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Introduction

Persistence for years after antigen exposure is one hallmark of memory plasma cells

(PCs) mediating long-term protection against pathogens. A crucial factor for this is the

retention in survival niches, providing extrinsic factors regulating PC maturation and

survival. Under homeostatic conditions, the bone marrow (BM) and intestinal lamina

propria represent typical locations for memory PCs (1–7). However, PC niches can

additionally arise in inflamed non-lymphoid tissues. This is reported for diverse sites in

chronic inflammatory autoimmune diseases, such as the central nervous system (CNS) in

multiple sclerosis (8), the kidney in systemic lupus erythematosus (SLE) (9), the inflamed

synovia in rheumatoid arthritis (RA) (10) or the salivary glands in Sjögren’s syndrome (11).

By conferring survival advantages, such microenvironments can protect pathogenic PCs

against immunosuppressive therapies and contribute to therapy resistance. Consequently,

PC accumulation can support local antibody production, promoting inflammation (12–

14), which in turn may modulate PC pathogenicity, e.g. through changes in the

glycosylation profile of secreted Ig (15–17). In spite of these findings, our understanding

of the biology of pathogenic PCs and their crosstalk with soluble and cellular hematopoietic

and non-hematopoietic factors in inflammatory niches remains underexplored. Here, we

will discuss the current knowledge of how different aspects of inflammation may change

tissue microenvironments to promote PC differentiation, retention, survival and function.

We will elucidate commonalities and differences between conventional and pathogenic

niches and discuss how communicating niche components may reciprocally shape

each other.
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Pathogenic PCs - marked by unique
immune-phenotypic markers?

Despite their well-documented presence, PCs residing in

inflamed tissues are poorly characterized. For instance, a gain or

loss of PC marker expression is found in myeloma PCs (18–20).

Such knowledge could be valuable for selective targeting approaches

in chronic inflammatory diseases. Even in a healthy context,

universal approaches to identify PCs are limited (21–24), with

CD138 and CD38 being the most salient, however not entirely

specific, immune-phenotypic markers. Although additional

markers, such as TACI, Sca-1, Ly6C, SLAMF7 or CD98, have

been defined in mice, their function and regulation in

inflammatory conditions remains unclear (21, 23–27).

Considering, for example, that type-I interferon or TNF can

modulate Sca-1 expression (21, 28, 29), reveals an important

knowledge gap. Differential CD43 and B220 expression in renal

PCs, compared to BM and spleen, in lupus-prone mice further

suggests that localization may affect PC phenotype (9).

Furthermore, there is a need for markers to selectively identify

pathogenic PCs. Recently, exclusive Gp49B expression was found in

PCs of lupus-prone mice (30). While their role in disease pathology

needs to be determined, high co-expression of CD39 and CD326 in

murine BM-resident PCs was linked to possibly protective anti-

dsDNA IgM production (26). High PC heterogeneity constitutes

another obstacle hampering selective targeting. Although this could

reflect various PC differentiation stages (31), there is a need to

define pathogenic or regulatory PCs in an inflamed context.
PC development and
compartmentalization in
chronic inflammation

Various factors, such as cellular source, developmental path and

final destination, may shape PC heterogeneity. In autoimmune

disease, extra-follicular, GC-dependent and T-independent

pathways can feed into the pool of short- and long-lived (LL) PCs

(32–38). Allelic risk factors (34), chronic antigen exposure and local

nutrients and cytokines (39) may influence the choice. PC

differentiation in chronically inflamed non-lymphoid organs, adds

another level of complexity. Here, inflammation can drive the

formation of a) tertiary lymphoid structures (40, 41) found in

influenza-infected lungs (42) or organ rejection post-

transplantation (43), b) of lymphoid infiltrates without GC-like

structure, e.g. in synovium of RA patients or salivary glands of

Sjögren’s syndrome (44, 45) or, c) lympho-myeloid infiltrates with

or without follicular structure, found in lupus nephritis (38, 46, 47).

It is still unclear whether these sites arise in response to

inflammation or harbor specific (auto)immune responses to local

tissues (38), whether emerging PCs feed the same pool as PCs from

lymphoid tissues (48) and, whether preferential homing to the BM

versus nearby niches in inflamed organs occurs. In murine lupus,

studies indicate a dispersion of autoreactive PC, showing highest

frequencies in the kidney compared to the spleen and BM (9, 13). In
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accordance with data from mucosal immunity, this argues against

strict compartmentalization. Here, a fraction of murine IgA+LL-

PCs does not recirculate after formation, but persists in the lamina

propria, while some join the LL-PC pool in the BM (3). This may

ensure stable, long-term protective humoral immunity. However, in

autoimmunity and considering that inflammatory niches may

newly arise, but also vanish with dissolving inflammation, this

may favor the persistence of pathogenic PCs and refractory

disease. Conversely, immunization of lupus-prone mice shows

that PC-specificity in inflammatory niches is not restricted to self-

antigens that may compete with conventional PCs immigrating

from lymphoid organs (49, 50). Hence, factors driving dynamics,

compartmentalization and competition of PCs for limited numbers

of inflamed and non-inflamed niches, should be addressed in

further studies.
Concerted actions of inflammation,
metabolic status and hypoxia in
PC niches

Inflammation may alter microenvironmental nutrient supply/

demand ratios and shares an interdependent relationship with

hypoxia (51, 52), that may impact the biology of PCs and their

niches. For instance, hypoxia increases plasmablast generation from

human memory B cells (53) and could affect myeloma PC

pathophysiology by altering metabolic pathways (54, 55). Also in

non-malignant PC, it may be speculated, that PCs metabolically

adapt to such microenvironmental changes on a molecular level.

For example, LL-PCs were shown to engage autophagy and

pyruvate-dependent respiration (56–60) and are typically located

in the physiologically hypoxic BM milieu supporting PC longevity

(39, 53, 61, 62). Data from multiple myeloma support such

scenarios, revealing high HIF1-a/HIF2-a expression (63), driving

critical interactions with BM cells (64). The link between hypoxia

and inflammation may even have a wider significance, as HIF-1

pathways and NF-kB signaling are linked, with the latter supporting

PC survival (51, 65–68). Hence, inhibition of these pathways,

as well as targeting metabolic vulnerabilities of PCs, may be

attractive therapy approaches in multiple myeloma and chronic

inflammatory diseases.
Infiltrating immune cells may shape
inflammatory niches

In homeostasis, the CXCL12-CXCR4-axis controls the access of

PCs to “exit points” such as the BM, and their spatial organization

within designated domains located there (7, 69), which are enriched

in survival factor-producing cells. These include various immune

cells, such as megakaryocytes, eosinophils, dendritic cells (DCs),

monocytes, myeloid progenitors or regulatory T cells that may

redundantly foster the survival of co-localizing PCs through soluble

and membrane-bound factors (70–75). For instance, DCs are in

frequent contact with PCs and may promote survival via CD80/86,
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binding CD28 on the PC surface (76–78). Meanwhile, secretion of

soluble factors, such as APRIL and IL-6 represents another means

of promoting PC survival. They are particularly secreted by myeloid

precursors, as well as eosinophils, the role of which in BM niches

still needs clarification (70, 73, 79–82). Similarly, immune cells may

shape inflammatory niches, PC longevity and functionality. Here

prevailing signals may possibly induce quantitative and qualitative

changes in accessory immune cell infiltration and differentiation,

providing putative therapeutic targets. In murine lupus nephritis,

PCs populate the tubulointerstitium (9), an area where DCs and

macrophages reside in both a homeostatic and inflamed state (83–

85). Kidney-infiltrating macrophages/monocytes in human

nephritis have been reported to represent a major source of IL-6,

TNF-a and APRIL (86, 87). Furthermore, TNF-a can activate NF-

kB signaling (88), which in turn increases the expression of BAFF

(89) and CD80 (90, 91). Interestingly, several lupus-prone strains

display elevated CXCL12 in inflamed kidneys, and hyper-

expression of CXCR4 on PCs (92). This may augment PC

homing to inflamed kidneys and co-localization with accessory

immune cells. Likewise, in both mice and humans, LL-PC were

found in the inflamed CNS within survival niche-like tissue areas,

characterized by an up-regulation of APRIL and CXCL12 and the

adhesion molecule VCAM-1 (8, 93–95). Moreover, PCs were found

in RA synovial tissues, where recruitment of APRIL-producing

neutrophils and macrophages was reported (96). Also, both

epithelial and infiltrating mononuclear cells in the salivary glands

of Sjögren’s patients can be potent producers of CXCL12 and IL-6

(11). In chronic inflammation, further molecules may become

relevant for PC homing, such as CXCR3, sensing pro-

inflammatory CXCL9, 10 and 11. Due to the interferon-induced

up-regulation of this axis, it may gain additional importance in RA,

SLE and other inflammatory diseases (49, 97–100). However,

incomplete effects in blocking this axis in mice with established

lupus nephritis, suggest redundant roles of further, not yet identified

pathways (101). Also, whether these guide PCs towards niches with

a unique composition is not yet clear. Moreover, it needs to be

better understood how recruited PC themselves adapt to their new

environments and shape their organization. As discussed below,

studies suggest bi-directional communication and mutual

influences between PCs and other niche components.
Stromal cell impact on humoral
immunity in chronic inflammation

Stromal cell function goes beyond a merely architectural role for

tissue integrity and homeostasis. Instead, stromal cells orchestrate

tissue microenvironments and immunity and may importantly

shape PCs and their niches (102, 103). In the murine BM, about

80% of PCs are in direct contact with stromal cells (104), however,

these stromal populations can be highly heterogeneous (105–107).

On a molecular level, PC survival is mediated by direct crosstalk

between PCs expressing adhesion molecules VLA-4 and LFA-1,

interacting with VCAM-1 and ICAM-1 in stroma (62, 108–111).

Additionally, soluble factors released by stromal cells, including
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CXCL12, IL-6, BAFF, and APRIL, are important players in this

interaction (62, 104, 112–114). Extracellular matrix components,

such as laminin-ß1, could particularly participate in the

maintenance of mouse BM IgG-secre t ing PCs (59) .

Immunomodulatory stromal cell characteristics and their ability

to incite, chronify and uncouple tissue inflammation to distinct

anatomical sites (115–121), suggests a role in shaping inflammatory

PC niches. On the other hand, inflammation may cause epigenetic

modifications and induce ‘inflammatory memory’ at the level of

tissue stroma (122), which would fit the concept that persistently

activated stromal cells provide a ‘fertile soil’ for the incitement and

spread of chronic inflammatory diseases (122–131). Similar to

homeostatic niches, stromal and epithelial cells in lupus nephritis

(132, 133) and salivary glands in Sjögren’s syndrome (11) were

identified as CXCL12 producers, some even produced IL-6 in

response to anti-dsDNA antibodies (134). Moreover, chronic

inflammation changed immunoregulatory properties of

mesenchymal stromal cells (MSCs) which adopt common

characteristics of a senescent phenotype able to exacerbate

inflammation (135–141). In murine lupus nephritis, MSCs

contributed to formation of tertiary lymphoid structures by acting

as lymphoid tissue organizer cells (142). Under homeostatic

conditions, MSCs could inhibit immunoglobulin production in

mouse PCs through CCL2 secretion (143) and suppress excessive

B cell maturation by inhibiting BAFF secretion (144). Also, human

MSCs could impair B cell differentiation and subsequent Ig

secretion and impair their chemotaxis by down-modulation of

CXCR4 and CXCR5 (145). This indicates that stroma may exert a

determinant role for PC function. Regardless of the niche and in

concert with other cellular and soluble participants, they may fulfil

the needs for PC longevity in a redundant fashion. Stroma

remodeling in PC niches by inflammatory stimuli needs to be

investigated further as it may open up new options for treatment

of chronic inflammatory diseases.
Communication in inflamed niches
may be bi-directional

The viewpoint that PCs only secrete copious amounts of

antibodies is increasingly challenged. Their ability to produce

cytokines, miRNAs and express co-stimulatory molecules (69)

suggests they may communicate in a bidirectional, possibly

tripartite way, with other cells. Interestingly, in SLE, even autocrine

APRIL production by PCs was reported, which may drive their

survival in an autocrine loop (146). Modulating and paracrine effects

are best documented for regulatory and IL-10-expressing PC (147–

149). While in infectious and cancerous microenvironments

IL10+PCs dampened anti-microbial (147, 150) and anti-tumor

immunity (150–152), they exert protective effects in autoimmunity

(148, 153, 154). Gut-homing PCs can secrete further cytokines such

as TNF-a, TGF-b or IL-17 that may drive disease pathology also in

inflamed niches (155–157). Moreover, PCs may indirectly increase

cytokine levels, supporting their own survival through interaction

with other immune cells: as specified above, they could induce IL-6 in
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DCs via CD28/CD80/CD86 (76). Aged PCs may even modulate

myelopoiesis, reportedly in an IL-10- and TLR-dependent manner

(158, 159). This is relevant, since myeloid cells and progenitors are

important producers of PC survival factors (71, 73, 74, 87) and may

provide a positive-feedback loop. Thus, mutual influences between

inflammation, immune aging and TLR-signaling may not only be

relevant in inflamed PC niches, but also influence the survival of

pathogenic PCs in homeostatic niches, which warrants further study.
Conclusion

In conclusion, data suggest that the reciprocal relationship

between communicating components in inflamed PC niches may

propagate inflammation and disease progression, creating a vicious

cycle. More data are required to substantiate these assumptions,

identify key players and understand the dynamics in these

functional units. Moreover, it is important to define differences

and commonalities between conventional and pathogenic PCs and

their niches and to clarify whether molecular structures at different

sites are shared, although the cells providing these structures are

tissue-specific. The identification of defined signatures would offer

new perspectives for the design of specific targeting approaches,

especially in patients resistant to conventional therapies, thereby

saving protective PCs.
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