12 significantly reduced
A B

D

C

FIGURE 1

Nlrp12 deficiency ameliorates hallmarks of autoimmunity in male mice with Faslpr-mediated systemic autoimmunity. The progression of systemic
autoimmunity in a mouse model of ALPS and SLE was assessed in male Nlrp12+/+ (WT) and Nlrp12-/- (KO) B6/lpr mice. (A) Level of proteinuria over time
(n=6 or 8/group). (B–D) Endpoint analyses at 39 weeks of age. (B) Level of anti-double stranded (ds)DNA IgG antibodies. (C) Immunohistochemical
stains of kidney sections showing the deposition of IgG (red) and C3 (green) with DAPI staining of nuclei (blue). Pictures were captured with a Zeiss LSM
880 confocal microscope. Bar, 20 mm. (D) Mean intensity scores of IgG-PE and C3-FITC fluorescence as determined by ZEN 2.1 Lite software. Student’s
t test was employed for the comparison between two groups. Data are shown as mean ± SEM. Significant differences were shown as *P < 0.05,
**P < 0.01, and ***P < 0.001.
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percentage of CD3+ T cells in total splenocytes (Figure 3A),

consistent with the reduced fluorescence intensity of CD3+ T cells

in immunohistochemically stained splenic GCs (Figure S3E).

Nlrp12-/- B6/lpr mice also had significantly fewer CD8+

(Figure 3B) and double negative (DN)-T cell (Figure 3C)

percentages in total splenocytes, which possibly contributed to the

reduction in CD3+ T cells. CD4+ T cell response did not change.

Importantly, the generation of DN-T cells is one of the prominent

alterations of T cell responses reported in SLE (8) and ALPS (74–

76). These DN-T cells could have been generated from activated

CD8+ T cells (74, 77–79). Moreover, we found a reduced proportion

of CD44+CD62L− effector memory T (TEM) cells in the spleens of
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Nlrp12-deficient mice (Figure 3D). Together, these results suggest

that Nlrp12 deficiency might target T cells to dampen

autoimmunity in male B6/lpr mice.
Nlrp12 deficiency reduces pro-
inflammatory macrophage responses

NLRP12 can modulate the responsiveness of different myeloid

cells including neutrophils, dendritic cells (DCs) and macrophages

(40–42, 46, 47). We examined the immunophenotypic changes of

these populations (see Figure S4A for gating strategies) in different
A B D E F G

IHC

FIGURE 2

Nlrp12 deficiency dampens B cell activation and differentiation. Spleens were harvested at the endpoint of 39 weeks of age. (A) The ratio of the
frequencies of plasma cells vs. plasmablasts in total splenocytes. (B) Relative transcript level of splenic Prdm1. (C) Immunohistochemical stains of
splenic sections with GL7 (purple), CD3 (red), and IgD (green). Pictures were captured with an EVOSVR FL microscope. (D) GL7+ cells as a
percentage of splenic CD19+ B lymphocytes as determined with flow cytometry. (E) Percentage of Tfh cells in total splenocytes. (F) Relative
transcript level of splenic Il21. (G) Relative transcript level of splenic Cxcl13. (H) Level of serum BAFF as determined with Luminex assay. (I) Relative
transcript level of splenic Tnfsf13b/BAFF. Student’s t test was employed for the comparison between two groups. Data are shown as mean ± SEM.
Significant differences were shown as *P < 0.05 and **P < 0.01.
A B DC

FIGURE 3

Nlrp12 deficiency decreases T cell expansion and responses. Spleens were harvested at the endpoint of 39 weeks of age. The percentages of total T
(A), CD8+ T (B), DN-T (C), and TEM (D) cells in total splenocytes as determined with flow cytometry are shown. Data are shown as mean ± SEM.
Significant differences were determined by Student’s t test and shown as *P < 0.05, **P < 0.01, and ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1120958
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Abdelhamid et al. 10.3389/fimmu.2023.1120958
lymphoid compartments including BM and spleen. We found no

significant changes in neutrophils (Figure S4B; gated as CD11c-

CD11b+Gr1+) or DCs (Figures S4C, D; gated as CD11chigh

CD11b+Gr1- or CD11chigh CD11b+Gr1+). However, Nlrp12-/- B6/

lpr mice showed a s ignificant reduct ion of Gr1-F4/

80+CD11b+CD11c-/low macrophages as the percentage of total

splenocytes (Figure 4A). In addition, as the percentage of BM

macrophages slightly increased in Nlrp12-/- B6/lpr mice (Figure

S5A), the ratio of splenic-to-BM macrophages was significantly

reduced with Nlrp12 deficiency (Figure 4B), suggesting decreased

migration of these cells from BM to the spleen. Importantly, we also

detected significantly reduced splenic transcript levels of Tnf

(Figure 4C) and macrophage inflammatory protein 3-b (MIP-3b,
gene name Ccl19; Figure 4D). These data suggest that Nlrp12

deficiency might dampen pro-inflammatory responsiveness of

splenic macrophages in autoimmune environment. Interestingly,

following ex-vivo stimulation of BM-derived myeloid cells with LPS

– a potent activator of macrophages (80) that could prime DCs (81)

– although there were slightly more BM-derived macrophages with

Nlrp12 deficiency regardless of stimulation status (Figure S5B), the

percentage of BM-derived DCs in these cultures was significantly

reduced with the deficiency (Figure S5C). This suggests decreased

priming of DCs and thus reduced functional potential of BM-

derived macrophages. In parallel, we detected a significantly

reduced level of TNFa in the culture supernatants of BM-derived

cells with Nlrp12 deficiency following LPS stimulation (Figure 4E).
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Similarly, LPS-stimulated BM-derived cells from Nlrp12-/- B6/lpr

mice had reduced transcript levels of Tnf (Figure 4F, Figure S5D

following 50 ng/ml and 1 mg/ml LPS stimulation, respectively) and

Il1b (Figure 4G, Figure S5E), as well as Ccr7 (Figure 4H, Figure

S5F), a receptor known to be expressed on DCs following their

activation (82). These ex-vivo findings suggest a potential

pathogenic role of NLRP12 in potentiating macrophages and DCs

in response to pro-inflammatory triggers. Importantly, the change

of IL-1b suggests that NLRP12 inflammasome may facilitate the

production of IL-1b that in turn drives the production of other

inflammatory mediators including TNF-a (83) and MIP-3b (84).

Together, these results suggest reduced pro-inflammatory innate

immunity with Nlrp12 deficiency in male B6/lpr mice.
Nlrp12 deficiency induces dynamic
changes in gut microbiota diversity
and composition

Changes of microbiota dynamics have been shown to drive

autoimmunity (32, 33) or modulate autoimmunity (28). This has

been established for SLE (37, 38) but not yet for ALPS. Interestingly,

NLRP12 could shape inflammatory outcomes through regulating

the gut microbiota (49, 85). Thus, we investigated whether the

alteration of Nlrp12 could implicate the gut microbiota in B6/lpr

mice. We analyzed the fecal and intestinal microbiotas of both male
A B D

E F G H

C

FIGURE 4

Nlrp12 deficiency reduces pro-inflammatory macrophage responses. Spleens and BM were harvested at the endpoint of 39 weeks of age. (A) The
percentage of Gr1-F4/80+CD11b+CD11c-/low macrophages in total splenocytes. (B) The ratio of splenic to BM macrophages. (C) Relative transcript
level of splenic Tnf. (D) Relative transcript level of splenic Ccl19/MIP-3b. (E-H) BM cells were stimulated ex vivo. (E) Level of TNFa in the culture
supernatant as determined with ELISA following 4-h stimulation with 1 mg/ml LPS. (F-H) Transcript levels of Tnf (F), Il1b (G) and Ccr7 (H) as fold
changes over unstimulated controls following 4-h stimulation with 50 ng/ml LPS. Data are shown as mean ± SEM. Significant differences were
determined by Student’s t test (A–D, F–H) or two-way ANOVA (E) and shown as *P < 0.05, **P < 0.01, and ****P < 0.0001.
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and female mice seeking to answer the sex-dependent response to

Nlrp12 deficiency. We found a clear distinction in the fecal

microbiota diversity with or without NLRP12 (Figure 5). Fecal

microbiotas had significantly different alpha diversity on the genus

level as shown by Shannon diversity estimate in both male

(Figure 5A) and female (Figure 5B) B6/lpr mice, where Nlrp12

deficiency led to significantly increased microbiota diversity.

However, the difference in alpha diversity was much more

pronounced in male than female mice. Similarly, analysis of beta

diversity based on Bray Curtis dissimilarity calculation showed

significantly different overall taxonomic composition based on the

genotype but not the timepoint between WT and Nlrp12-/- B6/lpr

male (Figure 5C) and female (Figure 5D) mice. Moreover, the

composition of fecal microbiota changed upon alteration of Nlrp12.

We detected significant enrichment of various genera in Nlrp12-/-

B6/lprmale (Figure 5E) and female mice (Figure 5F). Strikingly, the

intestinal microbiota diversity showed clear differences only in male

mice that might explain the sex-dependent changes in disease

phenotype. Analysis of alpha diversity from different intestinal

segments (duodenum/jejunum, ileum, and colon) at 39 weeks of

age showed that male (Figure 6A, P=0.028), but not female

(Figure 6B, P=0.963), mice have distinct microbial composition

upon alteration of Nlrp12. Similarly, the overall taxonomic

composition was different for genotype and intestinal segment

only among males (Figure 6C, P=0.001) but not females

(Figure 6D, P=0.065). While not many changes were observed as

in fecal microbiota, several genera were significantly altered in the

intestinal microbiota of WT vs. Nlrp12-/- B6/lpr male (Figure 6E)

and female mice (Figure 6F).
Frontiers in Immunology 08
Discussion

We investigated the role of NLRP12 inmodulating autoimmune-

associated inflammation utilizing the Faslpr mutant mice as a model

of ALPS and SLE (1). NLRP12 is an inhibitory checkpoint of

inflammation; but at the same time, it can form inflammasome to

promote inflammation (39). So far, triggers that direct the activity of

NLRP12 to either way are not fully understood. The findings of this

work support the hypothesis that NLRP12 can work towards the

inflammasome activation pathway to deteriorate systemic

autoimmunity. Inflammasome protein complex including NLRP12

has been proposed to be implicated in ALPS (86). Similarly, a recent

study has shown that the expression of NLRP12 together with other

inflammasome-forming innate sensors is increased in the SLE B cells

(87). However, the mechanisms through which NLRP12 could

modulate systemic autoimmunity are still elusive.

Here, we show how NLRP12 modulates cellular responses

under autoimmune conditions. Nlrp12 deficiency attenuated

autoreactive B cell responses in B6/lpr mice, dampening

production of autoantibodies and their renal deposition.

Mechanistically, Nlrp12 deficiency may have hindered terminal

differentiation, GC formation, and survival of autoreactive B cells,

suggesting B cells as a potential hub for NLRP12 inflammasome

activity in autoimmune conditions. In parallel, NLRP12 is expressed

at high levels in T cells (43) and has been shown to modulate the

differentiation and responses of different T cell subsets (43, 54).

Specifically, T cells can maintain an inflammatory milieu (88, 89)

and potentiate B cell autoreactivity (72), a phenomenon implicated

in both SLE (73) and ALPS (74–76). Interestingly, we found that
A
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FIGURE 5

Nlrp12 deficiency induces dynamic changes in fecal microbiota diversity and composition. (A, B) Alpha diversity of fecal microbiota based on
Shannon diversity estimate in male (A) and female (B) B6/lpr mice upon alteration of NLRP12. (C, D) Non-metric multidimensional scaling (axes
NMDS1 vs. NMDS2) showing the segregation of fecal microbiota overtime based on Bray Curtis dissimilarity of beta diversity in male (C) and female
(D) mice. (E, F) Differentially abundant bacterial taxa at the genus level in male (E) and female (F) fecal microbiota.
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NLRP12 could drive and maintain the accumulation of T cells in the

spleen. The deficiency of Nlrp12 reduced the percentage of splenic

CD3+ T cells and importantly, the generation of DN-T cells and

TEM cells, which are known pathogenic T cell subsets in the

autoimmunity (8, 74–76, 90). Moreover, our results suggest that

NLRP12 might drive B cell activation through promoting Tfh cells,

where mice with intact NLRP12 had an expansion of Tfh cells and

upregulated levels of factors associated with B cell help (70). To this

end, our findings warrant further investigation on the cell-specific

mechanisms, either intrinsic or extrinsic, through which NLRP12

might target B cell autoreactivity to deteriorate systemic

autoimmunity in male B6/lpr mice. Furthermore, we found

decreased levels of inflammatory mediators including TNFa,
MIP-3b, IL-1b and CCR7 in splenic tissues and/or BM-derived

myeloid cell cultures following ex-vivo stimulation for Nlrp12-/- B6/

lpr mice, supporting the notion that NLRP12 might trigger

inflammasome activation in different immune cell populations to

deteriorate systemic inflammation.

Importantly, Nlrp12 deficiency dramatically altered the gut

microbiota especially in male mice. Although Nlrp12 alteration

significantly changed the diversity and composition of fecal

microbiota in both males and females, significant differences in

the intestinal microbiota were seen only in male mice. This

observation supports the notion that gut microbiota might drive

the sex-dependent outcome of Nlrp12 deficiency in our mouse

model of systemic autoimmunity. However, future studies are still

needed to mechanistically delineate our observations and to

demonstrate the potential link between gut microbiota and the

sex-dependent outcomes seen in Nlrp12-deficient mice. It is also
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likely that treating females with testosterone, or gut microbiota

from male mice, will restore the male phenotype seen in this study.

In conclusion, the present study provides novel insight into the

immunoregulatory role of NLRP12 in systemic autoimmune

disorders such as ALPS and SLE. Attenuation of autoreactive cell

responses including B, T, and myeloid cells that we have observed in

the absence of NLRP12 supports a sex-dependent, pro-inflammatory

role of NLRP12 under autoimmune conditions that warrant further

investigation to decipher the underlying mechanisms. In addition,

the marked differences in microbiota diversity and composition

between WT and Nlrp12-/- B6/lpr mice suggest a microbiota-

dependent role of NLRP12 in shaping autoimmune pathogenesis.

Future studies will reveal a potential gut microbiota-dependent

mechanism by which NLRP12 deficiency attenuates autoimmune

pathologies in male mice. We will employ antibiotic treatment, co-

housing, and gut microbiota transplantation experiments to

determine whether changes of the gut microbiota are a cause, or an

effect, of the attenuated disease phenotype in male Nlrp12-/- B6/lpr

mice. As gut microbiota has been shown to drive autoimmunity in a

sex-dependent manner (91), studies with mice deficient in androgen

receptors will also reveal a potential role for male hormones that may

work in concert with gut microbiota.
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FIGURE 6

Nlrp12 deficiency induces dynamic changes in intestinal microbiota diversity and composition. Intestinal microbiota was collected at the endpoint of
39 weeks of age. (A, B) Alpha diversity of intestinal microbiota based on Shannon diversity estimate in male (A) and female (B) B6/lpr mice upon
alteration of NLRP12. (C, D) Non-metric multidimensional scaling showing the segregation of intestinal microbiota based on Bray Curtis dissimilarity
of beta diversity in male (C) and female (D) mice. (E, F) Differentially abundant bacterial taxa at the genus level in male (E) and female (F) intestinal
microbiota.
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