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Ubiquitin-mediated proteasomal degradation is a post-transcriptional protein

modification that is comprised of various components including the 76-amino

acid protein ubiquitin (Ub), Ub-activating enzyme (E1), Ub-conjugating enzyme

(E2), ubiquitin ligase (E3), deubiquitinating enzyme (DUB) and proteasome. We

and others have recently provided genetic evidence showing that E3-ubiquitin

ligases are associated with bone metabolism, the immune system and

inflammation through ubiquitylation and subsequent degradation of their

substrates. Dysregulation of the E3-ubiquitin ligase RNF146-mediated

degradation of the adaptor protein 3BP2 (SH3 domain-binding protein 2)

causes cherubism, an autosomal dominant disorder associated with severe

inflammatory craniofacial dysmorphia syndrome in children. In this review, on

the basis of our discoveries in cherubism, we summarize new insights into the

roles of E3-ubiquitin ligases in the development of human disorders caused by an

abnormal osteoimmune system by highlighting recent genetic evidence

obtained in both human and animal model studies.
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1 Introduction

Ubiquitin-mediated proteasomal degradation is a post-transcriptional protein

modification that is comprised of various components including the 76-amino acid

protein ubiquitin (Ub), Ub-activating enzyme (E1), Ub-conjugating enzyme (E2),

ubiquitin ligase (E3), deubiquitinating enzyme (DUB) and proteasome. E1 activates

ubiquitin and forms an E1-ubiquitin intermediate, and ubiquitin is transferred from E1 to

E2, leading to the formation of an E2-ubiquitin intermediate (1–3). Then E3 recognizes its

substrate proteins and the E2-ubiquitin intermediate, resulting in the formation of a protein

complex and transference of the activated ubiquitin from E2 to most often a lysine residue in

the substrates (4). Ubiquitin has seven lysine residues, including K6, K11, K27, K29, K33, K48

and K63, that are used as attachment sites for subsequent Ub proteins (1, 2, 4), while K48-
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linked chains are the most abundant linkages for polyubiquitylation.

This process is repeated to form a polyubiquitin chain, and ubiquitin-

tagged proteins are recognized and degraded into small fragments by

the 26S proteasome. Protein ubiquitylation is reversed by DUBs

that hydrolyze the peptide bonds linking the substrates to ubiquitin

(1, 2, 5) (Figure 1, top). More than 600 E3-ubiquitin ligases have been

identified in humans (6) and they are classified into four major

groups on the basis of their structures: HECT (homologous to E6-AP

carboxyl terminus) type, RING (really interesting new gene)-finger

type, U-box type and RBR (RING-between RING-RING) type (7, 8).

We have extensively investigated the roles of E3-ubiquitin

ligases in bone metabolism, the immune system and inflammation

through ubiquitylation and subsequent degradation of their

substrates. The adaptor protein 3BP2 (SH3 domain-binding

protein 2) nucleates a signaling complex including ABL, SRC,

VAV and SYK and enforces an open active configuration of these

proteins, leading to their kinase activation. Gain-of-function

missense mutations in the SH3BP2 gene cause cherubism, an

autosomal dominant disorder associated with severe inflammatory

craniofacial dysmorphia syndrome in children (9, 10). Prof. Robert

Rottapel’s group at the University of Toronto have provided a
Frontiers in Immunology 02
mechanistic understanding of cherubism by showing that

impairment of ubiquitylation of the cherubism mutant 3BP2 leads

to accumulation of 3BP2 and subsequent activation of

osteoclastogenesis and cytokine production in macrophages (11, 12).

On the basis of our discoveries in cherubism, we have provided

further genetic and mechanistic evidence showing that E3-ubiquitin

ligase-mediated protein degradation of their substrates is associated

with various human disorders caused by an abnormal

osteoimmune system.

In this review, we summarize new insights into the roles of E3-

ubiquitin ligases in the development of human disorders caused by

an abnormal osteoimmune system by highlighting recently reported

genetic studies that have provided mechanistic evidence.
2 HECT-domain E3-ubiquitin ligases
and human disorders

Recent studies have provided genetic evidence linking HECT-

domain E3-ubiquitin ligases, which contain an N-terminal C2

domain, a WW domain and a C-terminal catalytic HECT

domain, to the pathogenesis of human disorders. ITCH was

originally identified in the mouse agouti locus, in which

mutations lead to characteristic coat color changes (13). In

humans, Lohr et al. reported the first pathogenic mutation in the

ITCH gene that resulted in ITCH deficiency in ten Amish children

with multisystem autoimmune disease and developmental

abnormalities (14). After various examinations that failed to

reveal a diagnosis , they performed single-nucleot ide

polymorphism autozygosity mapping and identified a large

homozygous block in chromosome 20q11. They further found a

pathogenic truncating homozygous mutation in the ITCH gene in

all of the affected children. Characteristic clinical features were

dysmorphic faces, multiple organomegaly of the lung, liver and gut

with inflammatory cell infiltration and delayed motor development,

indicating that human ITCH deficiency leads to a complex

phenotype affecting physical growth, craniofacial morphology,

muscle development and immune function. Three children died

due to respiratory failure caused by cellular nonspecific interstitial

pneumonitis. Mouse studies and in vitro studies have provided

mechanistic evidence of these clinical features. Mutations of Itch

cause a fatal autoimmune disease characterized by histiocyte and

lymphocyte infiltration of the lungs, liver, kidney and heart in mice

that shows a phenotypic similarity to human diseases (15). Both

antigen processing and T-cell anergy are abnormal (16), and

multiple organs are infiltrated by lymphocytes, particularly

autoreactive B cells, leading to fatal lung disease early in life.

Ubiquitylation of the TCR (T-cell receptor) results in its

downregulation (17), and downstream signaling is also altered by

ubiquitylation of JUNB, which may inhibit IL-2 production and T-

cell proliferation (15). Itch deficiency results in loss of tolerance to

self-antigens and autoreactive T/B cells (18). ITCH is also a negative

regulator of the BCR (B-cell receptor) signaling pathway possibly

through ubiquitylation and regulation of components of the

mTORC1 complex that are key contributors to glycolysis in B

cells and maintenance of germinal centers (19). Itch-deficient B cells
FIGURE 1

Schematic model of ubiquitylation of general proteins and 3BP2.
(Upper) Schematic model of proteasomal degradation mediated by
E3-ubiquitin ligases. First, E1 activates ubiquitin and forms an E1-
ubiquitin intermediate. Ubiquitin is then transferred from E1 to E2,
leading to the formation of an E2-ubiquitin intermediate. Finally, E3
recognizes its substrate proteins and the E2-ubiquitin intermediate,
resulting in the formation of a protein complex and transference of
the activated ubiquitin from E2 to the substrates. (Middle and Bottom)
Schematic model of the development of cherubism. Tankyrase-
mediated PARsylation of 3BP2 creates a recognition site for RNF146,
leading to ubiquitylation and subsequent proteasomal degradation of
3BP2 (middle). Cherubism mutations uncouple 3BP2 from Tankyrase,
which results in impairment of RNF146-mediated ubiquitylation and
subsequent stabilization of 3BP2 in macrophages, leading to activation
of cytokine production and osteoclastogenesis (bottom).
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have been shown to exhibit increased survival and proliferation

through activation of mTORC1-mediated glycolysis (19). Detailed

studies on immunological function, B-cell regulation and

autoimmunity are currently underway. In addition to immune

cells, ITCH is expressed in various tissues including the gut,

pancreas, nerves and lymphoid tissues. ITCH might regulate

NOD2 signaling (20), which could explain the bowel

inflammation observed in these patients with ITCH deficiency

since NOD is associated with activation of the innate immune

system and its mutations have been identified in patients with

Crohn’s disease (21). Craniofacial dysmorphic phenotype is

associated with other osteoimmunological roles of ITCH in

nonhematopoietic cells, possibly cells of mesenchymal origin.

ITCH thus has critical functions in the maintenance of

homeostasis in different physiologic states (Figure 2).

WWP2, which was originally identified as a protein binding to

atrophin-1 from yeast two-hybrid screening and in vitro binding

analysis and was named atrophin-1 interacting protein 2 (AIP2)

(22), might be involved in the pathogenesis of several human

disorders on the basis of results of previous in vivo studies. Gao

et al. reported that WWP2 was identified from 187 genetic variants

as a susceptible gene in osteoarthritis (OA) from a GWAS (genome-

wide association study) (23). WWP2 is abundantly expressed in

articular cartilage, and WWP2 expression level is decreased in

human OA cartilage (24). Mice lacking WWP2 exhibit aggravated

spontaneous and surgically induced OA since WWP2 protects

cartilage through ubiquitylation and degradation of its substrate

RUNX2 (runt-related transcription factor 2), which induces

ADAMTS5 and subsequent cartilage degradation (24). WWP2

might also be associated with the development of congenital

craniofacial anomalies (CFA) since WWP2-deficient mice display

craniofacial malformation (25). In this regard, WWP2 interacts

with and ubiquitylates the paired-like homeobox transcription

factor Gsc (Goosecoid), leading to its transcriptional activation of

Sox6, which plays an important role in craniofacial development. In

addition to skeletal formation, WWP2 is associated with the innate

immune system through regulation of the Toll-like receptor (TLR)

signaling pathway. Upon TLR3 activation by viral double-stranded

RNA, WWP2 mediates K48-linked ubiquitylation and degradation

of TRIF (TIR-domain-containing adapter-inducing interferon-b),
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which is required for TLR3-mediated NF-kB and IRF3 (interferon

regulatory factor 3) activation, leading to induction of

proinflammatory cytokines and type I interferons (26). These

findings indicate that loss-of-function mutations in the WWP2

are associated with human skeletal and inflammatory

disorders (Figure 2).

A number of in vivo and in vitro studies have shown

associations of SMURF1 (Smad Ubiquitin Regulatory Factor-1)

with osteoblast function and response to BMPs (bone

morphogenetic proteins) (27, 28), and genetic variants in the

genes encoding SMURF1-related proteins have been implicated in

the risk of osteoporosis by hypothesis-free GWAS (29). Al−Rawi

et al. reported the first case of a microduplication in the SMURF1

gene in a 10-year-old girl suffering from two leg fractures with

osteoporosis, severe developmental delay, infantile seizures and B-

cell lymphoma (30). During the process of osteoblastogenesis,

BMPs bind to homomeric type II receptor, which phosphorylates

a glycine-serine-rich domain in homomeric type I receptor, leading

to induction of signal transduction. The phosphorylated complex of

receptor-regulated SMADs (R-Smad; Smad1/5/8) and Co-Smad

(Smad4) translocates into the nucleus and binds to the promoter

regions of target genes including the osteoblastogenic master

transcription factor RUNX2 and Osterix, leading to osteoblast

differentiation and maturation. Additionally, the binding of BMPs

to the receptors leads to phosphorylation of mitogen-activated

protein kinase kinase kinase 2 (MEKK2) and subsequent

activation of the c-Jun N-terminal kinase (JNK) signaling

pathway, leading to osteoblast activation and increased response

to BMPs (31). In bone metabolism, SMURF1 inhibits R-Smad/Co-

Smad complex nuclear translocation and directly ubiquitylates and

degrades RUNX2, leading to suppression of osteoblastogenesis.

Additionally, SMURF1 ubiquitylates and regulates MEKK2,

resulting in inhibition of JNK activation and subsequent

suppression of osteoblast activity and response to BMPs (28, 30).

Consistent with these molecular mechanisms, clinical features in

the reported child with osteoporosis and bone fractures showed

phenotypic similarity to those observed in mice with Smurf1

mutations. In addition to its roles in skeletal development,

SMURF1 may function as an oncoprotein through regulation of

the levels of the tumor suppressor RhoB, leading to promotion of
FIGURE 2

Schematic model of the associations between E3-ubiquitin ligases, their substrates and phenotype caused by dysregulation of these pathways.
Pictures of an individual reproduced from Ueki et al. Nat Genet. 28(2):125-126, 2001 (9).
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tumor metastasis and initiation (32), which may provide the reason

why B-cell lymphoma developed in the girl (Figure 2).

3 RING-domain E3-ubiquitin ligases
and human disorders

CBL (Casitas B-lineage lymphoma proto-oncogene) and CBL-

B, a member of the CBL family of proteins including CBL, CBL-B

and CBL-C, are RING-domain E3-ubiquitin ligases that

ubiquitylate receptor tyrosine kinases (RTKs) for degradation as

enzymes (33) and activate several signaling pathways through

protein-protein interaction as adaptor proteins (34, 35). A

previous GWAS and a previous EWAS (epigenome-wide

association study) showed a genetic link between CBL and several

human inflammatory disorders such as MS (multiple sclerosis) (36)

and RA (rheumatoid arthritis) (37). CBL-B has been reported to

ubiquitylate the regulatory p85 subunit of PI3K that results in

inhibition of the recruitment of PI3K to CD28 upon activation of

the costimulatory pathway rather than its degradation, leading to

inhibition of T-cell activation (38). The pathogenic single

nucleotide polymorphism of CBL-B in patients with MS is

associated with reduction of CBL-B expression levels and

induction of CD4+ T-cell proliferation mediated by type I IFNs

(39). Additionally, loss-of-function mutations in the CBL gene are

associated with the development of cancers since CBL has tumor

suppressor functions through both ubiquitylation and degradation

of RTKs and inhibition of the PI3K signaling pathway (37),

indicating that CBL or CBL-B mutations might be involved in the

pathogenesis of autoreactive inflammatory disorders and cancers in

humans (Figure 2).

In addition to CBL family proteins, several genetic studies have

revealed multiple risk alleles for autoantibody-positive RA within

the MHC region, a PTPN22 missense allele and risk alleles in other

loci. Raychaudhuri et al. systematically examined 370 SNPs from

179 independent loci with p<0.001 in a published meta-analysis of

an RA GWAS of 3,393 cases and 12,462 controls and identified

TRAF6/RAG1 as one of the true RA risk alleles (40). TRAF6 is a

member of the TNF receptor associated factor (TRAF) protein

family in which each protein contains an N-terminal RING domain,

zinc-finger motifs, a central coiled-coil region and a highly

conserved C-terminal domain and mediates signaling from the

TNF receptor superfamily and Toll/IL-1 family. In the IL-1

signaling pathway, TRAF6 induces K-63-linked auto-

ubiquitylation after its oligomerization, which results in the

recruitment and activation of TAK1 (transforming growth factor

b-activated kinase 1), leading to phosphorylation of IKK (IkB
kinase) and subsequent activation of NF-kB and cytokine

production. In addition to cytokine production, RANKL-induced

signaling in macrophages and osteoclastogenesis are also controlled

by TRAF6 since TRAF6-deficient mice display osteopetrosis due to

an osteoclast defect (41) (Figure 2).

In addition to the roles of these RING-domain E3-ubiquitin

ligases in the development of human disorders, we have uncovered

another genetic link between RNF146 (Ring Finger Protein 146)

and the human hereditary syndrome cherubism.
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4 Newly identified roles of RNF146 in
the osteoimmune system on the basis
of discoveries in cherubism

4.1 Impairment of 3BP2 ubiquitylation by
RNF146 causes cherubism

We have investigated the roles of the RING-domain E3-ubiquitin

ligase RNF146, which contains a WWE domain and a RING domain

(42, 43), in the osteoimmune system. RNF146 recognizes poly-ADP-

ribosylated (PARsylated) proteins that are catalyzed by Tankyrase, a

member of the PARP (Poly(ADP-ribose) polymerase) family,

through its WWE domain, resulting in its structural change and

subsequent activation of the RING domain. Then RNF146 induces

K48-linked polyubiquitylation and subsequent degradation of its

substrates by the 26S proteasome (43, 44). 3BP2 (SH3 domain-

binding protein 2), which was originally identified as a binding

protein for the ABL kinase (Abelson murine leukemia viral

oncogene homolog 1) (45, 46), is one of the identified substrates

that are regulated by RNF146-mediated ubiquitylation (Figure 1,

middle). It has been reported that single missense mutations in the

SH3BP2 gene cause cherubism, a rare hereditary syndrome associated

with severe craniofacial developmental defects in children (9, 47).

Prof. Robert Rottapel’s group at the University of Toronto reported

that cherubism mutations uncouple 3BP2 from Tankyrase, which

results in impairment of RNF146-mediated ubiquitylation and

subsequent stabilization of 3BP2 in macrophages, leading to

activation of SYK and SRC kinases and hyperosteoclastogenesis

(11, 12) (Figure 1, bottom). In addition to the roles of 3BP2 in

osteoclastogenesis, 3BP2 is also required for osteoblastogenesis since

Sh3bp2- / - mice display osteoporosis due to defect ive

osteoblastogenesis (48). We have shown that 3BP2-mediated ABL

kinase activation potentiates the formation of a transcriptional

complex of the osteoblastogenic master transcription factor

RUNX2 and TAZ (transcriptional co-activator with PDZ-binding

motif), leading to phosphorylation and activation of RUNX2 and

subsequent enhancement of osteoblastogenesis (49). ABL and TAZ

reciprocally stabilize each other through suppression of the respective

E3-ubiquitin ligases SMURF1 and b-TrCP. Similarly, we showed that

ABL-mediated RUNX2 phosphorylation is also required for breast

cancer invasion through an increase of MMP13 transcripts that is

independent of TAZ-mediated RUNX2 activation (50).
4.2 Impairment of RNF146-mediated
ubiquitylation in bone cells causes human
skeletal disorders

On the basis of our discoveries in cherubism, we have further

investigated the genetic link between RNF146 and the osteoimmune

system through generation of conditional knockout mice in which

endogenous Rnf146 is deleted in myeloid cells (Rnf146fl/fl LysM-Cre

(+)) or osteoblasts (Rnf146fl/fl Osterix-Cre (+)). We showed that

RANKL represses RNF146 transcripts through activation of NF-kB
and subsequent inhibition of the RNF146 promoter (51). Repression
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of RNF146 by RANKL results in stabilization of its substrates 3BP2

and AXIN1, which triggers SRC activation and b-catenin attenuation,
respectively, both of which are required to execute the osteoclast

developmental program (11, 52–54). Consistently, we showed that

dysfunction of the RNF146-mediated 3BP2 degradation program in

Rnf146fl/fl LysM-Cre (+) mice results in enhanced osteoclastogenesis

and bone loss. Additionally, depletion of RNF146 leads to

hypersensitivity to LPS-induced TNF-a production in vivo,

indicating that RNF146 acts as an inhibitory switch controlling

osteoclastogenesis and cytokine production that could be a control

point underlying the pathogenesis of chronic inflammatory diseases

(51). In addition to the roles of RNF146 in osteoclastogenesis and

cytokine production, we have provided further genetic evidence

showing that mice lacking RNF146 in osteoblasts show phenotypic

similarities to cleidocranial dysplasia (CCD) (55), an autosomal

dominant human disorder characterized by abnormal bone

development mainly due to defective intramembranous bone

formation by osteoblasts (56, 57). We showed that loss of RNF146

in osteoblasts stabilizes AXIN1, which results in inhibition of Wnt3a-

induced b-catenin activation and reduced Fgf18 expression. FGF18

induces TAZ expression required for osteoblast proliferation and

differentiation through activation of TEAD and RUNX2

transcription factors, respectively. These findings indicate that

dysfunction of RNF146 could be the pathogenesis of CCD in

addition to known mutations in a single allele of RUNX2 (55, 58–

63) (Figure 2).
5 Discussion and future perspectives

In this review, we have summarized the roles of E3-ubiquitin

ligases in the development of human disorders caused by an

abnormal osteoimmune system. On the basis of our discoveries in

cherubism, we and others have further investigated and provided

evidence that links E3-ubiquitin ligases to autoimmune/

autoinflammatory disorders. We have shown that mice lacking

Tankyrase in myeloid cells develop severe systemic inflammation

with elevated inflammatory cytokine production through the

impairment of RNF146-medaited 3BP2 degradation (64). An

increased level of 3BP2 in macrophages results in tyrosine

phosphorylation and activation of TLR2, and TLR2 (Y647)

phosphorylation within the TIR domain by SRC and SYK is

essential for TLR2 stabilization and signaling. In the myeloid cell

lineage, 3BP2 is also required for G protein-coupled receptor-

mediated neutrophil functions (65) and adhesion and migration

of mast cells (66). In addition to the innate immune system, 3BP2 is

required for B cell proliferation and cell survival following cross-

linking of the BCR through SYK phosphorylation (67). 3BP2 is also

part of a signaling complex of the TCR with LCK, ZAP-70 and VAV

that is induced by CD28 co-stimulation, leading to proliferation and

differentiation of T cells since 3BP2-deficient CD8+ T cells exhibit a

proliferation defect (68). In an animal model of rheumatoid arthritis

(RA), 3BP2 deficiency reduced induction of arthritis and bone
Frontiers in Immunology 05
erosion through reduction of autoantibody production (69), while

an increased level of 3BP2 caused exacerbation of bone loss with

increased osteoclast formation in an arthritis mouse model (70),

indicating that a high expression level of 3BP2 might be a

pathogenesis of RA. In addition to 3BP2, the chondrogenic

master transcription factor SOX9 is ubiquitylated by another E3-

ligase that is mediated by Tankyrase, while Tankyrase inhibitors

ameliorate osteoarthritis in mice (71).

These studies have thus shown that dysregulation of E3-ligases-

mediated ubiquitylation causes abnormalities in skeletal formation

and the osteoimmune system that are associated with a

pathogenesis of human autoimmune/autoinflammatory disorders

(Figure 2). E3-ligases and their substrates could be therapeutic

targets for these disorders, and some of them are in preclinical or

clinical trials, especially for cancer (72, 73). On the contrary, our

recent study showed that RNF146-deficient myeloid cells are highly

active for the production of inflammatory cytokines through

elevation of 3BP2, indicating that tissue-specific inhibitors or

enhancers of E3-ubiquitin ligases or their substrates should be

established to avoid unexpected side effects (74). Additionally,

these genetic studies have partially uncovered the association

between E3-ligases and inflammatory human disorders. Further

studies in humans are thus required in order to provide new genetic

evidence of other ligases, including NEDD4-2 (75), HUWE1 (76), c-

MIR (77), Cullin3 (78), FBW7 (79–82), MARCH1 (83–88), MURF1

(89–92), RNF90 (93–95), SAG (96), Hrd1 (97), Peli1 (98, 99), TRIM

(100–102) and MYCBP2 (103), that have been shown to be

associated with the osteoimmune system in previous in vitro and

in vivo mouse studies.
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