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Stem cell- derived extracellular
vesicles as new tools in
regenerative medicine -
Immunomodulatory role
and future perspectives

Elżbieta Karnas*, Patrycja Dudek and Ewa K. Zuba-Surma*

Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian
University, Krakow, Poland
In the last few decades, the practical use of stem cells (SCs) in the clinic has

attracted significant attention in the regenerative medicine due to the ability of

these cells to proliferate and differentiate into other cell types. However, recent

findings have demonstrated that the therapeutic capacity of SCs may also be

mediated by their ability to secrete biologically active factors, including

extracellular vesicles (EVs). Such submicron circular membrane-enveloped

vesicles may be released from the cell surface and harbour bioactive cargo in

the form of proteins, lipids, mRNA, miRNA, and other regulatory factors. Notably,

growing evidence has indicated that EVs may transfer their bioactive content into

recipient cells and greatly modulate their functional fate. Thus, they have been

recently envisioned as a new class of paracrine factors in cell-to-cell

communication. Importantly, EVs may modulate the activity of immune system,

playing an important role in the regulation of inflammation, exhibiting broad

spectrum of the immunomodulatory activity that promotes the transition from

pro-inflammatory to pro-regenerative environment in the site of tissue injury.

Consequently, growing interest is placed on attempts to utilize EVs in clinical

applications of inflammatory-related dysfunctions as potential next-generation

therapeutic factors, alternative to cell-based approaches. In this review we will

discuss the current knowledge on the biological properties of SC-derived EVs, with

special focus on their role in the regulation of inflammatory response. We will also

address recent findings on the immunomodulatory and pro-regenerative activity

of EVs in several disease models, including in vitro and in vivo preclinical, as well as

clinical studies. Finally, we will highlight the current perspectives and future

challenges of emerging EV-based therapeutic strategies of inflammation-related

diseases treatment.
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1 Introduction

Inflammation is one of the essential reactions of the body for the

tissue damage that triggers a cascade of events accompanying the

recruitment of immune cells into the site of injury. However,

dysregulation or overactivation of the immune system may lead to

the several pathological conditions such as life-threatening cytokine

storm, fibrosis, uncontrolled infections, autoimmune diseases or

cancer (1).

Tissue regeneration is one of the most dynamically developing

fields of the contemporary medical sciences, that also includes the

development of strategies that would effectivelymodulate inflammatory

response, reducing harmful pro-inflammatory phenotype and

promoting reparatory mechanisms. The pivotal role in this area is

played by the stem cell-based therapeutic strategies, that take an

advantage from the unique features of those cells including self-

renewal and differentiation capacity, that may be critical for their

successful use in the translational medicine. However, recent years of

studies have revealed that SCs may contribute to the tissue repair and

immunomodulation of the local environment by several different

pathways, mainly those mediated by their secretory activity that also

includes release of the biologically active extracellular vesicles (EVs).

Indeed, growing data demonstrate that SC-derived EVs (SCs-EVs) may

serve as potential new-generation cell-free therapeutic agents that share

similar biological features with their cells of origin (2). Many studies

indicate, that EVs may not only regulate the crosstalk between innate

and adaptive immune system, but most importantly, they may be

important players in the treatment of inflammation-related disorders,

exhibiting immunomodulatory and pro-regenerative activity,

contributing to the restoration of homeostasis (3).
2 EVs as paracrine factors with diverse
biological functions

2.1 Definition and classification of EVs

Extracellular vesicles (EVs) are a heterogeneous population of

membrane-enclosed vesicles that are released from the cell surface

and possess no ability to replicate (4). EVs are secreted by both

normal cells, as well as neoplastic and apoptotic cells, and their

presence has also been found in several body fluids, including saliva,

urine, milk or amniotic fluid (5). For several years the classification of

EVs was based on their size and the cellular compartment of their

origin, which also influences their different molecular composition.

Thus, three main groups of EVs have been initially recognized:

exosomes, ectosomes, apoptotic bodies and oncosomes (6).

Exosomes are considered as a group of vesicles ranging in size

from about 30 nm to 120 nm. They are secreted by exocytosis as a

result of the fusion of multivesicular bodies (MVBs) with the cell

membrane, which results in the release of cargo-containing exosomes

into the extracellular area. As exosomes are formed in the late

endosomal compartment, they are believed to be enriched in

proteins from the tetraspanin (CD9, CD63, CD81) and heat shock

family (HSP70 and HSP90), as well as proteins involved in sorting

and endosomal transport, such as e.g. apoptosis-linked gene 2-
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interacting protein X (Alix) or TSG100 (7). Ectosomes, also called

microvesicles, have a diameter of 50 nm to 1 µm and are released from

the cell surface by the protrusion of a membrane fragment and

disruption of the subcellular cytoskeleton, leading to vesicle

formation and its budding from the cell surface. They were

demonstrated to be enriched in selectins, integrins, CD40L,

phosphatidylserine, and a number of other cell-membrane

molecules characteristic for the cells which they are derived from

(8). Apoptotic bodies are vesicles ranging in size from 50 nm to 2 µm,

that are formed as a result of cell fragmentation during the process of

programmed death (apoptosis). The mechanism of their formation

leads to the enrichment in histones and phosphatidylserine, but they

were also shown to contain DNA fragments as a consequence of their

mechanism of formation (9).

Oncosomes are considered as a separate group of EVs that are

vesicles secreted by the cancer cells. They are usually larger (1-10 µm)

and have tumor markers on their surface. They can be classified as a

cell-specific fraction of ectosomes secreted by cancer cells, playing an

important role in the interaction with cells present in the tumor

microenvironment, including cellular components of the immune

system (10).

2.1.2 Challenges in EV nomenclature
Despite the fact that the indicated classification of EVs is still

commonly used in the majority of papers, there has been a growing

issue related to the collective definition of different vesicular entities

that have been reported so far. EVs encompass rapidly developing,

but still relatively new field of scientific interest, with constantly

evolving knowledge on their biology, accompanied by emerging

experimental approaches and newly developed methodologies.

Thus, in 2014 International Society for Extracellular Vesicles (ISEV)

in its first position paper has initially provided criteria of EV

definition, as well as minimal set of methodological standards and

appropriate experimental controls that should be taken into the

consideration in EV-related studies, to provide accurate data that

reliably supports the stated conclusions (11). Later on, following the

progress in the field and further verification of previously established

guidelines, ISEV released updated position paper in 2018, pointing

out the need for further standardization of experimental approaches

(4). Nevertheless, growing evidence demonstrates the lack of

consensus and equivocal data on unique markers and subcellular

origin of particular EV subsets, with several indications on

morphological and phenotype characteristics to overlap between

different vesicular fractions (12). Additionally, several new EV

subtypes were recently reported, including exomeres, exophers, or

migrasomes (13), which demonstrates the complexity of cellular

secreting machinery. Moreover, ISEV points out growing overuse of

term “exosomes” without clear experimental evidence on their

identity, which leads to misunderstanding and misinterpretation of

inaccurate data (14). It is also challenging to exclusively isolate

homogenous fraction of exosomes without other EV subtypes (15).

Furthermore, depending on the type and source of the starting

material, as well as an isolation method, there may be a significant

variation in the composition of obtained EV pools, additionally

impacted by the heterogeneity of the reported protocols (16).

Thus, taking into account recent advances in the understanding of

EV biology and the development of methodological approaches,
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recently established new ISEV guidelines recommend to avoid direct

categorisation on “exosome” or “microvesicle” terms and to use

general term “EVs” instead. Eventually, some operational terms for

EV subtypes, that relate to their biophysical properties that have been

well characterized experimentally in particular study, such as “small/

large EVs”, “CD81+ EVs” etc. may also be applied (4). Thus, in

current review we will use general term of “EVs” that collectively

combines several types of vesicular particles reported in the

cited literature.
2.2 Molecular composition of EVs

EVs are well known to contain several types of biomolecules that

come from their parental cells. The molecular content of EVs is a

consequence of their vesicular structure, where a small fragment of

the cytoplasm is surrounded by a lipid bilayer. Thus, the bioactive

composition of EVs is mainly determined by the type of cells from

which they are derived from, as well as the mechanisms of their

formation in the cell. It has been also shown that this content may also

depend on the activation state of the cell (17). Currently, thousands of

different RNA, proteins and lipids have been identified in EVs and

were classified e.g. in the ExoCarta database (18). From a functional

point of view, the rich molecular composition of EVs can be

transferred from vesicle-producing cells to other target cells,

affecting their functional status, which may be utilized to modulate

the functions of various cells both in vitro and in vivo.

EVs contain a lipid components which are mainly a part of the

biological membrane surrounding the cytoplasmic part of the vesicle.

Despite the typical components of cell membrane that can be found in

EV membrane, particular enrichment in a cholesterol, sphingomyelins,

phosphatidylcholine and phosphatidylethanolamines has been also

shown (19), indicating an important role of those molecules in the

process of vesicle segregation in MVBs (20). Additionally, the role of

the lipid content was also shown to take a part in the biological activity

of EVs (21).

Among the key bioactive components of the cytoplasmic part of

the EVs, two basic components can be distinguished, including

proteins and nucleic acids. The protein content of EVs is enriched

in proteins of the endosomal compartment, including Rab GTPases

and SNAP (soluble NSF attachment protein) receptor (SNARE)

proteins involved in the fusion of vesicles with the cell membrane,

but also annexins, flotilllin, as well as proteins related to EVs

biogenesis, e.g. Alix and Tsg101 (22). In addition, EVs are also

enriched in the proteins that are a part of membrane microdomains

and lipid rafts, including tetraspanins (23). It was also demonstrated

that EVs may contain several other regulatory factors such as

transcription factors (24), enzymes (25), growth factors (26),

cytokines and signaling molecules (27).

EVs also contain nucleic acids, in particular RNA, found mainly

in the form of mRNA and miRNA. Importantly, the presence of the

latter RNA type, known as an important regulatory molecules, pays

particular scientific attention in the context of potential bioactive

compounds responsible for the functional activity of EVs (28).

Currently, the presence of a mechanism for selective sorting and

packing of miRNAs into EVs is postulated, as evidenced by numerous

studies showing the enrichment of some miRNAs in vesicles, when
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compared to their donor cells (29). So far, the detailed mechanism of

such selectivity is still not fully understood. Nevertheless, several

concepts have been proposed, including the role of RNA-induced

silencing (RISC) complex, involved in the binding of miRNA to

proteins from the Argonaute family (30). Other studies have also

demonstrated that heterogeneous nuclear ribonucleoprotein A2B1

(hnRNPA2B1) may be responsible for the control of miRNA loading

into EVs (31). Interestingly, recent research demonstrates that in

addition to mRNA and miRNA, EVs may also contain other types of

non-coding RNA, including transporting RNA (tRNA), small

interfering RNA (siRNA) or vault RNA (vRNA) (32). However, the

risk of non-EV-associated extracellular protein-RNA complexes that

may be co-isolated with EV preparations must be always carefully

considered in the data interpretation.

Recent studies also indicate the presence of genomic DNA in EVs,

which enables its horizontal transfer between cells, resulting in a

modulation of gene expression, and thus influencing the biological

characteristics of cells. For example, nearly 350 chromosomal DNA

sequences have been identified in EVs produced by cardiomyocytes

(33). In addition, the presence of mitochondrial DNA has been also

demonstrated (34). Similarly to other components of EVs, a certain

selectivity of DNA fragments has been also observed as a result of

both EV type and the activation state of the secreting cells (35).
2.3 EVs biogenesis and secretion

The mechanisms of biogenesis and secretion may vary depending

on a type of EVs (Figure 1). Exosomes are considered to be initially

formed in MVBs, which may be either degraded upon association

with lysosomes or may be secreted by exocytosis (36). The two-way

fate of the MVBs may be determined by their lipid content, where

cholesterol-rich MVB populations have been shown to be secreted

(37) and lysobisphosphatidic acid- enriched ones to bind to lysosomes

and be degraded (38). The formation of MVBs involves the

segregation of their contents at the endosome’s boundary

membrane and the subsequent budding of intraluminal vesicles into

its interior. This process involves endosomal sorting complex

responsible for transport (ESCRT) associated with Alix proteins

and syntenin (39). However, some studies suggest that MVBs

formation may also occur independently of ESCRT complexes, with

the simultaneous involvement of sphingomyelinases that enrich

exosomes in ceramides (40). The participation of tetraspanins in

exosome formation was also demonstrated (41). In the case of

ectosomes, the mechanism of their formation is less understood.

Nevertheless, it has been shown that their formation is accompanied

by oligomerization of cytoplasmic proteins and their anchoring in the

cell membrane by myristoylation and palmitoylation (42). The

participation of the actin cytoskeleton and proteins from the

GTPase family in the ectosome formation process has also been

reported (43).

The exact mechanism of EV release from the cell surface is still

not fully revealed. However, it has been shown to be accompanied by

the reorganization of the sub-membranous cytoskeleton and

involvement of Rab GTPases and SNARE proteins, that are

responsible for the fusion of vesicles with the cell membrane (44).

Moreover, it is possible to externally stimulate cells to secrete EVs, e.g.
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by activating the thrombin receptor in the case of platelets (45),

inducing an increase in the intracellular calcium ions concentration

(46) or stimulation of dendritic cells (DCs) by the lipopolysaccharide

treatment (47).
2.4 Biological activity of EVs

For several years EVs were considered as contaminants and debris

lacking an essential biological function. Later on, EVs were envisioned

as a waste disposal machinery, which allows cells to rapidly get rid of a

molecules and metabolites that are not needed anymore (48).

However, in last few decades remarkable advance in the

understanding of EV biology have been done together with the

growing number of scientific reports confirming an important role

of EVs as part of the paracrine activity of cells (49). Indeed,

subsequent studies have demonstrated the role of EVs in the

process of information exchange between the cells. It has been

widely postulated that EVs may contribute to the cell-to-cell

communication, which includes the step of their interaction with

the target cell, that may occur in several ways: by endocytosis,

phagocytosis, or by direct fusion with the cell membrane including

receptor-ligand interactions, subsequently leading to the release of

bioactive cargo (Figure 1) (50). The exact mechanism of EV binding

to the cell membrane of recipient cell is still not thoroughly

investigated. However, it has been demonstrated that e.g. syncytin

that binds to major facilitator superfamily domain 2a (MFSD2a)

receptors present in the cell membrane may participate in this process

(50). Adhesion molecules, including integrins, lipid rafts and proteins

from SNARE and Rab families may also mediate the fusion of EVs

with cell membrane (36). Interestingly, some selectivity of EV binding

to specific types of target cells has also been demonstrated. For

example, EVs secreted by neuroblastoma cells showed affinity to

neurons and glial cells, while vesicles from stimulated cortical

neurons were endocytosed only by neurons (51). One of the
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postulated mechanisms of selective binding of EV with recipient

cell includes the influence of tetraspanins, which interact with

integrins and other anchor proteins, modulating their functions

(52). Moreover, ligand-receptor interplay may also be involved in

the control of this process, as was shown for EVs secreted by

endothelial progenitor cells (EPCs) that were reported to bind via

the C-X-C motif chemokine receptor 4 (CXCR4) to its ligand stromal

cell-derived factor 1 (SDF-1) present on the endothelial cells (53).

EVs can serve as paracrine mediators that target cells by

transferring their bioactive content in the form of different types of

nucleic acids, receptors, enzymes, transcription factors,

immunomodulators and even morphogenic factors such as Wnt

(54) and Notch (55) signaling proteins. Delivery of the EV cargo

into the recipient cells opens several ways of potential regulation of

cellular processes, including influence on gene and protein

expression, as well as activity of intracellular signaling pathways.

Depending on the cell origin and the type of the target cells, EVs were

showed to either stimulate or inhibit cell proliferation and

differentiation, act as cytoprotective agents reducing cell death (56),

exert pro-angiogenic stimuli (57), regulate myelin formation (58) and

modulate immune cells, as will be discussed below (Figure 2).

Importantly, EVs may act not only as paracrine factors, transferring

the biological information between different types of cells, but were

also shown to play pivotal role in the autocrine signaling (59).

On the other hand, EVs may also participate in the pathogenesis

of many diseases. As an example, EVs secreted by tumors may

promote their progression by stimulation of pro-angiogenic

processes and inhibition of the immune system (60). EVs have

also been shown to contribute to the transmission of prions (61), a-
synuclein responsible for the pathogenesis of Parkinson’s disease

(PD) (62), as well as b-amyloid, which contributes to the

development of Alzheimer’s disease (AD) (63). Moreover, EVs

can transfer the drug resistance phenotype between cells, which

is related to the transfer of drug-efflux membrane pumps

(Figure 2) (64).
FIGURE 1

Biogenesis and biological activity of EVs. Two main subtypes of EVs are exosomes and ectosomes (microvesicles) that differ in terms of their biogenesis
and secretion. Exosomes are initially formed in MVBs located in the cytoplasm, with the involvement of endosomal pathway and intracellular trafficking
of MVBs, that may be either degraded in the lysosomes or may fuse with the plasma membrane, releasing exosomes into the extracellular milieu.
Ectosomes are considered to be generally larger than exosomes and are formed through the outward plasma membrane budding and shedding. After
release EVs may interact with the recipient cells, delivering their cargo via direct fusion with cell membrane, endocytosis, receptor-ligand interaction or
phago/pinocytosis. Consequently, internalization of EV content may lead to the changes in the biological activity of the target cell.
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2.5 Role of EVs in the regulation of
immune system

Among the variety of reported functions, EVs are also envisioned

as important factors modulating the function of the immune system,

both as activators or inhibitors, depending on the biological context.

Their role in the immunity relies both on the interaction of EVs from

other cell types with immune cells, as well as on the secretion of EVs

by the cellular components of immune system, regulating its fate in

the paracrine or autocrine manner (Figure 3) (65). Thus, EVs mediate

communication between immune cells, taking part in orchestrating

an immune response. In particular, they are a part of interaction of

innate and adaptive immunity, modulating cell response and release

of cytokines, chemokines and other immune-active factors (65).

In the context of immune defence against pathogenic factors, EVs

are involved in the communication between bacteria and host cells,

playing either protective or pathogenic role in the infection. On one

hand, bacteria-derived EVs may serve as a shuttle particles

contributing to virulence spread. On contrary, secretion of EVs by

the host cells may be a method to expel intracellular bacteria,

neutralize bacterial toxins or stimulate both innate and adaptive

immune response (66). As an example, EVs secreted by neutrophils

infected by Mycobacterium tuberculosis stimulated autophagy,

expression of costimulatory molecules and superoxide anion

production in bacteria-containing macrophages, enhancing their

clearance from this intracellular pathogen (67). In another study,

EVs produced by DCs infected with Listeria monocytogenes

stimulated immature DCs to pro-inflammatory state and anti-viral

defense (68). An involvement of EVs in the fungal infections has also

been demonstrated. For example, it was reported that neutrophils
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may secrete EVs that act as anti-fungal agents containing

antimicrobial cargo such as neutrophil elastase, myeloperoxidase,

cathepsin G, azurocidin, and defensin, that may inhibit growth of

Aspergillus fumigatus (69).

Recent studies put novel insights into the mechanism of EV

function in the immune system, which opens new possibilities in the

control of immunological response for the therapeutic purposes.

Immunoregulatory activity of EVs is related to their biological

content, that consist of molecules known to be involved in the

regulation of immune cells. As an example, heat shock proteins

(HSP) that were shown to be present in EVs are known

immunomodulants (70). Several lipid and lipid-related signaling

mediators such as phospholipases, prostaglandin E2 or arachidonic

acid were also reported to be a part of EV cargo (71). Additionally,

presence of major histocompatibility complex (MHC) class II, and co-

stimulatory CD86, as well other immunologically-active molecules

such lymphocyte function-associated antigen 1 (LFA-1) and

intercellular adhesion molecule 1 (ICAM-1) was also shown on EVs

derived from antigen presenting cells (APCs), that were able to

regulate the proliferation of B and T cells (72). In this context, EVs

released by APCs such as macrophages or DCs may participate in the

antigen-specific interaction between immune cells via the cross-

dressing mechanism (65). EVs may bind to the surface of APCs,

contributing to the antigen presentation to T cells or may be

internalized by APCs, delivering their antigen peptide/MHC

complexes, contributing to the antigen spread (73). This

mechanism plays a pivotal role in the development of anti-tumor

response, where tumor-derived EVs may be taken up by APCs,

enhancing cross-presentation of tumor-specific antigens to

cytotoxic T cells (74). It has been also shown that EVs secreted by

the immune cells can transfer surface Fas ligand on their surface,

thereby contributing to the control of cell death during the immune

response (75).

Apart from the possible ways of EV-mediated activation of immune

system, several findings demonstrate their immunosuppressive role in

homeostasis and disease. However, despite growing evidence on

multimodal immunomodulation of immune system through EVs,

exact mechanism of their action, together with immunomodulatory

cargo responsible for this effect still remain to be deeply determined.

Nevertheless, several studies have shed light on the potential EV-related

factors that may exert their suppressive activity. As an example, EVs

secreted by tumor cells were shown to carry programmed death-ligand 1

(PD-L1) that suppresses cytotoxic T cells (76). Additionally, widely

postulated immunomodulatory activity of EVs may be an essential

mechanism that allows to control excessive or chronic activation of

immune system, as well as autoimmunity, thus contributing to protection

against several pathological conditions. For instance, neutrophil-derived

EVs were shown to inhibit pro-inflammatory cytokine release by

macrophages via modulation of Mer receptor tyrosine kinase (MerTK)

and PI3K/Akt pathways (77), with the possible mechanism of their

immunosuppressive action related to the presence of phosphatidylserine

(78). miRNA content may be also involved in the immunomodulatory

activity of EVs that leads to the anti-inflammatory phenotype of immune

cells (79). As an example, EVs from endothelial cells were shown to

harbour miR-10a that mediated inhibition of monocyte activation via

NF-kB pathway, both in vitro and in vivo (80). The immunomodulatory

activity of EVs has also been demonstrated in many other systems,
FIGURE 2

Biological role of EVs in homeostasis and pathophysiology. EVs
contain bioactive cargo that is responsible for their multimodal
activity. EVs may mimic the properties of their cells of origin and were
shown to be paracrine factors that play role in cell-to-cell
communication and influence the fate of the target cells in several
ways, including e.g. stimulation of angiogenesis, cell survival or
modulation of the immune response. EVs may also serve as waste
disposal machinery, drug-delivery systems and biomarkers for the
diagnostic purposes. An influence of EVs in the development of
several diseases has been also reported.
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including the respiratory tract, where they decreased allergic reaction

(81). In another study, breast milk-derived EVs inhibited activation of

peripheral blood mononuclear cells, increasing the number of regulatory

T cells (82).

Most importantly, as EVs are natural carriers of several

biomolecules that come from their parental cells, they might share

functional similarities with their source cells. Thus, the unique

biological properties of SCs, including ability to modulate immune

system, arouses particular interest in the utilization of their EVs (SCs-

EVs) in the context of interaction with the immune system. Indeed,

based on the several recent findings, SC-EVs have been recognized and

appreciated as a potential mediators inhibiting harmful overactivation

of immune cells, accompanied by the simultaneous promotion of

beneficial, pro-regenerative phenotype in the site of injury, followed

by the restoration of homeostasis (3). Thus, these biological effects of

SCs-EVs give a hope to develop new strategies of treatment of several

diseases at their various stages. Additionally to the already discussed

different types of cargo commonly present in vesicles from different

cells, EVs derived frommesenchymal stem cells (MSCs) were shown to

contain CD73, which is ecto-5′-nucleotidase capable to convert

adenosine monophosphate (AMP) into adenosine, that may bind to

A2 receptors present on the surface of immune cells, exerting

immunosuppressive effect (83). MSCs-derived EVs (MSCs-EVs) may

possess miR-21 that is involved in the activation of tolerogenic

transforming growth factor b (TGF-b) signaling (84). Indoleamine

2,3-dioxygenase (IDO) known as a tryptophan-degrading enzyme,

transferred in EVs from MSCs and DCs may also mediate their

immunomodulatory effect (85, 86). Glycan-binding protein galectin-1

found in EVs from MSCs isolated from placenta is also known as
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immunomodulatory factor that promotes proliferation of regulatory T

cells (Tregs) (87).

Taking together, EVs secreted not only by the immune cells, but

also by the SCs may be promising immunoregulatory factors

and thus promising candidates for the further development of

therapeutic approaches.
3 SCs-EVs as an alternative option to
cell-based therapies

Due to the increasing evidence that EVs are not only the waste

elimination apparatus, but they possess multimodal biological

potential, EV field encompass a rapidly growing scientific interest in

terms of their possible use in the regenerative medicine. Importantly,

they are envisioned as potential new-generation therapeutic tools that

may overcome several limitations related to the whole cell-based

therapies. Thus, there is growing hope for the use of SCs-EVs as an

alternatives to cell therapy, as they may not only mimic the phenotype

of the cells from which they originate, but also possess several

advantageous features (88). For instance, the utilization of EVs

minimizes the risk of developing a tumor resulting from transplanted

cells, in particular pluripotent SCs. What is more, direct comparison of

the influence of MSCs and their EVs on T-cell subsets proliferation in

vitro, indicated that the co-culture with MSCs, but not with MSCs-EVs,

reduced the proliferation of CD3+ cells. On contrary, EVs stimulated

proliferation of Tregs, increased apoptosis of CD3+ cells and elevated

level of IL-10. These results may indicate higher immunomodulatory

activity of EVs, comparing to their parental cells, which may be
FIGURE 3

Role of EVs in the regulation of the immune response. Depending on the origin, EVs can contain and deliver a diverse bioactive cargo with
immunoregulatory activity, that can influence various cell types and modulate their functional status. It has been demonstrated that EVs may have an
impact on many immune-related processes, including regulation of immune system activation status, mediation of anti-bacterial and anti-fungal
defence, modulation of anti-tumor response, as well as inhibition of harmful overactivation of the immune system. APC, antigen presenting cells; ICAM-
1, intercellular adhesion molecule 1; HSP, heat shock protein; IFN-g, interferon gamma; LFA-1, lymphocyte function-associated antigen 1; MHC II, major
histocompatibility complex class II; MerTK, mer receptor tyrosine kinase; NK cells, natural killer cells; PD-L1, programmed death-ligand 1; TNF-a, tumor
necrosis factor alpha; Treg, regulatory T cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1120175
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Karnas et al. 10.3389/fimmu.2023.1120175
beneficial for the therapeutic purposes (89). Moreover, animal studies

have shown the potential possibility of administration of EV

preparations in the form of aerosols, which allows their local delivery

to the respiratory system (endotracheal) or to the central nervous

system (intranasally) (90, 91). Additionally, biocompatible lipid bilayer

structure of EVs that encloses naturally or exogenously loaded genetic

cargo, protecting it against degradation, opens a possibility to use EVs

as vectors, that bypass the limitations of virus-based nucleic acid

delivery, related to immunogenicity and packaging capacity (92).

Importantly, small size of EVs facilitates their transfer throughout the

body and enables them to cross blood-brain barrier (BBB) (93).

Additionally, there has been an increased interest in the possibility to

modify EVs by their engineering that includes either surface or cargo

modification, to improve their biological activity or enhance stability

and targeted delivery (94). Taking together, the recognition of SCs-EV

ability to transfer biologically active molecules between cells and thus

their involvement in the paracrine signaling has made them an

attractive option for the therapeutic purposes in several experimental

models. Importantly, EVs may have a tremendous potential as

therapeutic agents for the treatment of several diseases with the

inflammatory component (Figure 4).
3.1 SCs as a source of EVs for the
therapeutic applications

The unique ability of SCs to self-renew and differentiate into other

types of cells has made them well established and main type of cells

for the use in the medicine. For many years the prevailing view was

that their regenerative activity is mainly a consequence of the ability
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to directly rebuild damaged tissue by proliferating and differentiating

in the site of injury. However, recent years of research clearly indicate

that some of the observed therapeutic effects after SCs administration

result from their paracrine activity, related to the secretion of a

number of cytokines and growth factors, which stimulate cells

residing at the site of damage to undertake reparatory processes (2).

Consequently, growing number of reports indicates that SCs, in

addition to soluble molecules, may also release bioactive EVs, which

may play an essential role in the pro-regenerative activity of those

cells (95). Thus, currently several different types of SCs are considered

as sources of EVs for the therapeutic applications.

3.1.1 Mesenchymal stem/stromal cells (MSCs)
MSCs are multipotent SCs of mesodermal origin, that are able to

differentiate into chondrogenic, osteogenic and adipogenic lineages.

They may be isolated from various sources, including bone marrow

(BM-MSCs), adipose tissue (AT-MSCs) and postnatal tissues such as

umbilical cord (UC-MSCs) (96). MSCs are known for their high

secretory activity, which includes release of extracellular matrix

(ECM) proteins, cytokines, chemokines, growth factors, but also

bioactive EVs that may play a role in mediating crosstalk to local

and distant tissues (97). This paracrine activity of MSCs makes them

also crucial players in immunomodulation, which may trigger mostly

anti-inflammatory signaling and suppress excessive activation of

immune system components (98). Importantly, MSCs-EVs were

demonstrated to share biological activity with their parental cells,

that are known to possess immunomodulatory properties. Several

studies have demonstrated an impact of tissue origin on potential

differences in the functional activity of MSCs, which may be also

reflected in the distinct biological activity of their EVs (99).
FIGURE 4

Therapeutic activity of EVs in different tissues and organs. Depending on a type of tissue/organ as a site of vesicle delivery, EVs they may modulate several cellular
processes and signaling pathways in the local environment, leading to the tissue regeneration in the place of injury. 8-OHdG, 8-hydroxyguanosine; ACAN,
aggrecan; BCL-2, B-cell CLL/lymphoma 2; CCL3, macrophage inflammatory protein-1 a; Col, collagen; COX2, cyclooxygenase-2; Efna3, ephrin A3; IFN-g,
interferon gamma; ILC2s, type 2 innate lymphoid cells; iNOS, inducible nitric oxide synthase; MMP, metalloproteinase; NF-kB, nuclear factor kappa-light-chain-
enhancer of activated B cells; PGE2, prostaglandin E2; ROS, reactive oxygen species; TGF-b, transforming growth factor b; TNF-a, tumor necrosis factor alpha;
Treg, regulatory T cells; VEGF, vascular endothelial growth factor; aSMA, alpha smooth muscle actin.
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MSCs possess limited stemness and differentiation potential and

thus reduced risk of teratoma formation when compared to

pluripotent SCs. On the other hand, they also have relatively high

proliferative capacity in vitro and do not require advanced and

expensive culture reagents, which allows researchers to effectively

reach the level of MSC expansion sufficient for the isolation of EV

batches dedicated for the therapeutic applications (100). However,

there are still several challenges of the effective use of MSCs as a

source of EVs for the therapeutic purposes, including donor

variability and need to optimize expansion methods in order to

avoid cell senescence. Nevertheless, considering the lack of ethical

concerns, ease of isolation from several sources potentially available in

both autologous and allogeneic systems, biological safety and low

immunogenicity, MSCs have become primary cells of choice for the

purpose of the tissue regeneration. A natural consequence of this fact

is that researchers are particularly interested in the application of EVs

secreted by these cells (101). Thus, numerous studies show that MSC-

EVs have s ignificant cytoprotect ive , regenerat ive and

immunomodulatory potential in several disease models.

3.1.2 Embryonic SCs (ESCs)
ESCs are pluripotent population of cells with unlimited

proliferative capacity, capable to give rise into any type of cells

within three germ layers. Consequently, ESCs were initially

envisioned as potentially ideal type of SCs for the medical purposes

(102). However, due to the ethical concerns regarding their sourcing,

as well as the risk of teratoma formation, clinical application of ESCs

has been highly limited (103). Nevertheless, due to the acellular

nature, the use of EVs secreted by already available ESC lines

(ESCs-EVs) still remains promising strategy for the regenerative

therapies (104). Due to the potentially unlimited quantities of cells,

ESCs are often used as starting cells that are differentiated toward

more specified progenitors serving as a source of EVs for therapeutic

approaches (105). Another interesting approach is to use ESC-EVs to

boost the therapeutic efficacy of other SC populations. As an example,

ESCs-EVs were demonstrated to reduce senescence and enhance pro-

regenerative effects of MSCs in a mouse cutaneous wound model, by

activating the PI3K/AKT pathway (106).

3.1.3 Induced pluripotent SCs (iPSCs)
iPSCs were initially obtained by the Prof. Yamanaka’s group by

genetic reprogramming of somatic cells through the forced expression

of key transcription factors such as Oct3/4, Sox2, Klf4, and c-Myc

(107). This achievement was awarded by Nobel Prize in 2012 and has

opened new chapter not only in the field of stem cell biology, but also

in the area of tissue regeneration. iPSCs display pluripotent properties

similar to those of ESCs, allowing relatively easy accessibility to

pluripotent cells without ethical problems related to the cells of

embryonic origin. Consequently, due to their potentially unlimited

proliferative and differentiation potential, iPSCs have been widely

used for disease modelling, drug discovery and cell-based therapies,

resulting in the substantial progress in the field (108).

Along with their paracrine activity, iPSCs have been also

recognized as important donors of EVs for the basic research as

well as the therapeutic applications. Similarly to ESCs, iPSCs are also

differentiated into other cell types that are sources of EVs for the
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regenerative purposes (109). Interestingly, iPSCs were shown to be

able to secrete EVs more abundantly and with higher capability to

enter target cells, when compared to the MSCs (110), which may

make these cells advantageous in the context of the donor cells for

EV-based therapeutic approaches.

3.1.4 Other SCs types
Despite the special focus on the pluripotent and mesenchymal SC

as main sources of EVs for the tissue regeneration, the pro-

regenerative potential of EVs secreted by the several other SCs and

progenitor cell was also investigated. As an example, therapeutic

efficacy of EPCs- derived EVs was shown in different experimental

setups (111). Similarly, protective effect of EVs from neural (112) and

cardiac progenitors (113) was also demonstrated.
3.2 Toward therapeutic applications of SCs-
EVs- preclinical studies

The ability of SCs-EVs to modulate immune response indicates

that they may be used therapeutically for a broad spectrum of

diseases. So far, EVs have been tested in several in vitro and in vivo

preclinical studies that cover a broad range of experimental disease

models. In this section we will provide an overview on the different

approaches utilized to explore an emerging role of EVs as potential

new-generation tools for the tissue and organ regeneration, including

their immunoregulatory activity.

3.2.1 Cardiovascular diseases
Cardiovascular diseases (CVDs) are one of the most common

causes of death, with limited efficacy of currently available therapeutic

strategies. According to the data provided by the world health

organization (WHO), CVDs are responsible for about one-third of

all death cases worldwide, which corresponds to almost 18 million of

human beings every year (114). Cardiac tissue has a limited

regenerative capacity and endogenous systems are typically

insufficient for the cardiac repair. Once injured, mammalian heart

lacks the ability to replace damaged cardiomyocytes, which leads to

the progressing loss of its function. Thus, the development of novel

therapeutic approaches and identifying intrinsic and external factors

together with new potential targets to improve cardiac performance

are of special focus (115). CVDs encompass broad spectrum of

disorders, but the two major representations of ischemic CVDs are

acute myocardial infarction (AMI) and chronic myocardial disease

(CMD), which differ in terms of their mechanisms of cause and

clinical manifestation, with indispensable role of inflammatory

response. Both conditions are life-threatening and lead to the

subsequent cardiac remodelling and scar formation rather than

regeneration, which can adversely affect function of the

cardiovascular system (116).

AMI is a rapid event caused by the coronary artery occlusion by

the ruptured plaque that blocks the blood flow, followed by the

oxygen deprivation in the myocardium and death of cardiomyocytes.

Consequently, due to the insufficient ability of heart to compensate

the massive loss of cardiac cells following infarction, injured tissue

becomes fibrotic and non-contractile, leading to the heart disfunction
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such as dilatation, reduced ejection fraction, left ventricle stiffness and

its remodelling (117). Current AMI therapeutic strategies include e.g.

urgent reperfusion therapy, pharmacotherapy and surgical

intervention, including heart transplantation (114). Despite

advancement in the treatment, AMI still carries a high mortality

rate, with increasing morbidity caused by the several risk factors that

are a common part of contemporary, unhealthy lifestyle, such as

smoking, obesity, hypertension, lack of physical activity and high

exposure to the stress (118). Additionally, patients who survived AMI

have a higher risk of recurrent AMI or other CVD-related

complications (119). In a consequence, there is a great need for

new, more effective therapeutic strategies, including those that would

effectively support the natural reparatory mechanisms of the heart

muscle and would reduce inflammatory response, minimizing

subsequent cardiac tissue deterioration and adverse remodelling.

First attempts in this matter were focused on a cell-based

therapies that relied on the administration of several types of stem

and progenitors cells, including e.g. BM-MSCs, different populations

of cardiac progenitor cells (CPCs) or cardiosphere-derived cells (120–

122). However, despite indication on safety and some beneficial

effects, the efficacy of cell-based therapies varied depending on a

type of cells and route of administration, facing several limitations

including low retention in the site of the delivery or a potential

immunogenicity (123). Importantly, throughout the recent years

there has been an accumulating evidence that the pro-regenerative

effect of SCs in the AMI treatment is caused by their paracrine activity

that triggers endogenous repair mechanisms and provides

immunomodulatory signaling, rather than by their direct

differentiation and proliferation in the site of administration (124).

Indeed, recent years of studies have brought mounting evidence on

protective and pro-regenerative capability of SC-derived EVs in the

treatment of AMI and other CVD-related conditions. Thus, due to the

unsatisfactory results of cell-based approaches, there has been an

increased focus on the alternative solutions, including those related to

the utilization of EVs that not only mimic several functional

properties of cells of their origin, but also are non-tumorigenic,

easy to be stored and may penetrate biological barriers more

effectively than the whole cells (125).

It has been widely postulated that EVs from different cell sources

may potentially modulate the local microenvironment in a heart

tissue toward a regeneration, exhibiting beneficial potential in CVDs

treatment (Table 1) (132). The mechanism of EV activity is related to

their transfer of bioactive cargo, mainly miRNAs, that are known to

be involved in the regulation of cellular processes within a cardiac

tissue (133). As an example, pro-regenerative capacity of EVs secreted

by iPSC-derived cardiomyocytes was demonstrated to be mediated by

the miRNA, indicating the role of miR-106a-363 cluster that represses

Notch3 signaling (134). EVs isolated from human iPSCs were also

shown to be enriched in several different mRNA and miRNA that

may be transferred into human heart-derived cells in vitro, improving

their cardiac and endothelial differentiation potential, as well as

exhibiting cytoprotective effects (135). Similarly, murine iPSCs-EVs

were shown to exhibit anti-apoptotic effect in the murine ischemia/

reperfusion (I/R) model via the delivery of their miR-21 and miR-210

(136). Important role of miR-210 was also reported for MSCs-EVs,

that were able to enhance angiogenesis in vitro, as well as in vivo in

murine AMI model. The mechanism of their action was related to the
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inhibition of Efna3 gene expression, that is known target of miR-210,

acting as an angiogenic suppressor (57). As inflammatory process is

indispensably related to the cardiac failure, immunomodulatory

properties of MSCs-EVs that alleviate immunological response in

the site of injury are of particular focus. The role of the miRNA

transfer in the immunomodulatory activity of MSC-EVs was

demonstrated, pointing a role of miR-182 that inhibited toll-like

receptor 4 signaling and thus promoted macrophage polarization

from pro-inflammatory to anti-inflammatory phenotype in the

murine I/R injury model (137). Additionally, several papers have

already indicated cytoprotective and pro-angiogenic effects of MSC-

EVs, including murine (138) and rat model of myocardial infarction

(127). In another study, administration of EVs secreted by the murine

iPSCs improved heart function in vivo in the infarction-reperfusion

model, without any signs of teratoma, in contrary to the injection of

whole cells. Additionally, the therapeutic effect of those EVs was

higher when compared to the group of animals treated with iPSCs,

resulting in the greater improvement in left ventricle systolic function

(128). Promising results of EV use in the small animal models

encouraged scientists to follow attempts to test their efficacy also in

a large animal models, which are an important step toward translating

basic research into clinical practice. Porcine model seems to be the

most optimal for the purpose of CVDs due to the several similarities

in heart size and coronary circulation to the human heart (139). One

of the first studies on the porcine model of AMI have demonstrated

that the intracoronary injection of conditioned medium (CM)

obtained from the MSCs culture significantly increased left

ventricular ejection fraction (LVEF), decreasing the size of infarct

zone and reducing the oxidative stress in the residual cells (140). Few

years later similar results were also presented for the CM collected

from porcine EPCs (141). MSCs-EVs were also used in the

nonhuman primate AMI model, demonstrating improved cardiac

functions and angiogenesis following vesicle administration, pointing

out an important involvement of miR-486 signaling in those

processes (142).

Therapeutic effects of EVs were also demonstrated in the CMD

model studies, dedicated for an investigation of approaches that

would primarily reduce chronic inflammatory state, scar fibrosis

and cardiac tissue remodelling, which are a major hallmark of

chronic cardiac disfunctions that lead to adverse clinical outcome

(143). Cardiac fibrosis is a consequence of differentiation of cardiac

fibroblasts into myofibroblasts and their excessive ECM deposition to

replace dead cardiomyocytes following an acute injury and

inflammatory signaling (144). However, fibrosis-related chronic

disfunction of the cardiovascular system may be also a consequence

of other factors, such as aging, diabetes mellitus or other metabolic

disfunctions with an inflammatory background (145). In the context

of EV-based CMD therapeutic approaches, EVs from cardiosphere-

derived cells were shown to prevent cardiac remodelling and improve

survival in murine non-ischaemic dilated cardiomyopathy model

(146), as well as in the rat model of myocarditis (147).

Atherosclerosis is also one of common CVDs that has a strong

inflammatory background. It results from the plaque formation inside

the large arteries that narrow the vessel lumen. Chronic inflammation

plays a pivotal role in the development and progression of

atherosclerosis, starting from the activation of resident endothelial

cells. Subsequently, it leads to the monocyte and leukocyte
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recruitment into atheroma, followed by the upregulation of pro-

inflammatory cytokines, production of reactive oxygen species (ROS)

and matrix metalloproteinases, consequently triggering thrombotic

cascade which may lead to the AMI (148). SCs-EVs display a

beneficial effect in the context of atherosclerosis treatment. As an

example, administration of BM-MSCs-derived EVs into high-fat diet

ApoE-/- mice stimulated M2 polarization of residual macrophages,

which led to the decrease in the inflammation and reduction of

atherosclerotic plaque area. The mechanism of EV action was possibly

related to the transfer of miR-let7 family that regulated activity of

downstream signaling pathways, such as NF-kB and PTEN (130).

Similar immunomodulatory effect was also shown for AT-MSC-EVs,

that diminished inflammatory activation of both aortic endothelial

cells stimulated with tumor necrosis factor alpha (TNF-a), as well as
LPS-stimulated macrophages in vitro, reducing atherosclerotic plaque

in vivo in low-density lipoprotein (LDL) receptor deficient (Ldlr-/-)

mice fed with a high-fat diet (131). In another study, EVs from UC-

MSCs inhibited activation of eosinophils treated with oxidized LDL

and promoted their apoptosis. This effect was even greater for EVs

secreted by UC-MSCs overexpressing miR-100, with indicated role of

frizzled 5 (FZD5)/Wnt/b-catenin pathway downregulation involved

in this process. Decreased inflammation and atherosclerotic plaque

following EVs treatment was also confirmed in this study in the

murine in vivo model (149).
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Taking together, SCs-EVs may be a promising factors for CVDs

treatment, relying on their immunomodulatory and pro-

regenerative activity.

3.2.2 Neurological and neurodegenerative
disorders

The central nervous system (CNS)- associated disorders are one

of the leading causes of disability and death worldwide. Apart from

malfunctions associated with either cancerous processes or acute

injuries such as traumatic brain and spinal cord injury or ischemic

stroke, neurodegenerative diseases are common feature among CNS

pathologies, with prognosed rise in their frequency caused by the

increasing life expectancy. They include the most commonly

recognized malfunctions such as PD, AD, Huntington’s disease or

multiple sclerosis (150).

The molecular mechanisms underlying CNS-associated disorders

are still poorly understood, but several studies indicate that

inflammatory processes play an essential role in their development

and progression (151). Thus, further studies are required to fully

delineate and develop new approaches of their effective treatment.

Among them, use of SCs and their EVs occurred to be a promising

strategy (152), with the latter ones being of special focus due to their

ability to overcome challenges associated with crossing the BBB.

Thus, during a last decade EV-based treatments of CNS-associated
TABLE 1 Examples of EV use in preclinical studies related to CVDs treatment.

Source of EVs Model Major outcomes References

Murine ESCs In vivo murine I/R model Augmented neovascularization
Enhanced cardiomyocyte survival
Reduced fibrosis

(126)

Human BM-MSCs In vitro Promoted proliferation, migration, and tube formation of HUVEC (127)

In vivo rat AMI model Promoted angiogenesis
Improved hemodynamic parameters
Reduced infarct size

Murine iPSCs In vitro Enhanced angiogenic capacity, migration, and survival of cardiac endothelial cells (128)

In vivo murine I/R model Improved LV systolic function
Induced vascularization
Reduced apoptosis and hypertrophy

Human ESC-CVPCs In vitro Improved cardiomyocyte cell viability and survival
Promoted cell migration and tube formation of HUVEC

(105)

In vivo murine AMI model Promoted angiogenesis
Improved cardiomyocyte survival
Reduced scar size

Human CDCs In vivo porcine AMI model Decreased infarct size
Preserved LV function

(129)

In vivo porcine CMD model Attenuated adverse ventricular remodelling
Reduced scar
Increased proliferation of cardiomyocytes in the peri-infarct zone

Murine BM-MSCs In vivo murine model of atherosclerosis Decreased area of atherosclerotic plaques
Promoted M2 macrophage polarization

(130)

Murine AT-MSCs In vitro Decreased adhesion of monocytes to AoEC (131)

In vivo murine model of atherosclerosis Reduced atherosclerotic plaque
Decreased inflammatory activation of AoEC
AMI, acute myocardial infarction; AoEC, aortic endothelial cells; AT-MSCs, adipose derived MSCs; BM-MSCs, bone marrow MSCs; CDCs, cardiosphere-derived cells; CMD, myocardial disease;
CVPCs, ESC-derived cardiovascular progenitor cells; ESCs, embryonic stem cell; HUVEC, human umbilical vein endothelial cells; MSCs, mesenchymal stem/stromal cells; iPSCs, induced pluripotent
stem cells; LV, left ventricle.
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malfunctions have emerged as potential therapeutic candidates, with

several studies reporting neuroprotective effects of EVs secreted by

the SCs (Table 2) (160). In in vitro models, MSCs-derived EVs were

demonstrated to reduce apoptosis, promote proliferation and

stimulate secretion of pro-neurotrophic factors by neuroblastoma

cell lines (161). On the other hand, EVs produced by AT-MSCs were

shown to stimulate differentiation of neural progenitors, influencing

miRNA and cytokine expression in the target cells (162).

Comparative study demonstrated the ability of EVs derived from

both MSCs and iPSCs cells to enhance the astrocyte recovery after

irradiation, however vesicles obtained from MSCs exerted superior

immunomodulatory effects (163). In another study, EVs secreted by

iPSCs-derived neural stem cells were reported to be enriched in

miRNAs and proteins known to be involved in neuroprotection,

synaptogenesis and cytoprotection, possessing anti-inflammatory

activity in vitro, as well as in vivo in the murine model of status

epilepticus, following their intranasal administration (156). Improved

recovery and angiogenesis together with reduced neuroinflammation

were also reported following injection of EVs from BM-MSCs in rat

models of spinal cord injury (164) and traumatic brain injury (165).

Similarly, in murine model of focal cerebral ischemia MSCs-derived

EVs exerted neuroprotection and neovascularisation, resulting from

the regulation of the immune response in the site of injury (166).

Apart from the rodent models, neuroprotective activity of human

neural stem cell-derived EVs was also reported in porcine model of

ischemic brain stroke, where authors presented data confirming
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reduced edema and intracranial haemorrhage following intravenous

administration of EVs (155).

Protective role of EVs was also shown in the several models of

neurodegenerative diseases (167). As an example, administration of

neuroblastoma-derived EVs lowered the level of amyloid-b peptide

(Ab) that is known to be elevated in AD (168). Similarly, intracerebral

injection of MSC-derived EVs in the murine model of AD reduced the

level of amyloid plaques, mediated by the transfer of neprilysin

protein known as a endopeptidase able to degrade Ab (154). EVs

were also employed as a drug delivery system in murine model of PD,

by their loading with antioxidative catalase followed by the EV

intranasal delivery, exerting neuroprotective and anti-inflammatory

effects in vitro and in vivo (91). Moreover, in rat model of PD animals

treated intranasally with EVs secreted by human exfoliated deciduous

teeth SCs exhibited improved gait parameters (169). In another study,

MSCs-EVs were shown to cross BBB in rat PD model and lower

dopaminergic neuron loss in substantia nigra, concomitantly with an

increased level of striatum (153). Protective role of SCs-EVs was also

reported for the treatment of multiple sclerosis (MS), as

neurodegenerative disease of CNS with the inflammatory

background related to the BBB dysfunction and chronic activation

of lymphocytes against oligodendrocyte proteins, that leads to the

demyelination and synaptopathy (170). As an example, EVs from

placental MSCs improved motor function and spinal cord

myelination in autoimmune encephalomyelitis murine MS model

(158). In another approach, MSCs-EVs were combined with LJM-
TABLE 2 Examples of EV use in preclinical studies related to the therapy of neurological and neurodegenerative disorders.

Source of EVs Model Major outcomes References

Human UC-MSCs In vivo rat PD model Promoted proliferation of SH-SY5Y cells
Reduced dopaminergic neuron loss and apoptosis
Increased level of the striatum
Relief of an asymmetric rotation defect

(153)

Murine BM-MSCs In vivo murine AD model Reduced level of amyloid plaques
Decreased number of dystrophic neurites

(154)

Human NSCs In vivo porcine ischemic stroke model Decreased relative swelling of the brain
Eliminated intracranial haemorrhage
Improved neural tissue preservation and functional
levels

(155)

Human iPSCs-derived neural stem cells In vitro Decreased release of IL-6 from macrophages (156)

In vivo murine model of epilepticus status Enhanced hippocampal neurogenesis
Reduced epileptic state
Enhanced neurogenesis in hippocampus
Reduction of proinflammatory cytokines in
hippocampus

Human AT-MSCs In vitro HD model Reduced accumulation of mHtt aggregates
Increased activation of mitochondria
Reduced apoptosis of neural stem cells

(157)

Human PMSCs In vitro Promoted maturation of oligodendrocytes (158)

In vivo murine autoimmune EAE MS
model

Improved motor function
Increased spinal cord myelination

Murine BM-MSCs combined with LJM-3064
aptamer

In vivo murine MS model Reduced inflammatory cell infiltration
into CNS
Protected CNS demyelination
Increased percentage of Tregs

(159)
AD, Alzheimer’s disease; AT-MSCs, adipose derived MSCs; BM-MSCs, bone marrow MSCs; DCs, dendritic cells; CNS, central nervous system; EAE, encephalomyelitis; HD, Huntington’s disease;
iPSCs, induced pluripotent stem cells; MS, multiple sclerosis; MSCs, mesenchymal stem/stromal cells; NSCs, neural stem cells; PD, Parkinson’s disease; PMSCs, placental derived MSCs; Tregs,
regulatory T cells; UC-MSCs, umbilical cord Wharton’s jelly MSCs.
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3064 aptamer with previously demonstrated ability to induce

remyelination. Such engineered hybrid particles exhibited anti-

inflammatory activity and protected against CNS demyelination in

murine MS model in vivo (159). Altogether, there has been

accumulating evidence on the role of EVs in the treatment of

different types of CNS-associated disorders.

3.2.3 Kidney injury
Proper functioning of kidneys is essential for the effective control

of body fluids osmolarity, pH and removal of toxic metabolites. Thus,

kidney injuries are life-threatening conditions resulting in the

dysregulation of homeostasis (171). One of the most severe kidney

disorders is acute kidney injury (AKI) that accompanied by the

systemic inflammation leads to the rapid damage of organ structure

followed by a loss of renal function, with the need of patient

hospitalisation, high mortality rate and high risk of the

development of chronic kidney dysfunction (172). Thus, the

development of effective therapeutic approaches for the AKI

treatment is an important challenge of the modern medicine. EVs

play an important role not only as prognostic factors and biomarkers

of renal disfunction, but have also been demonstrated as potential

new-generation tools for the therapy of AKI (Table 3) (180).

Importantly, an inflammatory response accompanying AKI has

been widely reported to be significantly ameliorated by EVs from

MSCs via their immunomodulatory stimuli. Meta-analysis study

collecting the data from 31 preclinical studies on rodents have

confirmed the therapeutic efficacy of MSC-EVs in AKI treatment

(181). As an example, in the rat renal ischemia-reperfusion injury

model, BM-MSCs-derived EVs inhibited apoptosis and stimulated
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tubular epithelial cell proliferation (182). In other study, EVs derived

from native, but not from interferon gamma (IFN-g)- stimulated UC-

MSCs were able to alleviate the effect of hypoxia-induced AKI in the

rat model (183). As nephrotoxicity is an important issue in

oncological patients , being caused by the widely-used

chemotherapeutic agents such as cisplatin, there is a need for the

new therapeutic strategies that would reduce severe side effects related

to the chemotherapy and improve clinical outcomes of patients. In the

studies where rat cisplatin-induced AKI model was used, EVs secreted

by UC-MSCs (184) and AT-MSCs (185) were able to exhibit

cytoprotective activity, reducing cell death and inflammatory

response. Additionally, in the murine model of cisplatin-induced

AKI, EVs secreted by BM-MSCs improved renal function, but the

effect was dependent on the route of EV administration, with multiple

injections being beneficial over the single dose (186). The pro-

regenerative activity in the context of renal function was also

demonstrated for EVs from different types of cells. For instance,

EVs from amniotic epithelial cells were shown to reduce

nephrotoxicity in the murine model of cisplatin-induced AKI (187).

ESC-EVs were also demonstrated to exhibit pro-regenerative effect in

the murine model of ischemia-reperfusion AKI, by stimulating

angiogenesis and proliferation of renal epithelial cells, as well as

reducing renal fibrosis. These observations correlated with the

activation of the resident Sox9+ cells that are known to be involved

in the processes of formation and regeneration of renal tubular

epithelium (104).

Apart from AKI, EVs were shown to exhibit immunoregulatory,

cytoprotective and pro-regenerative activity in a treatment of chronic

kidney disease (CKD) that leads to the progressive nephropathy. One
TABLE 3 Examples of EV use in preclinical studies related to the treatment of kidney diseases.

Source of EVs Model Major outcomes References

K-MSCs In vivo AKI murine model Promoted angiogenesis
Decreased cell apoptosis

(173)

Murine BM-MSCs In vitro Reversed changes in the morphology and expression of E-cadherin and a-SMA in HK2 cells (174)

In vivo murine CKD model Protection against unilateral ureteral obstruction
Enhancement of the expression of a-SMA and E-cadherin in kidney
Reduced tubular damage

In vitro Suppressed ER stress
Protection of cells against damage and apoptosis
Promoted proliferation of renal tubular epithelium

(175)

In vivo murine kidney I/R model Suppressed ER stress
Protection against renal I/R injury

In vitro Attenuated morphological changes and restored EMT in HK2 cells (176)

In vivo murine UUO model Ameliorated renal function
Decreased interstitial lymphocyte infiltration

Murine AT-MSCs In vivo murine AKI model Promoted functional kidney recovery
Decreased apoptosis of tubular epithelial cells

(177)

In vivo rat CKD model Reduced pathological changes and renal fibrosis
Protection of kidneys against inflammation, mitochondrial dysfunction, and apoptosis

(178)

Rat BM-MSCs In vitro Prevented SMAD2/3 and ERK1/2 phosphorylation in HK2 cells (179)

In vivo rat CKD model Inhibition of renal fibrosis
Ameliorated renal function and morphology
AKI, acute kidney injury; AT-MSCs, adipose derived MSCs; BM-MSCs, bone marrowMSCs; CKD, chronic kidney disease; EMT, epithelial-mesenchymal transition; ER, endoplasmic reticulum; HK2,
human kidney 2 cells; I/R, ischaemia-reperfusion; K-MSCs, kidney-derived MSCs; UUO, unilateral ureteral obstruction; aSMA, alpha smooth muscle actin.
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of the important causes of CKD is renal hypoxia and persistent

inflammation, which lead to the kidney fibrosis (188). Due to the

complexity of CKD pathogenesis, current pharmacological

treatments are unsatisfactory (189). The therapeutic effect of EVs in

CKD treatment was demonstrated in meta-analysis covering the

results from 35 studies, that mostly based on the unilateral ureteral

obstruction (UUO) model of this disease (190). Protective, anti-

inflammatory and anti-fibrotic role of MSC-EVs in the chronic

renal dysfunction was observed both in vitro and in vivo (176),

with an indication on an important role of EV-based miRNA

transfer involved in those processes (Table 3) (179).

3.2.4 Liver disfunctions
Liver disfunctions, including acute injuries and chronic diseases,

are considered as a significant burden experienced by many

individuals, that may consequently lead to the life-threatening

conditions such as end-stage cirrhosis, fibrosis or liver

malignancies. Still, one of the standard therapeutic approaches is a

liver transplantation. However, due to the limited availability of

donors, mortality from liver-related malfunctions continues to be a

critical issue, that raises the urgent need for an effective, alternative

therapies for the liver replacement (191).

Liver-related diseases may be caused by alcohol, drugs, metabolic

diseases or viral hepatitis. In terms of the treatment of liver

disfunctions, the major goal is to inhibit fibrosis related to the

chronic liver disease, that causes hepatic dysfunction, activation of

hepatic stellate cells, excessive deposition of ECM and immunological

response to the local inflammation (192). Thus, anti-fibrotic and anti-

inflammatory therapeutic strategies including treatment with EVs, are

of current interest. Indeed, several experimental approaches have

demonstrated the effectiveness of different types of SC-derived EVs in

ameliorating liver disfunctions (Table 4). As an example, iPSC-

derived EVs were shown to supress fibrosis in two murine models

of liver injury, caused by either treatment with CCl4 or by bile duct

ligation (193). EVs secreted by MSCs differentiated from ESCs were

also reported to alleviate thioacetamide-induced chronic liver injury,

reducing cirrhosis and pro-fibrotic production of collagen I and a-
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smooth muscle actin (aSMA), with simultaneous decrease in the pro-

apoptotic and pro-inflammatory factors (198). Similar antifibrotic

effect was also demonstrated in CCl4-induced liver fibrosis for EVs

isolated from UC-MSCs and the mechanism of their action was

related to the inhibition of epithelial-to-mesenchymal transition

(EMT) of hepatic cells (194). In another study, UC-MSCs-derived

EVs were also demonstrated to ameliorate acute liver injury due to the

antioxidative and antiapoptotic effect (199). It was also shown that

hepatocyte-derived EVs are able to alleviate inflammatory response

and pro-fibrotic activation of hepatic stellate cells, as well enhance

proliferation of hepatocytes, both in vitro and in vivo in the murine

model of CCl4 injury (195).

3.2.5 Respiratory system diseases
Involvement of EVs in the respiratory system is also well

documented, with their role not only as potential biomarkers, but

also as therapeutic agents, regulating the immune cell functions

during airway inflammatory diseases (Table 5) (207). Particularly,

MSCs-EVs hold a great promise as factors mimicking beneficial

immunomodulatory properties of their parental cells, thus

augmenting inflammatory response typically associated with the

respiratory system malfunction and tissue damage (208).

Additionally, possibility to administer EVs via inhalation facilitates

their entry into pulmonary system and targeted delivery of their cargo

into the site of interest.

Among the variety of lung diseases, one of the most severe

conditions are related to the acute lung injury (ALI) and acute

respiratory distress syndrome (ARDS) that carry high morbidity

and mortality rates, resulting from the rapid respiratory failure

(209). In porcine model of influenza-induced ALI, intratracheal

administration of porcine MSC-EVs resulted in diminishing lung

injury, inhibition of virus replication in lung epithelial cells in vitro

and in vivo and reduction of inflammation within the lung tissue

(202). MSCs-EVs were also shown to alleviate alveolar inflammation

and pulmonary edema in E. coli endotoxin-induced ALI (90).

Similarly, in ex vivo perfused human model of E. coli-driven

pneumonia, MSCs-EVs increased alveolar fluid clearance and
TABLE 4 Examples of EV use in preclinical studies related to the treatment of liver dysfunctions.

Source of EVs Model Major outcomes References

Human iPSCs In vitro Modulation of the profibrogenic transcriptome profile in activated HSCs (193)

In vivo murine model of ameliorating liver disfunctions Reduced development of fibrosis

Human UC-MSCs In vivo murine CCl4-induced liver fibrosis model Reduced development of fibrosis
Reduced expression of collagen I and III
Inactivation of TGF-b1/Smad signaling pathway

(194)

Mouse hepatocytes In vivo murine hepatic fibrogenesis model Reduced inflammation
Reduced development of fibrosis
Suppressed monocyte/macrophage infiltration

(195)

LX-2 In vitro Decreased proliferation and invasion of HCC (196)

In vivo murine model of HCC Reduced tumor size
Increased apoptosis of HCC

Human AT-MSCs In vitro Increased chemosensitivity of HCC cells (197)

In vivo murine model of HCC Increased sensitiveness of HCC to chemotherapeutic agents
AT-MSCs, adipose derived MSCs; HCC, hepatocellular carcinoma; HSCs, hepatic stellate cells; iPSCs, induced pluripotent stem cells; UC-MSCs, umbilical cord Wharton’s jelly MSCs.
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antimicrobial activity of macrophages. This effect was even enhanced

by the pre-treatment of parental MSCs with Toll-like receptor 3

agonist (204). In the murine model of lung injury EVs secreted by

BM-MSCs decreased the lung vascular endothelial permeability

caused by the of haemorrhagic shock, with possible involvement of

the mechanism related to the reduction of cytoskeletal RhoA signaling

activity (203). In addition, anti-inflammatory, protective and/or

regenerative properties of MSC-EVs have also been observed in

rodent models of pulmonary hypertension (210), radiation-induced

injury (211), bronchopulmonary dysplasia (212) and idiopathic

pulmonary fibrosis (213). In the last one the regenerative effect has

been also demonstrated for EVs secreted by iPSCs (214). Additionally,

in the murine model of lung ischemia-reperfusion injury,

administration EVs derived from MSCs attenuated inflammation

and edema (201). Similar outcome was also reported in the rat

model, indicating an influence of EVs on the expression of genes

regulating inflammation and oxidative stress (215).

Beneficial effect was also shown for MSCs-EVs in rodent models

of asthma as one of the common manifestations of immune system

overactivation. As an example, it was demonstrated that vesicles

secreted by UC-MSCs were able to reduce inflammatory response

and airway remodelling. Importantly, this effect was boosted for

animals that received EVs from hypoxia-stimulated cells (200).

Similarly, MSCs-EVs were shown to inhibit group 2 innate

lymphoid cells (ILC2s) that are known to be involved in the

pathogenesis of airway allergy. Additionally, those EVs were able to

reduce the level of pro-inflammatory cytokines and mucus

production in the murine model of asthma, with the suggested role

of miR-146a transfer involved in this effect (206).
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3.2.6 Digestive system dysfunctions
Anti-inflammatory and immunomodulatory properties of EVs

make them a promising option for the treatment of diseases

associated with the digestive system that are typically related to the

multimodal gut inflammation (216). Indeed, several attempts were

performed in this field so far (Table 6). As an example, in the murine

in vivo model of ulcerative colitis induced by the dextran sulphate

sodium treatment, EVs from BM-MSCs ameliorated disease

symptoms, including colon mucosa damage, by stimulating

polarization of macrophages into anti-inflammatory M2 phenotype

through the modulation of JAK/STAT signaling pathway (217). In

another study, a suppressive influence of BM-EVs on macrophage

activity was also demonstrated in murine model of inflammatory

bowel disease (IBD), resulting in an improved gut functions and

decreased mucosal inflammation (222). From another point of view,

EVs from M2 macrophages were also reported to attenuate colitis in

mice and their mode of action was related to the stimulation of Tregs

via CCL1 chemokine (218).

3.2.7 Skin damage
Skin as the largest organ in the body plays an important role in the

maintenance of homeostasis and provides a protective barrier against

external hazardous factors, thus, is constantly exposed to potential

severe injuries, including thermal and chemical burns, chronic

wounds or persistent microbial infections, that may lead to the fatal

trauma (223). SCs-EVs were used for the treatment of inflammatory

skin diseases (Table 7). As an example, EVs from AT-MSCs

diminished symptoms of atopic dermatitis in the murine in vivo

model of this disease, induced by the dust mite treatment of animals.
TABLE 5 Examples of EV use in preclinical studies related to the treatment of the respiratory system diseases.

Source of EVs Model Major outcomes References

Human UC-MSCs In vivo murine model
of asthma

Reduced inflammatory response and airway remodelling
Prevented lung remodelling
Reduced inflammatory cell infiltration
Decreased level of pro-inflammatory cytokines
Inhibited TGF-b1-Smad2/3 signaling pathway

(200)

In vivo murine model of lung ischemia-reperfusion
injury

Attenuated inflammation and edema
Attenuated activation of iNKT cells and macrophages
Decreased level of pro-inflammatory cytokines
Inhibition of macrophage and iNKT cells activation

(201)

Porcine BM-MSCs In vitro Inhibition of virus replication in lung epithelial cells
Inhibition of virus-induced apoptosis replication in lymphatic
endothelial cells

(202)

In vivo porcine model
of influenza-induced ALI

Inhibition of virus replication in lung epithelial cells
Reduced lung injury
Attenuated level of pro-inflammatory cytokines

Human BM-MSCs In vivo murine model of lung injury Decreased lung vascular endothelial permeability (203)

Ex vivo human model of pneumonia Improved alveolar fluid clearance in lungs
Reduced level of bacteria

(204)

Human Amnion Epithelial
Cells

In vivo murine model of idiopathic pulmonary
fibrosis

Prevention against lung injury (205)

Human iPSC-MSCs In vivo murine model of asthma Ameliorated allergic airway inflammation
Alleviation of airway hyperresponsiveness
Decrease of inflammatory cell infiltration

(206)
ALI, acute lung injury; BM-MSCs, bone marrow MSCs; iNKT, invariant natural killer T cells; iPSCs, induced pluripotent stem cells; MSCs, mesenchymal stem/stromal cells; UC-MSCs, umbilical cord
Wharton’s jelly MSCs.
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Following administration of EVs the number of eosinophils and

serum IgE decreased, together with the reduction of pro-

inflammatory cytokines levels in the skin lesions (230). Similarly, in

the in vivo model of oxazolone-induced dermatitis, AT-MSCs-EVs

reduced inflammation, as well as improved ceramide production and

epidermal barrier, preventing skin water loss (231). In another study,

EVs from UC-MSCs reduced excessive proliferation of epidermis

cells, decreased expression of interleukin IL-17 and IL-23, as well as

inhibited activation of DCs is the murine model of psoriasis (227).

Recent studies have also shown beneficial effect of EVs in skin

regeneration (232). For instance, subcutaneously injected EVs

isolated from iPSCs-derived MSCs enhanced angiogenesis and re-

epithelialisation, leading to the wound closure. Additionally, they also

stimulated proliferation of skin fibroblasts and ECM production

(225). In another study of murine full-thickness skin wound model,

EVs from UC-MSCs promoted proliferation and migrative capacity

of both endothelial cells and skin fibroblast, as well as improved

angiogenesis in vitro , with improved re-epithelialisation

demonstrated in vivo (226). Similarly, in the context of chronic

wound treatment, UC-MSCs-derived EVs applied in the hydrogel

formulation onto the wound accelerated skin healing and

regeneration in the diabetic rat model (233). Interestingly, EVs

from AT, but not from BM were able to enhance skin healing in

murine model of diabetic murine model. These differences

corresponded to the differential cargo in both types of EVs, with

predominant role of BM-MSCs-EVs and AT-MSCs in promotion of

skin cells proliferation and angiogenesis, respectively (228). On the

other hand, in another study there was no significant difference in the

pro-regenerative potential of MSCs from both BM and AT in such

model, which may indicate the variance in the mechanism of action

between cells and their secretory vesicles (234). An importance of

immunomodulatory signaling mediated by MSCs-EVs was also

demonstrated for the skin damage treatment. As an example, EVs

frommelatonin-preconditioned BM-MSCs triggered macrophage M2

polarization, resulting in the decrease of pro-inflammatory cytokines
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and increase in the expression of anti-inflammatory IL-10, enhancing

angiogenesis and healing in rat diabetic wound model (229).

EVs derived from iPSCs may be also used for the purpose of skin

regeneration. Importantly, due to the higher “stemness” potential of

iPSCs when compared to MSCs, scientist attempt to utilize these

properties in the context of antiaging skin treatment. As an example,

dermal fibroblasts treated with hiPSCs-EVs possessed higher

proliferative capability and thus lowered senescence. Additionally,

UVB-stimulated photoaging process in those cells was also decreased

following hiPSCs-EVs treatment (224). Similar results were obtained

by another group, which demonstrated that “cell-engineered

nanovesicles” obtained by the serial membrane extrusion of human

iPSCs augmented senescent alterations in skin fibroblasts (235).

Nevertheless, EVs from MSCs were also used in several studies

related to the protection against skin aging. In one of studies, AT-

MSCs-derived EVs attenuated UVB-triggered photoaging both in

vitro, as well as in the murine in vivo model, and their mechanism of

action was related to the inhibition of inflammatory-induced

macrophage differentiation and ROS production, resulting in lower

wrinkle scoring (236). Interestingly, direct comparison study have

revealed higher antiaging effect of EVs derived from hiPSCs than

MSCs (110).

3.2.8 Pain
Fighting the chronic pain that accompanies several inflammatory-

related diseases is still a challenging aspect of medicine. There are

several attempts reporting the possible usage of EVs in the pain

treatment (Table 8) (242). In one of the studies, UC-MSCs-EVs were

used as a therapeutic agents in the rat model of neuropathic pain

caused by the nerve injury. Intrathecal administration of EVs resulted

in the reduced symptoms of pain and lower hind paw

hypersensitivity, decreasing the expression of pro-inflammatory

factors in dorsal root ganglion in the site of injury (237). In another

report, intra-articular administration of secretome obtained from

BM-MSCs stimulated with TNF-a and IFN-g and ameliorated pain
TABLE 6 Examples of EV use in preclinical studies related to the treatment of the digestive system disorders.

Source of EVs Model Major outcomes References

Murine BM-MSCs In vivo murine model of ulcerative colitis Attenuated colon mucosa damage
Promoted polarization of M1 macrophages to the M2 state
Suppressed inflammatory response

(217)

Murine M2 macrophages In vivo murine model of colitis Attenuated colitis
Alleviated colon damage
Increased percentage of Tregs
Decreased level of pro-inflammatory cytokines

(218)

Grapefruit pulp In vivo murine model of DSS-induced colitis Enhanced anti-inflammatory capacity of intestinal macrophages
Maintained intestinal macrophage homeostasis
Decreased level of pro-inflammatory cytokines

(219)

Murine blood serum In vivo murine DSS-induced colitis Decreased permeability in colon tissues (220)

Murine Tregs In vitro Promoted proliferation and inhibited apoptosis of YAMC cells (221)

In vivo murine model of DSS-induced colitis Alleviated IBD

Human BM-MSCs In vivo murine model of IBD Suppressed inflammatory response
Reduced development of fibrosis
Promoted M2 polarization of macrophages
Decreased permeability of colon tissue

(222)
BM-MSCs, bone marrow MSCs; DSS, dextran sulfate sodium; IBD, inflammatory bowel disease; Tregs, regulatory T cells; YAMC, conditionally immortalized mouse colon epithelial cell line.
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in the murine model of osteoarthritis (238). Moreover, EVs secreted

by iPSCs-derived MSCs decreased tendinopathy-related pain

symptoms in rat model in vivo, alleviating inflammation and

enhancing proliferation of tenocytes (239). Not only EVs from SCs,

but also immune cells may have the ability to reduce inflammation-

related pain symptoms. For example, in the murine inflammatory

pain model EVs fromM2 macrophages were able to transfer miR-23a

to microglia, increasing threshold of mechanical allodynia and

thermal hyperalgesia via regulation of NF-E2-related factor 2

(NRF2) (241). Altogether these reports indicate that EVs may serve

as a potential factors for the anti-pain treatment approaches.

3.2.9 COVID-19
Coronavirus infectious disease 2019 (COVID-19) caused by the

severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2),

was first time reported inWuhan, China in a late 2021 and has rapidly

spread over the world, emerging as a global pandemic issue. Till

August 2022, COVID-19 affected more than half billion of people

worldwide, causing death of more than 6 million (243). SARS-CoV-2

infects host cells by interaction of its spike protein with angiotensin

converting enzyme 2 (ACE2) receptor, present on several types of

epithelial and endothelial cells (244). Main clinical manifestations of

this disease are related to the respiratory system, including strong

cough, hypoxia, pneumonia and ARDS. However, it may also

manifest by multiorgan disfunction, including cardiovascular,

nervous or gastrointestinal system. COVID-19 is typically

accompanied by mild to moderate flu-like inflammatory symptoms

such as fever, muscle ache and general weakness, but in many
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individuals may lead to the acute cytokine storm, sepsis and in a

consequence death (245). Long-term post-COVID complications

were also widely reported, with multiple health issues that may last

for several months from the moment of infection (246). COVID-19

outbreak has not only caused a death of many people, but also

dramatically affected international economy, impacted global

healthcare and negatively influenced a social life (247). Thus,

increasing number of cases has raised a global pressure to find

effective ways of COVID-19 prevention and effective treatment.

Despite the rapid development of emergency vaccination, still its

accessibility is not uniform, with accompanied hesitancy of the part of

the society against the common vaccination. Additionally, there’s a

lack of specific and highly effective treatment against COVID. One of

the crucial issues is to inhibit uncontrolled hyperactivation of

immune system that leads to the cytokine storm and consequently

to the multiorgan damage (248).

It was shown that EVs may be considered not only as biomarkers

of COVID-19 outcome (249), but also as immunomodulatory agents

that may ameliorate inflammatory complications and improve the

clinical outcome of patients (Table 9) (254). In this respect, MSCs-

EVs are predominantly tested as cell-free alternatives mimicking

immunosuppressive properties of their cells of their origin. As an

example, the potential of EVs from UC-MSCs to decrease the release

of pro-inflammatory cytokines was demonstrated in vitro on human

lung adenocarcinoma epithelial cells stimulated with SARS-CoV-2

peptides (250). Another study has demonstrated safety and efficacy of

intravenous administration of BM-MSCs-derived EVs to 24 COVID-

19-positive patients with moderate or acute ARDS. Additionally,
TABLE 7 Examples of EV use in preclinical studies related to the treatment of skin dysfunctions.

Source of EVs Model Major outcomes References

Human iPSCs In vitro model of skin aging Increased proliferation and migration of skin fibroblasts
Decline in UVB-stimulated photoaging
Decreased level of matrix-degrading enzymes

(224)

Human iPSCs-derived
MSCs

In vivo rat skin wound healing model Enhanced angiogenesis
Increased proliferation of the skin
Improved reepithelialisation

(225)

Human UC-MSCs In vivo murine full-thickness skin wound
model

Promoted proliferation and migrative of endothelial cells and skin
fibroblast
Improved re-epithelialisation
Reduced level of proliferation suppressor genes

(226)

In vivo murine model of psoriasis Reduction of excessive epidermis proliferation
Decreased level of pro-inflammatory cytokines

(227)

Human BM-MSCs In vitro Promoted viability of fibroblast, keratinocyte, and endothelial cells
Induced endothelial cell migration

(228)

In vivo murine model of diabetic skin healing Accelerated wound closure
Increased epithelial thickness

In vivo rat diabetic wound healing model Increased macrophage M2 polarization
Enhanced angiogenesis and healing
Suppressed level of pro-inflammatory factors

(229)

Human AT-MSCs In vivo murine model of atopic dermatitis Decreased number of eosinophils
and serum IgE
Decreased level of pro-inflammatory cytokines
Reduced inflammation

(230)
AT-MSCs, adipose derived MSCs; BM-MSCs, bone marrow MSCs; iPSCs, induced pluripotent stem cells; MSCs, mesenchymal stem/stromal cells; UC-MSCs, umbilical cord Wharton’s jelly MSCs.
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following EV treatment an improved oxygenation ratio and decreased

inflammatory status was also reported, which opened a possibility for

the further studies, including clinical trials on the higher number of

patients (251). Interestingly, elevated number of EVs possessing

ACE2 receptor were found in the plasma of COVID-19 patients

and were shown to inhibit binding of viruses and their spike protein

to HEK cells in vitro, as well as to ameliorate severity of this disease in

the rodent model (252). There are also attempts to use EVs as vaccines

against SARS-CoV-2 infection. As an example, EVs derived from

Salmonella typhimurium decorated by spike receptor-binding domain

were used as immunization factors in syrian hamster COVID-19

model, exerting the effective production on neutralizing antibodies

against few variants of SARS-CoV-2 (253). Altogether, use of EVs as

immunoregulatory factors may open a new perspectives of COVID-

19 treatment and prevention.

3.2.10 Osteoarthritis
Osteoarthritis (OA) is a type of chronic degenerative disease of an

articular cartilage. Consequently, it leads to the progressive

inflammation, pain and joint dysfunction, predominantly in the

knees, but also hips and fingers. It has been indicated as one of the

ten most disabling disorders in the developed countries, with about

10% of men and close to 20% of women aged over 60 years to have

symptomatic OA. Apart from age, major risk factors associated with

OA are joint injuries and obesity (255). Currently available

therapeutic approaches are limited and concentrate mainly either
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on temporal, pharmacological pain relief and reduction of

inflammation, or on the invasive surgical interventions and joint

replacement (256).

SCs-EVs were proven to support OA treatment, with the special

regard to those secreted by MSCs (Table 10). As an example, EVs from

BM-MSCs were reported to increase the expression of type II collagen

and aggrecan, with reduction of metalloproteinase 13 and iNOS, in

OA-like chondrocytes in vitro. Additionally, they exhibited anti-

inflammatory and cytoprotective effect in vivo, decreasing cartilage

and bone degeneration in the knee joint in collagenase-induced murine

OA model (257). In another study, BM-MSCs-EVs reduced expression

of pro-inflammatory cyclooxygenase 2 (COX2) and NFkB signaling,

with simultaneous enhancement of the proteoglycan and type II

collagen level in TNF-a-stimulated chondrocytes derived from OA

patients (258). Similarly, EVs isolated from AT-MSCs exhibited

chondroprotective effect on IL-1b-stimulated OA chondrocytes in

vitro, diminishing secretion of pro-inflammatory factors (TNF-a, IL-
6, prostaglandin E2, nitric oxide, COX2) and increasing level of IL-10

and type II collagen (259). Furthermore, UC-MSCs-EVs had

immunomodulatory effect in OA model in vitro and in vivo,

promoting M2 macrophage polarization and secretion of anti-

inflammatory IL-10, as well as inhibiting cartilage degradation. The

mechanism of their action was related to miRNA cargo known to

regulate PI3K pathway in targeted cells (260). Altogether, these data

demonstrate the chondroprotective and immunomodulatory activity of

EVs in the context of potential OA treatment.
TABLE 9 Examples of EV use in preclinical studies related to the COVID-19 treatment.

Source of EVs Model Major outcomes References

Human UC-MSCs In vitro Reduced SARS-CoV2-induced inflammatory cytokines
Decreased level of NF-kB-p65

(250)

Human BM-MSCs In vivo SARS-CoV2 positive patent Improved oxygenation ratio
Decreased inflammatory status

(251)

Human HEK In vitro Inhibited binding of viruses to HEK cells (252)

In vivo murine SARS-CoV2 model Ameliorated the symptoms of the disease

Salmonella typhimurium In vivo Syrian hamster SARS-CoV-2 model Production on neutralizing antibodies
Decreased size of inflammatory focal patches

(253)
BM-MSCs, bone marrow MSCs; HEK, human embryonic kidney cells; MSCs, mesenchymal stem/stromal cells; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; UC-MSCs, umbilical
cord Wharton’s jelly MSCs.
TABLE 8 Examples of EV use in preclinical studies related to the pain treatment.

Source of EVs Model Major outcomes References

Human UC-MSCs In vivo rat model of neuropathic pain Reduced pain symptoms
Decreased the expression of pro-inflammatory factors

(237)

Human BM-MSCs In vivo mouse model of osteoarthritis Ameliorated pain
Protective effect on cartilage damage

(238)

Human iPSCs-derived MSCs In vivo rat model of tendinopathy-related pain Ameliorated pain
Enhanced proliferation of tenocytes
Down-regulation of the gene expression-related to inflammation

(239)

Mouse NSCs In vivo rat model spinal cord injury Reduced neuronal apoptosis
Decreased microglial activation
Attenuated neuroinflammation

(240)

Macrophages In vivo model of murine inflammatory pain Alleviated inflammatory pain (241)
BM-MSCs, bone marrow MSCs; iPSCs, induced pluripotent stem cells; MSCs, mesenchymal stem/stromal cells; NSCs, neural stem cells; UC-MSCs, umbilical cord Wharton’s jelly MSCs.
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3.2.11 Cancer
Immunoregulatory capability of EVs makes them an attractive

option for the treatment of cancer, as one of the leading causes of

death worldwide. Oncological immunotherapy is one of the rapidly

developing treatments, targeted to stimulate immune system toward anti-

cancer defence, that includes checkpoint blockade therapies, use of

chimeric antigen receptor (CAR) T-cells and cancer vaccines.

Currently, there are attempts to use preparations containing EVs as

anti-cancer vaccines (Table 11) (264). This strategy relies on the use of

EVs secreted by the cancer cells or by APCs, with the special focus on

DCs. The latter ones were shown to contain functional MHC class I and

II antigens, as well as co-stimulatory molecules capable to activate the

anti-tumor response of cytotoxic T cells (265). Moreover, utilization of

autologous tumor-derived EVs harbouring cancer-specific antigens as

nanovaccines opens new possibilities of the development of personalized

anti-cancer treatment. However, due to the low immunogenicity of

autologous EVs from cancer cells, there are attempts to combine them

with other factors that would enhance anti-tumor response of immune

system. As an example, researchers created hybrid nanoparticles by

combining EVs of tumor and E. coli origin, that were able to stimulate

maturation of DCs and trigger strong anti-tumor immune response in

colon, melanoma and breast cancer murine models (262). In another

study, cell membrane vesicles from melanoma cells were combined with

CpG oligonucleotides, TLR-9 agonist and DCs-targeting aptamer,

enabling specific activation of immune system against cancer, together

with a long-term immune memory effect (263).

Additionally, SCs-EVs were also shown to exhibit anti-cancer activity.

In particular, EVs isolated from BM-MSCs inhibited proliferation of

HepG2 hepatoma, Kaposi’s sarcoma, and ovarian tumor cell lines,

inducing cancer cell death in vitro, as well as exhibiting anti-tumor

activity following subcutaneous injection of EVs in the in vivo

experiments (261). Similar results were also demonstrated for UC-MSCs-

derived EVs in the model of bladder tumor (266). Thus, EV-based

approachesmay be a novel, promising strategy for the anti-cancer therapy.
3.3 Challenges and perspectives

Rapidly developing knowledge on EV biology and their functions

result in the growing number of attempts to use EVs as new-generation
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tools in the regenerative medicine, as well as in several other biomedical

fields. One on them is the attempt to use EVs as biological nanoparticles

for the transport and targeted delivery of drugs and other biologically

active particles, which relies on an intrinsic activity of EVs as mediators

of cell-to-cell communication (267). As an example, in one study

curcumin-loaded EVs were able to reduce pro-inflammatory

signalling in macrophages in vitro more effectively, when compared

to the curcumin itself, which demonstrates that EV-based strategy

enhances bioavailability of this low-soluble compound. Additionally,

survival rate of animals in the LPS-induced sepsis model was also

significantly higher for EV-curcumin group, comparing to animals

treated only with curcumin (268). Similarly, EVs from immature

dendritic cells were also used to deliver anti-tumor agent-

doxorubicin that was loaded to them via the electroporation. Such

EVs were then demonstrated to specifically target tumor cells,

inhibiting their growth both in vitro and in vivo (269). Interestingly,

there are indications that EVs may be taken up by acceptor cells more

effectively when compared to the liposomes, with the simultaneous

high efficiency of EV “loading” with particular bioactive molecules

(270). Additionally, due to their endogenous origin, EVs are envisioned

as less immunogenic and cytotoxic when compared to the synthetic

nanoparticles (271). Importantly, EVs have also been shown to be able

to deliver siRNA to the murine brain in vivo, which opens new

possibilities for the development of new, drug-carrying particles

capable to cross BBB, which so far is an important factor limiting the

effectiveness of the neurological diseases therapy (272).

EVs are promising therapeutic options that have additional

potential to be engineered, both on the level of their parental cells

and after their secretion. First approach includes cell preconditioning

or genetic engineering, whereas second one bases e.g. on loading of

EVs with particular therapeutic compounds. Such modification of

“native” EVs may help to develop approaches to either overcome

limitations related to EV use or to boost their therapeutic efficacy,

targeted delivery or stability, which widens further possibilities of EV

utilisation in the future biomedical applications (273).
3.3.1 Pitfalls and limitations of EV utilisation
Despite significant progress in the field, there are still several

limitations of broader use of EVs in biomedical sciences. Translation
TABLE 10 Examples of EV use in preclinical studies related to the treatment of OA.

Source of EVs Model Major outcomes References

Murine BM-MSCs In vitro model of OA Restored homeostasis in OA-like chondrocytes
Decreased apoptosis of chondrocytes
Decreased expression of pro-inflammatory factors

(257)

In vivo murine model of OA Reduced degradation of cartilage and bone

Human BM-MSCs In vitro model of OA Decreased level of pro-inflammatory cytokines
Decreased expression of NF-kB-p65
Promoted production proteoglycan by chondrocytes
Enhanced proliferation of chondrocytes

(258)

Human AT-MSCs In vitro model of OA Reduced production of inflammatory mediators
Decreased expression of iNOS

(259)

Human UC-MSCs In vitro Increase of macrophage M2 polarization (260)

In vivo rat model of OA Inhibited cartilage degradation
AT-MSCs, adipose derived MSCs; BM-MSCs, bone marrow MSCs; iNOS, inducible nitric oxide synthase OA, osteoarthritis; UC-MSCs, umbilical cord Wharton’s jelly MSCs.
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of the basic science into the clinics encounters critical challenges and

obtained EV preparations have to fulfil several stringent, but still not

fully defined criteria, that include variety of quantitative and

qualitative properties. Importantly, constantly increasing knowledge

on EV biology raises new questions and doubts on their identity,

optimal methods of isolation, as well as methodological barriers of

their characterization (274). So far, several key aspects have been

recognized as potential hindrances of EV utilization in pre-clinical

and clinical studies.

One of the pitfalls is to obtain a pure EV fraction without

accompanying non-vesicular entities such as protein complexes,

lipoproteins or extracellular RNA, that are typically co-isolated by

commonly used isolation methods such as ultracentrifugation (275).

On the other hand, other methods that include elimination of

concomitant impurities may cause significant reduction of EV yield,

which is an important hindrance in terms of the medical use of EVs,

where high amounts of EV preparations are required (276).

Additionally, recent findings have demonstrated that the “protein

corona” which surrounds EVs may be also needed for their biological

activity and its removal by additional steps of EV purification may not

be beneficial (277). Nevertheless, isolation method is one of the

crucial factors that may influence functional properties of EVs and

affect their downstream applications.

Another important difficulties to be overcome is a rapid

macrophage-dependent clearance of EVs from the circulation (278)

and their off-target biodistribution that lowers the level of EV

accumulation in the site of interest (36). There are several factors

influencing distribution of EVs after their in vivo uptake, including

route of administration, dosing, cell source (279) and the size of EVs

(280), that should be taken under the consideration during the design

of EV-related studies.

Moreover, one of the critical bottlenecks in the clinical application

of EVs is a lack of unified protocols of their isolation and

characterization. Thus, there is also an urgent need for the

development of reliable standarization and validation approaches,

that would implement rigorous, complementary characterisation

methods and would assure no batch-to-batch variation (271).

However, due to the extreme complexity and variety of EV-related

biological systems, it seems to be a huge challenge to find an optimal

and universal experimental layout. As an example, based on the

worldwide survey, there are several different isolation methods with

ultracentrifugation being the most commonly used. However, the

choice of EV isolation method will also vary depending on a type of
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the starting material, compromise between the purity and yield of

obtained EV preparations, as well as their downstream application

(281). Another difficulty is a standardized and controlled long-term

storage of EV preparations, that would also allow to preserve their

biological activity after thawing (282).

One of the critical hallmarks is also a scale-up production, that

would not only ensure the sufficient quantity of EVs produced in a

good manufacturing practice (GMP) standards, but would also not

affect their quality (283). Several groups work on the development of

bioreactor-based approaches for the bulk EV production (284).

Additionally, scientists try to modify culture conditions of the

donor cells, stimulating them physically or chemically in order to

significantly increase the yield of secreted EVs (285). Despite existing

challenges, several methodological approaches fulfilling GMP

standard requirements were reported so far, including e.g.

preparation of EVs from BM-MSCs (286) or UC-MSCs (287).

3.3.2 Clinical trials
Despite several encountered difficulties to be overcome to

facilitate common use of EVs in the tissue regeneration, the

promising results of preclinical studies have become the basis for

the attempts on using EV preparations in a medical practice.

Currently, there are several clinical trials conducted around the

world with the use of EV preparations (288). According to the

ClinicalTrials.gov website, on October 2022 there were 84

interventional clinical trials for “extracellular vesicles” inquiry, with

15 of them being already completed. Among the top ones, 25 studies

were related to the respiratory tract diseases, 16 to graft versus host

disease (GvHD) and 10 to CNS diseases, with majority of them being

related to the biomarker studies. Still, the clinical use of EVs for the

therapeutic purposes is limited to ongoing early-phase studies, but

initial results indicate no significant side effects following EVs

administration, indicating their safety and therapeutic potential

(289). As an example, in a recently reported case study, EVs

derived from UC-MSCs were used for the intracochlear

administration in the 55-year old patient suffering from Menière’s

disease, who required an insertion of a cochlear implant, that typically

causes inflammatory response and local fibrosis that may lead to the

hearing loss. Obtained results demonstrated safety of EV injection,

attenuation of inflammation and improvement of hearing capacity

and speech perception parameter (290). Promising results have led to

the preparation of the phase 1 clinical study. In another report, based

on the previous data, including those obtained for the
TABLE 11 Examples of EV use in preclinical studies related to the treatment of cancer.

Source of EVs Model Major outcomes References

Human BM-MSCs In vitro Inhibited proliferation and viability
of HepG2, Kaposi, and Skov-3 cell lines

(261)

In vivo murine cancer
model

Inhibition of tumor growth

Escherichia coli combined with tumour cells In vivo murine cancer
model

Stimulated maturation of DCs
Regression of tumor

(262)

Murine melanoma cells combined with CpG oligos, TLR-9 agonist, and
DCs-targeting aptamer

In vivo murine
melanoma model

Stimulated maturation of DCs
Stimulated specific activation of immune system
against cancer

(263)
BM-MSCs, bone marrow MSCs; DCs, dendritic cells; HepG2, human liver cancer cell line; TLR-9, Toll-like receptor 9.
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nonrandomized open-label cohort study related to the effect of EVs

from BM-MSCs in COVID-19 associated ARDS treatment (251),

randomized phase 2 clinical study “EXIT-COVID19” has been also

conducted, but without already published results. Several other trials

are still on the “recruiting” or “not yet recruiting” stage. Thus, direct

indication on the effectiveness of EVs in the clinical practice should be

expected within the upcoming years, which will allow not only to

confirm safety of EV administration, but also to compare efficacy of

EVs with the currently available treatments. Based on that it will be

possible to indicate the most promising areas of EV-based therapeutic

applications as alternatives to the currently utilized approaches.
4 Conclusions

Last two decades have brought a significant advancement in the

field of EV biology and their potential biomedical utilization. In this

review, we have highlighted the recent knowledge on the

understanding of the biological activity of EVs, especially those

secreted by different types of SCs, in cell-to cell crosstalk, including

their role in the regulation of the immune system. In this context, EVs

have been widely reported as potential therapeutic factors exhibiting

immunoregulatory and pro-regenerative properties. Discovery that

EVs may harbour and transfer their bioactive content into the target

cells, influencing their fate, opened a new possibilities of use of EV

preparations as acellular therapeutic option in several diseases with

the inflammatory background. However, despite the vast potential of

EVs as drug-delivery systems, their wide utilization is associated with

several challenges and limitations that have still to be addressed.

Nevertheless, EVs offer a great promise as new-generation tools for an

improved diagnostic and clinical purposes.
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ACE2 angiotensin converting enzyme 2

AD Alzheimer’s disease

AFM atomic force microscopy

AKI acute kidney injury

ALI acute lung injury

APCs antigen presenting cells

AT-MSCs adipose tissue-derived mesenchymal stem/stromal cells

ARDS acute respiratory distress syndrome

BBB blood–brain barrier

BM-MSCs bone marrow-derived mesenchymal stem/stromal cells

ECM extracellular matrix

CKD chronic kidney disease

CM conditioned medium

CNS central nervous system

COVID-19 coronavirus infectious disease 2019

CVDs cardiovascular diseases

CPCs cardiac progenitor cells

DCs dendritic cells

EPCs endothelial progenitor cells

EVs extracellular vesicles

ESCRT endosomal sorting complex responsible for transport

ESCs embryonic stem cells

GMP good manufacturing practice

GvHD graft-versus host disease

HCC hepatocellular carcinoma

HLA human leukocyte antigen

IBD inflammatory bowel disease

ILC2s group 2 innate lymphoid cells

iPSCs induced pluripotent stem cells

I/R ischemia/reperfusion

ISEV International Society for Extracellular Vesicles

LVEF left ventricular ejection fraction

SCs stem cells

MHC major histocompatibility complex

MVBs multivesicular bodies

MS multiple sclerosis

MSCs mesenchymal stem/stromal cells

NTA nanoparticle tracking analysis

OA osteoarthritis
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PD Parkinson’s disease

ROS reactive oxygen species

SNARE SNAP (soluble NSF attachment protein) receptor

TGF-b transforming growth factor beta

TNF-a tumor necrosis factor alpha

UC-MSCs umbilical cord Wharton’s jelly MSCs

WHO world health organization.
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