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Louis, MO, United States, 2Infectious Diseases, Medicine Service, Veterans Affairs Saint Louis Health Care
System, Saint Louis, MO, United States
The pathogenic Escherichia coli can be parsed into specific variants (pathovars)

depending on their phenotypic behavior and/or expression of specific virulence

factors. These pathogens are built around chromosomally-encoded core

attributes and through acquisition of specific virulence genes that direct their

interaction with the host. Engagement of E. coli pathovars with CEACAMs is

determined both by core elements common to all E. coli as well as

extrachromosomally-encoded pathovar-specific virulence traits, which target

amino terminal immunoglobulin variable-like (IgV) regions of CEACAMs.

Emerging data suggests that engagement of CEACAMs does not unilaterally

benefit the pathogen and that these interactions may also provide an avenue for

pathogen elimination.
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Introduction

Pathogenic Escherichia coli exhibit extraordinary adaptation to multiple host niches, due

in part to their remarkable genetic plasticity that has permitted the acquisition of a diverse

array of virulence molecules. These pathogens are incredibly diverse as illustrated by whole

genome sequencing studies which highlight the open nature of the E. coli pangenome (1). In

essence, no two isolates of E. coli from different sources are likely to be “identical”. Despite

this diversity, an important element of niche adaptation among pathogenic E. coli is the

interaction of their respective adhesins with the family of eukaryotic molecules known as the

Carcinoembryonic Antigen -related Cell Adhesion Molecules or CEACAMs. These

molecules, encoded on human chromosome 19q13 (2), are cell surface proteins that

participate in homotypic intercellular adhesion interactions. CEACAMs are present on

many cell types including those lining intestinal and urogenital mucosae where E. coli

pathogenic variants (pathovars) establish a niche, as well as immune cells which defend

these tissues.

CEACAMs share a common architecture in which the amino terminal region of the

protein forms a domain resembling the immunoglobulin variable region (IgV-like), while the

remainder of extracellular portion of each protein is formed by a variable number of domains

similar to immunoglobulin constant regions (3). Homotypic dimerization is primarily
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directed by the interaction of the N-terminal domains (4). The

proteins are also heavily glycosylated along their lengths. Among

the intestinal CEACAMs, the C terminal end of CEACAM1 is

comprised of a transmembrane region and a cytoplasmic tail in

which individual isoforms may contain Immunoreceptor Tyrosine-

based Inhibitory Motifs (ITIM), while CEACAMs 5,6, and 7 each end

in glycosylphosphotidyl inositol (GPI) anchors.
Biology of E. coli adhesin/
CEACAM interactions

CEACAMs are among the most rapidly evolving proteins in

humans. As the extracellular regions of these proteins serve as

receptors for a number of important human pathogens, they appear

to be under considerable adaptive pressure (5–7) driving CEACAM

polymorphisms as well as species-specific diversity (5). Pathogenic E.

coli are among the pathogens known to target CEACAM domains

exposed on mucosal surfaces. Interestingly, the amino terminal IgV

like domains of CEACAMs (Figure 1A) are defined targets for several

adhesins expressed by the E. coli pathovars. To date, two major groups

of structures- the Afa/Dr adhesins and type 1 pili have been shown to

engage the CEACAM N-terminal domains (Table 1).

The Afa/Dr family of adhesins mediate mannose-resistant

hemagglutination and adhesion. Members of this group of adhesion

molecules share an operon organization that includes genes encoding

a chaperone, an outer membrane protein (usher), and the adhesin.

Afa operons encode an AfaB chaperone and an AfaC outer membrane

protein, while AfaE molecules serve as afimbrial adhesins. Similarly,

Dr systems are comprised of a DraB chaperone, a DraC usher, and a

DraE protein which assemble to form thin homopolymeric fimbriae

(18–20). Both AfaE as well as DraE can mediate interactions with

CEACAMs as receptors (21).

Type 1 pili are ~1 µm long projections from the surface of E. coli

that are also assembled through a chaperone usher pilus (CUP)

pathway which directs the biogenesis of pili comprised of ~1000

copies of the major pilin subunit (FimA), and single copies of FimF

and FimG adapter proteins that present the terminal FimH mannose-
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binding tip adhesin (22). All E. coli express chromosomally-encoded

type 1 pili which mediate adhesion to mannosylated glycoproteins

including CEACAMs. Early studies by Leusch et al, indicated that E.

coli engage mannosylated residues on CEACAM5 and CEACAM6

(23–25).

Type 1 pili, long known to direct mannose-sensitive adhesion,

bind to specific glycosylated residues which are projected on the

exposed surface of the CEACAM6 (previously referred to as

nonspecific cross-reacting antigen or NCA) (Figure 1) (9, 15). In

contrast, the Afa/Dr adhesins are thought to engage residues on the

inner dimerization face of CEACAMs (10) and are capable of

disrupting CEACAM multimers (8).
Importance of CEACAM-
E. coli interactions

Adherent-invasive E. coli and the
pathogenesis of inflammatory bowel disease

Although the pathogenesis of inflammatory bowel disease is still

being dissected, a prevailing concept is that aberrant interactions

between intestinal microbes and the immune system are operative.

Among the potential contributors to the pathogenesis of Crohn’s

disease are the interactions between the host and E. coli known as

adherent/invasive E. coli (AIEC). Although AIEC appear to lack

canonical virulence factors found in other gastrointestinal E. coli

pathovars (26), whole genome sequencing of isolates from patients

with Crohn’s disease suggest that they are phylogenetically distinct

from commensal E. coli (27). AIEC have the ability to engage

CEACAM6 via FimH (28), with some AIEC having acquired

pathoadaptive mutations within the fimH gene that augment

interactions between FimH and CEACAM6, and which enhance the

propensity of AIEC to induce intestinal inflammation (12). Enhanced

expression of CEACAM6 in individuals with inflammatory bowel

disease promoted by inflammatory mediators accelerates binding of

AIEC (13, 29, 30), and AIEC infection of epithelial cells in vitro

induces expression of multiple CEACAMs (31). Dumych, et al. also
A

B C

FIGURE 1

N-terminal IgV-like domains of CEACAMs (A) MUSCLE alignment of N-terminal CEACAM domains. Highlighted residues Phe 29 and Gln44 indicate
amino acids shown to be critical for Afa/Dr interaction (8); residues at Asn71 and Asn78 indicate glycosylation sites important for interaction with type 1
pili (9) and the FimH adhesin. (B) Dimeric CEACAM5 N-terminal domain (PDB 2QSQ) (8) depicting location of Afa/Dr adhesin interactions. (C) Dimeric
CEACAM6 N-terminal domain (PDB 4Y8A) (4) depicting location of sites critical for interaction with type 1 pili (9).
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proposed that CEACAMs expressed on early apoptotic cells exhibit

high mannose glycosylation at specific sites (Asn197, and Asn 224)

and that FimH can induce the formation of membrane blebs that

present these immature high-mannose glycans on their surface (32).

Conversely, mannoside compounds which antagonize FimH

-CEACAM6 interactions may interrupt AIEC colonization and

mitigate subsequent inflammatory changes (14).

Altogether, however the precise role played by AIEC in the

pathogenesis of Crohn’s disease is uncertain (33). Indeed, the

pathogenesis of inflammatory bowel disease is complex, potentially

involving not only AIEC, but human susceptibility genes including a

loss of function variant of the protein tyrosine phosphatase non-

receptor type 2 (PTPN2) gene (34). Notably, PTPN2 appears to

modulate the gut microbiome (35) and loss of PTPN2 is associated

with enhanced CEACAM expression and enhanced AIEC uptake and

intracellular survival (36), suggesting that Crohn’s disease may reflect

the interplay of pathogenic E. coli and distinctly susceptible hosts.
Diffusely adherent E. coli

The diffusely adhering E. coli (DAEC) are a diverse pathovar that

have been associated with gastrointestinal (37–39) as well as urinary

tract (40, 41) infections (42, 43). From the small number of whole

genome sequences of these strains presently available, DAEC appear

to be phylogenetically close to enteroaggregative E. coli, but are

distinguished in their complement of adhesins as well as iron

acquisition systems (44). Although DAEC have been isolated from

patients with ulcerative colitis (UC) (45), their role in the molecular

pathogenesis of UC remains unclear (33). These strains are defined

phenotypically by their diffuse adherence pattern on cultured

epithelial cells, and genetically by the expression of a group of

virulence molecules known collectively as Afa/Dr adhesins which

may constitute either fimbrial or afimbrial (Afa) structures which

bind to the human decay accelerating factor (hDAF, also known as

CD55) a glycosylphosphatidylinositol (GPI)-anchored glycoprotein

present on many cell types including epithelial cells. A subset of this

family of adhesins engage CEACAMs including CEACAM1,

CEACAM5 (10, 46), and CEACAM6, which are recruited to the

sites of bacterial attachment (46), along with lipid raft markers (47).

CEACAM1-4L, a splice variant of CEACAM1, has an extended

cytoplasmic L domain that can modulate cellular signaling

following DAEC engagement (44). Engagement of either of the

GPI-anchored CEACAM5 or CEACAM6 molecules can drive

efficient internalization of Dr-fimbriated DAEC (21, 47).

Interestingly, increased expression of Afa/Dr fimbriae has recently

been associated with the emergence of the multidrug-resistant ST131
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uropathogenic (UPEC) clones (48). Although UPEC expressing Afa/

Dr fimbriae represent less than 10% of UTI isolates, engagement of

CEACAMs in the urogenital epithelia suppresses exfoliation of the

epithelial cells and enhances colonization (17). Notably, more recent

studies demonstrate that CEACAM engagement by pathogenic

bacteria results in delivery of bacterial nitric oxide that activates

eukaryotic cGMP-dependent signaling pathways to enhance

expression of CD105 (endoglin) (49). Increases in CD105

expression in turn abrogate detachment of cells targeted by bacteria

by increasing their affinity for extracellular matrix (50).Therefore,

engagement of CEACAMs could benefit the pathogen by facilitating

colonization while suppressing host mechanisms for elimination.
Enterotoxigenic E. coli (ETEC)

The enterotoxigenic E. coli (ETEC) are a diverse pathovar defined

by the production of heat-labile toxin (LT) and/or heat-stable toxins

(ST). These pathogens are a predominant cause of acute diarrheal

illness as well as deaths due to diarrhea in developing countries

among young children. Likewise, ETEC are perennially the major

cause of traveler’s diarrhea (51, 52). ETEC have also been linked

repeatedly to poorly understood sequelae among young children in

LMICs including enteropathic changes to the small intestine and

accompanying nutrient malabsorption and growth stunting (53–57).

The basic mechanisms by which ETEC enterotoxins cause

diarrhea are known (58). Both toxins activate major cyclic

nucleotide second messenger pathways in the cell. LT, like cholera

toxin, stimulates adenylate cyclase resulting in increases in

intracellular cAMP which in turn activates protein kinase A (PKA).

PKA-mediated phosphorylation modulates the activity of cellular ion

channels including the cystic fibrosis transmembrane regulator

(CFTR) and the sodium-hydrogen ion exchanger (NHE3), resulting

in the net export of salt and water into the intestinal lumen and watery

diarrhea typical of ETEC. ST, similar to endogenous gastrointestinal

peptides guanylin and uroguanylin, binds to guanylate cyclase C

resulting in the increased production of cGMP. Increases in cGMP in

turn activate Protein kinase G (PKG) which likewise phosphorylates

and modulates ion channels resulting in diarrhea.

In contrast, the molecular basis of sequelae associated with ETEC,

and the contribution of enterotoxins to enteropathic changes linked

to ETEC remains enigmatic. Notably, cAMP and PKA are known to

modulate hundreds of eukaryotic genes (59). Binding of cAMP to

PKA, a heterotetramer comprised of two regulatory and two catalytic

subunits, in the cytoplasm liberates PKA catalytic subunits to enter

the nucleus (60) where they phosphorylate the cyclic AMP response

element binding protein (CREB) at position S-133 (61, 62). The
TABLE 1 Interaction of pathogenic E. coli and their ligands with specific CEACAMS.

pathovar ligand receptor(s) type reference(s)

DAEC Afa/Dr family adhesins CEACAMs 1,5,6 protein-protein (8, 10, 11)

AIEC type 1 fimbriae/FimH CEACAM6 lectin (12–14)

ETEC type 1 fimbriae/FimH CEACAM6 lectin (9, 15, 16)

UPEC Afa/Dr adhesins CEACAM5 protein-protein (17)
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activated CREB transcription factor is then free to engage multiple

cAMP-responsive elements (CRE, e.g., 5’-TGACGTCA-3’) in the

regulatory regions of approximately 4000 genes within the human

genome. Not surprisingly, recent studies of transcriptional

modulation by LT have revealed that it impacts the expression of

hundreds of genes in intestinal epithelial cells (63).

Among the many genes modulated by LT are those encoding

CEACAMs expressed within the gastrointestinal tract. Although

CEACAM expression is normally more robust in the colon, the

expression of CEACAMs5, 6, and 7 in small intestinal epithelia are

all substantially upregulated by LT as well as forskolin which also

stimulates production of cAMP (16). Of note however, promoter

regions of these genes appear to lack canonical CRE sites suggesting

cAMP-mediated upregulation of their expression is indirect. This

increased expression of CEACAM6 enhanced ETEC adhesion to

target intestinal epithelial cells, with ETEC recruited specifically to

regions of increased CEACAM expression. Conversely deletion of

CEACAM6 by CRISPR-Cas9 resulted in a marked decrease in ETEC

adhesion while restoration of CEACAM6 expression rescued the

adhesion phenotype. Similarly, heterologous expression of

CEACAM6 in HeLa cells resulted in marked increases in ETEC

adhesion. Moreover, small intestinal biopsies of ETEC infected

patients also demonstrated significant increases in CEACAM6

expression following infection. Together, these studies suggested

that CEACAMs serve as important receptors for ETEC and that

these pathogens exploit cAMP-dependent cellular pathways to alter

CEACAM expression in establishing their niche in the small intestine.

Moreover, we demonstrated that FimH, the tip adhesin of type 1

pili, interacts specifically with CEACAM6 in a mannose-dependent

fashion. Collectively, these data suggest that ETEC, via its plasmid-

encoded heat-labile toxin stimulates the production CEACAMs to

augment pathogen-host interactions mediated by chromosomally-

encoded type 1 pili. In effect, ETEC alter the epithelial landscape, at

least transiently, to suit the bacteria. Many important questions

remain however, including whether these changes in CEACAM

expression also impact other organisms including commensal E.

coli and other E. coli pathovars that could also engage CEACAMs.
CEACAMs as innate defense molecules

The role of CEACAMs that are shed from intestinal epithelia and

which could act as molecular decoys for pathogenic microbes remains

largely unexplored. Nevertheless, these molecules have the potential

to modulate pathogen-host interactions, particularly in the

gastrointestinal tract. Large amounts of CEACAM5, estimated to be

50-70 mg, is normally shed in human feces (64–67) with the majority

appearing in membrane-bound forms that can be released by cleavage

of the GPI anchor with phosphatidylinositol-specific phospholipase C

(PI_PLC). Studies of primary colonic epithelial cells in culture

indicated that soluble CEACAMs may also be released by

endogenous phospholipases (68). Although the precise molecular

mechanisms by which CEACAMs are shed into the intestinal

lumen and other mucosal spaces have not been definitely

established, early studies of transformed intestinal epithelial cells

indicated that CEACAMs are released in a directed fashion,

specifically from the apical brush border surface (69). Subsequently
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it has been noted that HT-29 cells release significant amounts of

extracellular vesicles (ECV) bearing CEACAMs on their surface,

particularly when the cells are under stress (70). It has also been

suggested that microvilli, which form the intestinal brush border,

release ECV into the lumen (71, 72). Intriguingly, ECV (73) actively

released from the tips of microvilli (74) comprising the intestinal

brush border contain enzymatically active proteins, and can mitigate

interactions of pathogenic E. coli with target epithelia (75). It has also

been suggested that intestinal M cells express both CEACAM5 and

CEACAM1 on their apical glycocalyx, but these cells differ from

enterocytes in lacking the formation of CEACAM-laden vesicles (76).

Others have indicated that CEACAM5 and CEACAM6 may be

produced by goblet cells. (72, 77) and this appears to be supported

by available human small intestine single cell RNAseq data (78).

It has also been suggested that innate responses to pathogen

interaction can lead to induction of cytokines that alter expression of

CEACAMs by intestinal epithelia, such as the induction of

CEACAM5 and CEACAM6 by INF-g (79). Conversely, others

have argued that Gram-negative organisms might be able to impair

release of CEA from intestinal epithelia (80).
Conclusion

The expression of a variety of CEACAMs by multiple cell types

including those lining mucosal surfaces such as the gastrointestinal

tract or on immune effector cells suggests that pathogenic E. coli are

likely to encounter these molecules in their transit through human

hosts. At present however, despite the substantial diversity of

pathogenic E. coli our understanding of the contribution of these

molecules in E. coli pathogen-host interactions is limited to a few

select pathovars. Already, however, some important themes have

emerged from studies of the molecular interactions between pathogen

and host. E. coli appear to have adopted several strategies to engage

CEACAMs. Ongoing studies are likely to further illuminate the

critical nature of these interactions in directing the outcome of

several important human infections.
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