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Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in young

people. Although biologics now enable most children and adolescents with JIA to

enjoy clinical remission, patients present lower physical activity and spendmore time

in sedentary behavior than their healthy counterparts. This impairment probably

results from a physical deconditioning spiral initiated by joint pain, sustained by

apprehension on the part of both the child and the child’s parents, and entrenched

by lowered physical capacities. This in turn may exacerbate disease activity and lead

to unfavorable health outcomes including increased risks of metabolic and mental

comorbidities. Over the past few decades, there has been growing interest in the

health benefits of increased overall physical activity as well as exercise interventions

in young people with JIA. However, we are still far from evidence-based physical

activity and / or exercise prescription for this population. In this review, we give an

overview of the available data supporting physical activity and / or exercise as a

behavioral, non-pharmacological alternative to attenuate inflammation while also

improving metabolism, disease symptoms, poor sleep, synchronization of circadian

rhythms, mental health, and quality of life in JIA. Finally, we discuss clinical

implications, identify gaps in knowledge, and outline a future research agenda.
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1 Introduction

Juvenile idiopathic arthritis (JIA) is the most common pediatric inflammatory disease. It

results from an autoimmune attack on the synovial membrane, and produces mild to severe

systemic inflammation detectable by routine blood tests. Overall, the disruption of the

immune system results from an overproduction of pro-inflammatory cytokines, principally
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tumor necrosis factor (TNF)-a, interleukin (IL)-1, and IL-6. This

overproduction leads to a cascade of events at different levels:

molecular, cellular, and systemic (1). Children with JIA show

increased levels of autoreactive CD4+ T cells, including T helper

(Th) 1 and Th17 cells, producing interferon-gamma (IFN-g) and IL-

17, respectively. This results in the production of an array of pro-

inflammatory cytokines and pro-inflammatory S100 family proteins,

also called calprotectin (2, 3). In parallel, the inhibition of regulatory

T cells (Tregs) with decreased anti-inflammatory cytokine IL-10

results in loss of immune tolerance. An imbalance between auto-

reactive Th1/Th17 and Tregs leads to the failure of T-cell tolerance to

self-antigens, which contributes to both local and systemic

inflammation (2, 4, 5).

In an earlier systematic review of case-control studies, we

addressed physical activity and sedentary behaviors in JIA (6).

We underline here that physical activity is defined as any bodily

movement produced by skeletal muscles that results in energy

expenditure. In daily life physical activity, can be categorized into

occupational, sports, conditioning or any other activities. On the

other hand, exercise is a subset of physical activity that is planned,

structured, and repetitive (7). As expected, we found that children

and adolescents with JIA spent less time in physical activity,

especially of moderate to vigorous intensity (MVPA), than their

healthy counterparts, and spent more time in sedentary behavior.

Less physical activity and increased sedentary could partly be

explained by disease symptoms (e.g., persistent joint pain and

stiffness). However, it has been reported that the kinesiophobia

associated with movement can be an even stronger deterrent than

the pain itself (8, 9). JIA may thus produce a physical

deconditioning spiral initiated by joint pain, sustained by

apprehension on the part of both the child and the child’s

parents, and entrenched by decreased physical activity and

capacities. The disease and its treatments may also have a direct

impact on muscle structure and/or function and on physiological

adaptation during exercise. JIA not only affects joints, but also

causes many other disturbances such as impaired metabolism,

poor quality of sleep, depressed mood, fatigue, etc. liable to

adversely affect autonomy, social life, and development. It has

been reported that young people with JIA experience more

difficulties managing their emotions, peer relationships, and

schooling, resulting in a health-related lowered quality of life

than their healthy counterparts, especially during the early stage

of the disease (10–12).

Exercise is recognized as a non-pharmaceutical mode of

intervention causing physiological adaptations of the immune

system through myokine secretion by active muscles. These effects

are mediated by a wide range of factors, including exercise-induced

release of anti-inflammatory cytokines and stress hormones, and

hemodynamic effects resulting in cellular reorganization (13).

Exercise is also likely to act positively on metabolism, disease

symptoms, sleep disturbances, the synchronization of circadian

rhythms, mental health, and quality of life. Here we present an

overview of the current literature supporting exercise as a

behavioral, non-pharmacological alternative for JIA treatment. We

then discuss clinical implications, identify gaps in knowledge, and

outline a future research agenda in pursuit of evidence-based exercise

prescription in JIA.
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2 Search strategy

A MedLine search was conducted, from February 2022 to

September 2022, according to published guidance on narrative

reviews (14) using the following terms: “juvenile idiopathic arthritis

[MeSH Terms]” OR “arthritis[MeSH Terms]” OR “rheumatoid

arthritis[MeSH Terms]” associated to following terms in PubMed

research: circadian clock[MeSH Terms]; Circadian Rhythm[MeSH

Terms]; Period Circadian Proteins Sleep Disorders[MeSH Terms];

Circadian Rhythm[MeSH Terms]; Sleep[MeSH Terms]; metabolism

[MeSH Terms]; lipid metabolism[MeSH Terms]; carbohydrate

metabolism[MeSH Terms]; exercise[MeSH Terms]; Sedentary

Behavior[MeSH Terms]; Mental Health[MeSH Terms]; quality of

life[MeSH Terms]; physical fitness[MeSH Terms]; cardiorespiratory

fitness[MeSH Terms].
3 Effect of exercise on inflammation

Exercise-induced inflammation was documented in early sports

science studies, where a notable elevation in circulating IL-6 was

reported (15). However, a temporal variation in cytokine levels

following exercise was also documented (16). Briefly, immediately

after exercise, IL-6 is the first cytokine secreted in response to muscle

contraction (17–19). Muscle contraction leads to an increase in

cytosolic Ca2+ and activation of the p38 MAPK pathway and

calcineurin, which leads to the activation of upstream transcription

factors and the secretion of IL-6 (20, 21). This pathway results in an

anti-inflammatory effect of IL-6, which contrasts with the NFkB-
induced production of IL-6 and other cytokines such as IL-1b or

TNF-a by macrophages (20). In response to exercise, IL-6

(principally of muscular origin) therefore induces an anti-

inflammatory environment within the next few hours via the

production of IL-1ra and IL-10. It also inhibits the production of

TNF-a (18, 22).

IL-6 acts through a heterodimeric signaling complex consisting of

the IL-6 receptor (IL-6R) and the signal-transducing subunit

glycoprotein 130 (gp130). IL-6R occurs in both soluble (sIL-6R)

and membrane-bound forms (mIL-6R), distinguishing pro-

inflammatory IL-6 trans-signaling (via the sIL-6R) from anti-

inflammatory IL-6 classic signaling (via mIL-6R) (23). One study

suggested that sIL-6R concentration after exercise reflected changes in

leukocyte subpopulations migrating into damaged tissues, with an

initial post-exercise period that reflects signaling for massive

monocyte/macrophage infiltration and a later stage of post-exercise

recovery (the regenerative phase) marked by low levels of sIL-6R (24).

There is also abundant evidence that IL-6 in combination with sIL-6R

plays a role in nociception and inflammatory hyperalgesia (25, 26).

In response to acute exercise, plasma IL-6 levels increase

nonlinearly over time, peaking at the end of exercise and then

falling to the pre-exercise level (27). By contrast, there is a negative

association between basal plasma IL-6 levels and amount of regular

physical activity, low basal plasma IL-6 correlating to higher physical

activity level (27). Regular physical activity entails multiple

adaptations including increased pre-exercise skeletal muscle

glycogen content, increased oxidation of intramuscular triglycerides,

and enhanced activity of key enzymes involved in ß-oxidation (28,
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29). Skeletal muscle consequently increases its capacity to oxidize fat

and becomes less dependent on plasma glucose and muscle glycogen

as substrates during exercise (27). For IL-6 gene transcription, pre-

exercise intramuscular glycogen content is an important stimulus,

and so transcription rates are higher when glycogen levels are lower

(17, 18). Regular physical activity thus appears to downregulate

plasma IL-6 but to upregulate the mIL-6 receptor (20, 30). In

response to regular exercise, basal IL-6R mRNA content in trained

skeletal muscle is increased by approximately 100%, suggesting that

the downregulation of IL-6 is partially counteracted by an enhanced

expression of IL-6R, whereby the sensitivity of skeletal muscle to IL-6

is increased (20, 27, 30). Finally, in healthy adults, studies on the effect

of regular physical activity on inflammatory markers at rest or after an

exercise bout of resistance have essentially found that training

intensity plays a role in cytokine responses, higher intensity (> 70%

of one maximum repetition (1RM)) eliciting a more favorable

response (28).

In children with JIA, a single 20-minute exercise bout at 70% of

maximal heart rate at 8:30 am induced a slight transient increase in

the level of plasma calprotectin (MRP 8/14, a pro-inflammatory

polypeptide), together with transient self-evaluated pain, but no

significant change in IL-6 or soluble IL-6 receptors (31). However,

at 24 h post-exercise, calprotectin, IL-6 and pain decreased compared

to control-day levels (32). In JIA, acute exercise thus induces a

dissociated physiological response over time. Unfortunately, there

are still no data on the effect of long-term exercise on inflammatory

markers in children with JIA. JIA, with its seven subcategories, is a

complex, heterogeneous disorder, and the treatments used differ

depending on the form and persistence of the disease (from the use

of NSAIDs alone to biologics). It is therefore difficult to draw any

simple conclusion on response and physiological adaptations to

exercise in this population. Future work must therefore study the

impact of acute exercise or regular physical activity on inflammatory

markers according to JIA category, disease activity, and treatments.

Finally, the physiological responses in this population must be

evaluated according to different exercise variables: type (endurance,

resistance), duration, and intensity.
4 Effect of physical activity
on metabolism

In earlier work, we found that children with JIA presented

impaired energy metabolism during exercise (deficient lipid

oxidation) even when the disease was inactive, and that this

impairment was less marked in children treated with TNF-a
inhibitors (33, 34). These data suggest muscle dysfunction in

children with active or even inactive JIA. This may result from

subclinical inflammation, muscle changes secondary to physical

deconditioning, or impaired muscle oxidative function. Lastly,

assessment of muscle structure and function showed a reduction of

intermuscular adipose tissue (IMAT) possibly linked to lipid

oxidation deficiency during exercise (35).

Altered metabolic control of lipid and glucose homeostasis

predispose to developing cardiovascular diseases (CVDs) such as

type 2 diabetes and atherosclerosis (36). Accumulated lipids in

vascular walls cause chronic inflammation, which favors the long-
Frontiers in Immunology 03
term advent of atherosclerosis. Children with JIA may thus be at

increased risk of developing CVD in adulthood (37, 38). Better

characterization of the lipid profile in this patient population,

focusing in particular on sphingolipids, seems a promising avenue.

Ceramides belong to the sphingolipid family and have biological

actions in cell proliferation, differentiation, and death. They are also

involved in the signaling pathways in play in insulin resistance,

oxidative stress, and inflammation (39). Inflammatory cytokines, in

particular TNF-a, are correlated with several plasma subspecies of

ceramides, notably ceramide C24:0 (40). Finally, disturbed

intracellular sphingolipid metabolism has been implicated in the

onset of several diseases such as obesity, type 2 diabetes,

atherosclerosis, and cardiovascular disease, and also rheumatoid

arthritis (RA) (41, 42). We must therefore endeavor to restore

optimal metabolism in children with JIA.

Skeletal muscle is an insulin-sensitive organ responsible for 85%

of glucose uptake in humans (43). In skeletal muscle, glucose

homeostasis is dependent on insulin signaling, which mediates the

various steps of glucose metabolism. Insulin signaling is a complex

process: the binding of insulin to its receptor induces auto-

phosphorylation and phosphorylation of tyrosine residues of IRS

(insulin receptor substrate) proteins, thus initiating the intracellular

signaling cascade (43, 44). IRS-1 is more closely related to glucose

homeostasis, whereas IRS-2 is involved primarily in lipid metabolism

(44). Inflammation and insulin resistance are closely linked, and

inflammatory cytokines such as TNF-a, IL-6, IL-1 and IL-8 can

inhibit insulin signaling by multiple mechanisms (45). TNF-a
induces phosphorylation of IRS-1 on serine in place of tyrosine

residues and promotes insulin resistance (46, 47). This

phosphorylation of serine residues terminates the physiological

activation of the receptor, thus stopping the insulin signal (48).

TNF-a is also involved in lipid metabolism: it has been shown to

promote lipid accumulation, alter mitochondrial ultrastructure and

function (49), suppress AMP-activated protein kinase (AMPK)

activity, and reduce fatty acid oxidation (50). Finally, it has been

shown that in vitro, TNF-a stimulates the production of

diacylglycerol (DAG) and ceramide, which are involved in the

pathogenesis of insulin resistance in skeletal muscle (51). Regarding

the effect of IL-6 on muscle metabolism, a distinction must be made

between acute effects (in response to physical exercise) and chronic

effects (chronic inflammation, obesity). In an acute context of

physical exercise, the increase in IL-6 (the lower the level of muscle

glycogen, the greater the increase (52)) improves insulin sensitivity

and glucose uptake via activation of AMPK (49, 53, 54). IL-6 also

promotes lipid metabolism by increasing lipolysis and fatty acid

oxidation in myocytes and adipocytes, and in the whole body (49,

53, 54). In addition, in vitro data have shown that IL-6 induces

translocation of the transporter GLUT4 to the plasma membrane of

myotubes (53). By contrast, in a chronic context, IL-6 is associated

with insulin resistance and inflammation in skeletal muscle and

liver (49).

Inflammatory diseases such as juvenile idiopathic arthritis are

treated, for the most severe forms, using biotherapies. These

treatments target certain pro-inflammatory cytokines including

TNF-a (etanercept, adalimumab, infliximab). In adults with

rheumatoid arthritis, several studies have shown that anti-TNF

treatment increases insulin sensitivity (44, 55–58). Anti-TNF
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antibodies restore the phosphorylation state of Ser312-IRS-1 and

AKT, important mediators of the insulin signaling cascade (44). On

the other hand, in children with JIA, we found only one study on the

effect of anti-TNF-a on glucose metabolism. It reports no difference

in plasma glucose levels before and after 3 and 6 months of treatment

with anti-TNF-a (59). Regarding the effect of anti-TNF-a on

circulating lipid levels, in children with JIA, studies report that after

12 months of treatment with etanercept, the triglyceride level

significantly decreased (60, 61).

Lipid oxidation capacity is related to physical condition, itself

related to level of physical activity. Impaired lipid metabolism may

therefore be the whole body’s adaptation to a state of low activity and

correspondingly low energy expenditure in children with JIA (62, 63).

In this case, the system could be remobilized by increasing physical

activity and incorporating a regular physical activity program.

Regular exercise is associated with an increase in the proportion of

oxidized lipids during the exercise and an improvement of

mitochondrial enzymatic capacities, especially those involved in

lipid b-oxidation (64). Physical exercise also improves glucose

transport and increases the expression or activity of entities

involved in insulin-signaling pathways, such as protein B kinase

(Akt) and AMPK, leading to an increased insulin sensitivity (65).

Prescription of regular physical activity could thus help correct this

energy metabolism disturbance. Implementing exercise training

programs in children with JIA should therefore improve their lipid

metabolism and reduce the risk of CVD developing during

their adulthood.
5 Effect of exercise on
circadian rhythms

Physiological functions follow circadian rhythm under the

control of the circadian system (66). Transcription factors CLOCK

(circadian locomotor output cycles kaput) and BMAL1 (brain and

muscle aryl hydrocarbon receptor nuclear translocator-like protein 1)

are major regulators of peripheral clock gene expression (67). These

proteins reach their peak activity during the inactive phase (i.e., at

night) and bind to the enhancer (E)-box elements in the nucleus to

drive the transcription of the Period (PER) and Cryptochrome (CRY)

genes, which exhibit peak activity at the beginning of the active phase

and inhibit CLOCK and BMAL1 activities. The opposite effects on the

feedback loop are driven by the retinoic acid-related orphan receptors

(ROR), which activate REV-ERBs (receptor subfamily 1 group D

member 1) which inhibit BMAL1 transcription (68). Some of these

clock proteins have central functions in inflammation and

metabolism such as REV-ERBa regulates skeletal muscle oxidative

capacity by modulating mitochondrial biogenesis and fatty acid

oxidation (68). It reduces the production and release of IL-6 and

inhibits the expression of Th17-mediated pro-inflammatory

cytokines; its overexpression in turn inhibits the development of

Th17 cells (69). Through activation of the nuclear factor kB (NF-kB),
clock genes are implicated in inflammatory response, with activation

of pro-inflammatory cytokines by CLOCK and an anti-inflammatory

role via BMAL1 (70). However, under chronic systemic

inflammation, IL-1b or TNF-a may inhibit the E-box-dependent

gene expression mediated by the BMAL1/CLOCK complex (67). The
Frontiers in Immunology 04
disruption of oscillatory rhythms of clock genes thus perturbs

functions of metabolism-related genes controlled by the molecular

clock (67), and dysregulation of circadian rhythms are involved in the

initiation and progress of rheumatic diseases (71). On other hand,

autoimmune and inflammatory diseases can directly affect clock gene

expression, leading to a vicious cycle of inflammation and detrimental

effects on treatment response (69, 72, 73). Yet the involvement of

circadian rhythm remains barely explored in JIA. Given that JIA

shares clinical and pathological features with rheumatoid arthritis

(RA), some findings from RA studies are also mentioned by analogy

to support some of the hypotheses advanced in what follows

(Figure 1). However, we emphasize that further evidence must be

sought in future studies of young people with JIA.

Recent studies report a preserved behavioral, endocrine and

immune circadian rhythmicity in RA but a greater time-of-day

variation in gene expression profile, with 104 genes differing

between morning and afternoon against only 25 in healthy controls

(78). Interestingly, the studies have shown an enrichment at dawn for

transcription factor binding motifs including STAT3, an important

signaling mediator of IL-6 action. Finally, they also report a rhythmic

increase in serum lipid changes particularly in the ceramide class.

Acrophase of the rhythmic ceramides occurred only in RA at 11:00

pm and most of the rhythmic lipids peaked at 6:00 am or 6:00 pm in

both healthy controls and RA patients. The authors therefore

hypothesize that chronic joint inflammation serves as circadian

organizer, coupling lipid-metabolic pathways to the core clock (78).

The same team has shown in a mouse model of RA that chronic

inflammatory arthritis drives major changes in muscle and liver

energy metabolism, revealing alterations in lipid metabolism and

mitochondrial function. With impaired b-oxidation and sphingolipid

and ceramide accumulation most pronounced during the day, this

demonstrates that rhythmic inflammation of joints drives a time-of-

day-dependent build-up of bioactive lipid species (79). Although

many findings in RA need to be verified in JIA, these data still

remind us that metabolism and inflammation are under the control of

the circadian clock and that rheumatic diseases show specific

rhythmicity, which may also be the case in JIA. Symptoms of JIA,

like those of RA, follow circadian rhythms, with an increase in activity

in the early morning, a reduction during the day, and then a smaller

increase in the early evening. Some studies have reported a temporal

relationship between elevated levels of pro-inflammatory cytokines

and symptoms in arthritis, such as morning stiffness (80, 81). Pro-

inflammatory cytokines show a specific rhythmicity that differs from

that observed in healthy controls. The IFN-g/IL-10 ratio peaks at 4:00
am (synchronous with the cortisol nadir) and troughs at 3:00 pm.

There is therefore a predominance of cellular immunity during the

night and early in the morning when the IFN-g/IL-10 ratio is high (5,

82). These data are consistent with the observation that joint

symptoms in both JIA and RA are more severe at night and early

in the morning. In healthy subjects, TNF-a peaks at 3:00 am and IL-6

peaks at 6:00 am, whereas in patients with RA, the peak of TNF-a is

later at 6:00 am and that of IL-6 later at 7:00 am (80). By contrast,

although we have observed a well-marked at-rest peak in IL-6 and

calprotectin at 3:00 pm in children with JIA (31), data on cytokine

circadian rhythm disruption in these disorders are still lacking.

Exercise is a robust zeitgeber of skeletal muscle clocks. It can reset

the molecular circadian clock and effectively improve the negative
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effects of disrupted sleep patterns on circadian rhythm (83). The

phase-shifting effects of exercise on mammalian circadian rhythms

are thought to be mediated in part by serotonin, neuropeptide Y and

melatonin, leading to acute changes in PER1 and PER2 expression

(84). Also, several studies have found that exercise can modulate

circadian rhythms and time-cue peripheral tissues. In the middle of

the active phase, with increased contractile activity and higher

metabolic demands, most circadian muscle genes show peak

expression. In human skeletal muscle, resistance exercise (10 sets of

eight repetitions of isotonic knee extension at 80% of the

predetermined one-repetition maximum) can therefore directly

regulate the circadian clock genes Per2, Cry1 and Bmal1 (84). For

example, BMAL1 expression increase 1.6-fold 4 h after exercise, and

3.5-fold 8 h after an acute aerobic exercise bout of 70 min at 70% of

the VO2max in trained adults (85). On the other hand, exercise

capacity can be modulated by the expression of BMAL1, CRY1 and

PER2, via the regulation of mitochondrial function and the

modulation of lipid and glucose metabolism (68). Of note, Basti
Frontiers in Immunology 05
et al. (86) report that circadian oscillation of exercise performance

seemed dependent in amplitude on BAML1 expression and in phase

on expression of PER2 (86). Finally, in healthy adults, an acute bout of

exercise (maximal progressive exercise on a cycle ergometer) modified

expression patterns of CLOCK and BMAL1 in CD4+ T cells and

cytokine production in a training status-dependent manner (70).

Subjects that participate in regular physical activity presented after the

same acute bout of exercise an improvement in anti-inflammatory

profile, with higher levels of IL-10 and augmented expression of

CRY1 and REV-ERBa, with positive correlation between clock genes

expression in CD4+ T cells and physiological parameters (VO2max

and power) (70). A growing body of evidence points to circadian

clock genes, particularly RORs and REV-ERBs, as promising

therapeutic targets in autoimmune diseases (69). Given that exercise

induces increased expression of REV-ERBs and that REV-ERBa
reduces the production and release of IL-6 and inhibits the

expression of Th17-mediated pro-inflammatory cytokines (69),

exercise is potentially helpful for managing JIA.
A B

FIGURE 1

The circadian clock system, inflammation, and multiple disorders in JIA. (A) Under physiological conditions, the expression levels of the clock genes
undergo circadian oscillation in the central (suprachiasmatic nucleus [SCN]) and peripheral clocks (e.g., brain, muscle, immune cells, etc.), mediated by
transcriptional and translational feedback loops between the CLOCK/BMAL1 transcriptional activator complex and its repressors (PER/CRY, REV-ERBa) or
activators (RORa/b) to drives the expression of multiple clock-controlled genes. A healthy intact clock is necessary for body homeostasis.
Desynchronization between the cellular oscillators in the central clock and those in peripheral clocks results in circadian disruption. Clock misalignments
are therefore detrimental to fitness and perturb metabolic function and the immune system, which can result in chronic health disorders. The disruption
of oscillatory rhythms of clock genes thus perturbs functions of metabolism-related genes controlled by the molecular clock, and dysregulation of
circadian rhythms are involved in the initiation and progress of rheumatic diseases, leading to a vicious cycle of inflammation. (B) Yet the involvement of
circadian rhythm remains barely explored in JIA, we hypothesize that behavioral, endocrine and immune circadian rhythmicity could be altered in young
people with JIA. Possible changes to rhythmicity include loss or gain of rhythmicity, dampening or increase in the amplitude, phase advancement or
delay, and base shift. In JIA, multiple disorders have been described that involve not just joints but many other organs (impaired metabolism, poor quality
of sleep, depressed mood, fatigue, etc.). Physical and mental fatigue are both reinforce by CNS inflammation mediated by pro-inflammatory cytokines
(e.g., TNF-a; IL-1; and IL-6) that affects monoamine neurotransmitter systems resulting in altered cognition, mood and motivation (74–77). The circadian
system allows for adequate partitioning of physiology corresponding with environmental signals coordinating metabolism, immunity, activity, and feeding
behavior with the organism’s environment. Environmental changes (e.g., changes in light exposure and exercise) can affect the rhythmicity of gene
expression under circadian clock control. Overall, there is evidence that exercise is a potential time cue to synchronize rhythms and that it could
maximize therapeutic benefits at specific phases in JIA. Physical activity, through a wide range of factors, including exercise-induced release of anti-
inflammatory cytokines, stress hormones, and hemodynamic effects resulting in cellular reorganization, is known to impact the mechanisms involved in
JIA associated disorders. Holistic coordination of circadian rhythms (sleep-wake cycle, meal timing, and social habits), the therapy schedule, and exercise
could improve sleep quality and alleviate symptoms in patients with JIA. BMAL1, Brain and muscle arnt-like 1; CLOCK, Circadian locomotor output cycles
kaput; CRYs, Cryptochromes; PERs, Periods; REV-ERVs. Nuclear receptors encoded by nuclear receptor subfamily 1, group D (NR1D); RORs, Retinoic
acid receptor-related orphan receptors; RRE, REV-ERB/ROR responsive element.
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Importantly, in typically developing children, maturational

changes lead to a circadian phase delay arising from the circadian

timing system during adolescence. The transition from childhood to

adolescence brings a delay of roughly 2 h in dim-light melatonin onset

(DLMO) (87). This delay might be affected by JIA pathogenesis, but

no study has yet explored this hypothesis. However, some studies

have revealed abnormalities in melatonin secretion in both JIA and

RA (88, 89). The disease activity scores in JIA and erythrocyte

sedimentation rate (ESR) were positively correlated with serum

melatonin levels (88). Here we underline that morning exercise can

mediate a phase shift in rhythms and was effective in bringing forward

the circadian phase in healthy adolescence (90, 91). However, how far

these results can be transposed to young people with JIA needs to be

addressed in future matched case-control studies.
6 Effect of physical activity on
sleep disturbances

We recently made a comprehensive systematic review and meta-

analysis of case-control studies on sleep in JIA. Despite an unchanged

sleep duration, we found evidence that young people with JIA found

more difficulty initiating and maintaining sleep than their healthy

counterparts (92). More importantly, poor sleep quality was found to

potentiate functional disabilities, and to increase fatigue and excessive

daytime sleepiness. The biological mechanisms behind sleep

disturbances in young people with JIA are varied and complex.

Putative contributory factors include chronic subclinical

inflammation, the disease symptoms (e.g., pain and fatigue), and

associated sleep disorders. These detrimental effects could be

implicated in part in the excessive inflammation, and also in

secondary phenomena such as metabolic disturbances and

endocrine dysregulation (93).

Exercise is known to have a beneficial effect on sleep, increasing

both its duration and its quality. There is an extensive literature on

this topic in adults (94, 95). Meta-analyses conducted in the 1990s

concluded that exercise had a positive effect on sleep, albeit small (96,

97). However, we note that many of the studies included in these

meta-analyses were conducted in good sleepers, thus limiting the

potential improvement of sleep through a ceiling effect. The meta-

analysis of Kredlow et al. (95), including 66 studies, 45 of which tested

the effect of acute exercise on sleep, finds that acute exercise has a

small beneficial effect on total sleep duration, time to sleep, sleep

efficiency, stage 1 sleep, slow-wave sleep (SWS), and rapid eye

movement (REM) sleep, along with a moderate decrease in wake

after sleep onset. On the other hand, chronic exercise exerts small-to-

moderate beneficial effects on several sleep outcomes. In particular,

chronic exercise seems to improve sleep initiation and continuity.

Although the positive effect of exercise on sleep is accepted,

characteristics such as intensity, energy expenditure, modality

(endurance, strength), and timing can all play crucial roles in

modulating sleep physiology (95). Other individual characteristics

such as age, physical condition, chronotype, and sleep quality at

baseline may interfere with observed effects (95).

An early study by Dworak et al. (98) showed that high-intensity

acute exercise resulted in higher sleep efficiency, decreased sleep
Frontiers in Immunology 06
latency, a higher proportion of SWS, and less time spent in stage 2

in healthy adolescents (98). Lang et al. (99) confirmed a positive effect

of overall physical activity on sleep during adolescence. The effect of

physical activity on sleep in adolescents remained significant even

after controlling for confounding factors such as psychological

functioning (99). Even so, the authors suggest that the strength of

this relationship is underestimated due to biases related to the limited

reliability and validity of assessment methods. Recent evidence has

continually supported the relevance of exercise intervention on sleep

in pediatric populations with chronic diseases, especially those with

obesity or obstructive sleep apnea (OSA) (100–102). However, fewer

studies have examined the effect of exercise on sleep in JIA. Ward

et al. (103) found that patients with JIA who met the obstructive

apnea hypopnea index (OAHI) clinical criteria for obstructive sleep

apnea (≥ 1.5) had more sleep disturbances, higher fatigue, and lower

quality of life (103). Moreover, recent studies have confirmed that

young people with JIA are at increased risk of developing OSA (104).

Physical activity programs may thus be useful in JIA to mitigate both

sleep disturbances and obstructive sleep apnea.
7 Effect of physical activity on
physical fitness, quality of life,
and mental health

Chronic health disorders are associated with some general or

weakly specific symptoms that affect general condition and help to

account at least in part for a deterioration in quality of life. Among

these general signs are physical deconditioning, fatigue, and pain.

These signs can worsen during “flare-ups” of the disease and/or

through treatment. The process of deconditioning results from the

adaptation of all the body’s systems to a state of lowered activity and

attendant low energy expenditure. It is characterized by a marked

decline in functional abilities and general physical condition, resulting

in a debilitated family and social life, and a decrease in functional

independence, quality of life, and self-esteem (105, 106). We then

observe an increase in fatigue and an alteration in cardiorespiratory

capacity and functional muscle properties. When a chronic disorder

occurs in childhood, the development of physical, metabolic, and

muscular capacities can thus be disturbed by the disease and its

associated treatments, and also by undernutrition, reduced physical

activity, or a sedentary lifestyle. The oldest studies dating from before

2015 report not only a decrease in aerobic and anaerobic capacities

(107–112) and isometric strength (105, 113–115), but also altered

body composition in JIA patients, whose fat mass increased and bone

and lean mass decreased (116, 117). These findings were for both

active and undetected disease, but loss of fitness seemed to correlate

with disease severity (110). More recent studies since biologics have

become available instead show suboptimal muscle strength and bone

mineral density compared to controls, but no differences in

cardiorespiratory fitness or body composition (118, 119). All the

literature on the impact of physical training in children with JIA

report no adverse effect; results are in favor of exercise intervention

with improved quality of life, aerobic capacity (VO2 peak), functional

ability (CHAQ: Childhood Health Assessment Questionnaire),

strength, bone mineral density, and range of motion (109, 120–125).
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The results for pain are controversial or neutral with no effect of

physical activity (126–130). Increased pain can be associated with a

drop in the level of serotonin and norepinephrine, which is also linked

to depression. It is thus commonly observed that patients with JIA

experiencing pain and disability are also predisposed to low mood

and anxiety (131). One quarter of children with JIA report moderate

to severe symptoms of anxiety and depression, associated only with

pain and stress (132, 133). Some evidence suggests that inflammation

is implicated in the neuroimmune cascade resulting in fatigue,

cognitive impairment, and depressive symptoms. JIA patients with

high disease activity are characterized by higher kynurenine/

tryptophan (KYN/TRP) ratios and lower TRP levels, reflecting

increased activity of indoleamine-2,3-dioxygenase (IDO) (134). By

contrast, patients under methotrexate (MTX) show a significant fall

toward more normal values of KYN/TRP ratio (134). IDO levels are

inversely correlated with serotonin levels and lowered serotonin

concentrations and may result in reduced melatonin levels. This

may in part contribute to the sleep disturbance observed in JIA

patients. Consistent with this, sleep quality and depressive symptoms

are improved in adults by infliximab treatment (135). Exercise has an

antidepressant effect not only through the social benefits of group

exercise, but also by improving self-esteem and self-efficacy and

finally by improving the quality of sleep (136). It is accepted that

during adolescence, physical activity and exercise strengthen

individual brain regions and large-scale neural circuits to improve

emotional and behavioral regulation (137). Moreover, at biological

level in response to aerobic exercise, KYN levels in the circulation and

central nervous system can be reduced (138). Furthermore, following
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chronic exercise, IDO activity is decreased, the content of metabolic

product KYN in the TRP/KYN pathway in the brain is reduced, and

the concentration of free TRP is increased, so that it can enter the

brain more easily through the blood-brain barrier and be metabolized

into bioactive compounds such as serotonin and melatonin, which

could decrease depression severity (138).

There is a growing body of literature on the impact of physical

activity on physical fitness. However, the studies are difficult to

compare in terms of the population studied (JIA subtype, treatment

used, and patient age) and the physical training used, which range in

intensity, duration, frequency and modality. Data on the impact of

physical activity on mental health and sleep quality in JIA are lacking.

Further research is needed, paying special attention to the assessment

of physical activity level using both objective and subjective methods,

to measure the impact of physical activity on physical fitness, mental

health, and sleep in patients with JIA.
8 Future directions: Toward an
evidence-based exercise prescription

Overall, evidence suggests that physical activity may be associated

with holistic improvements in JIA patients at physiological,

behavioral, or functional levels (Figure 2). For practitioners, the

question is therefore not whether they should recommend exercise,

but rather what type or mode of exercise it should best be, and how it

should be implemented. Interventions designed to increase overall

physical activity level could also be a promising alternative. Above all,
FIGURE 2

Summarized effects of exercise or physical activity on inflammation, metabolism, circadian rhythms, sleep disturbances, physical fitness, quality of life,
and mental health. A vicious downward spiral emerges in children and adolescents with JIA. Immune system dysregulation leading to systemic pro-
inflammatory cytokines have impact on circadian rhythms. Therefore pain and sleep are impacted. Altered sleep in turn may exacerbate inflammation,
impair pain perception, and body energy restitution function which lead to diurnal fatigue, decreased physical activity level, increased sedentary and
worsening disease activity and symptoms. Consequently, it results in metabolic dysfunction, impaired physical fitness, altered body composition and
lower quality of life and mental health. Physical activity is likely to act positively on inflammation, metabolism, sleep disturbances, the synchronization of
circadian rhythms, mental health, and quality of life. So, increase the level of physical activity and reduce sedentary behaviors in patient with JIA may be
associated with holistic improvements at physiological, behavioral, or functional levels.
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it is clearly advantageous to increase the level of physical activity and

reduce sedentary. Physical activity includes all activities that involve

body movement and are part of playing, walking, working, traveling,

engaging in sports, exercise conditioning or training, and recreational

activities. For better compliance and to reduce sedentary behaviors,

children with JIA must also be offered physical activities compatible

with their symptoms, their lifestyle, and their level of fitness.

Nevertheless, it may well be that the effects of physical activity on

JIA-induced inflammation in the short term are different from those

obtained in the long term. Longitudinal studies of inflammatory

profile evolution in response to physical activity programs are

needed to draw firm conclusions.

More importantly, physical activity characteristics (intensity,

duration, modality, and time of day) may differentially impact

feasibility and benefits. Studies in adults that examined the time-of-

day effect of exercise serum concentrations on IL-6 responses found a

time-of-day adaptation, with a greater increase in concentrations of

IL-6 in evening than in morning exercise (139). Elevation in IL-6

concentration persisted throughout the day after morning exercise, an

outcome likely linked to the circadian rhythm of IL-6 (140). This was

not found after evening exercise because there were no sampling

kinetics during the night. Moreover, sleep loss is associated with next-

day increase in IL-6 and TNF-a, which have been proposed as

mediators of excessive diurnal sleepiness (141). In a study

evaluating the effect of sleep deprivation on the cytokine response

to exercise, it was shown that afternoon exercise-induced IL-6

increased during the 1 h recovery period after exercise was affected

by sleep deprivation at the end of the night (141). However, we note

that chronotype and time to waking are important factors that

influence physiological response to exercise (142), but these data

came from healthy adults and we found no data for children or JIA.

The impact of the timing of exercise in the context of JIA therefore

needs to be further explored. As these children may be taking disease-

modifying antirheumatic drugs (DMARDs, i.e., methotrexate or

TNF-a inhibitor and IL-6 inhibitor) and because pubertal status,

physical training and BMI appear to be factors involved in the impact

of exercise-induced IL-6 release in children (143, 144), it is necessary

to test different exercise modalities (intensity, duration, type) and the

impact of morning or evening practice in this population. Insofar as

some studies suggest that exercise could impact both inflammation

and metabolism differently according to time of practice,

chronoexercise could offer a new path of action in the management

of JIA.

Research agenda

– For a better understanding of the effect of exercise (acute/chronic) on
inflammation, future studies are needed to explore the effect of exercise on
inflammatory markers according to JIA category, disease activity, and treatment.
– Further studies assessing the long-term effect of JIA on metabolic alteration and
comorbidities (risks of obesity, type 2 diabetes, atherosclerosis, and cardiovascular
disease during adulthood) is required. Comparison between participants who meet
physical activity guidelines and those who do not is necessary to assess the
potential protective effect of physical activity on metabolic health in young people
with JIA during adulthood.
– Owing to paucity of evidence, future studies on the circadian rhythms of young
people with JIA compared to their healthy counterparts are needed. Exercise may
offer potential in reestablishing circadian rhythmicity in healthy individuals.

(Continued)
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Research agenda

However, this needs to be explored in young people with JIA.
– The effect of exercise (acute/chronic) on sleep quality, fatigue, mood, and quality
of life in young people with JIA needs to be researched.
– Further research studying the link between inflammation sleep, circadian rhythm,
physical activity and JIA symptoms and functions is needed.

Practical points

– The implementation of interventions increasing total physical activity and
limiting sedentary in young people with JIA are needed.
– Studies exploring the differential effect of exercise characteristics (intensity,
duration, modality, and time of day) are needed to pave the way for evidence-based
exercise prescription in young people with JIA.
– Strategies combining exercise with other therapeutics (chronotherapy, nutrition,
etc.) may potentiate the efficacy of management and care in JIA.
9 Conclusion

Physical activity may offer potential therapeutic benefit in

children with JIA. All together evidences show that exercise is a

potential time cue to synchronize rhythms and that it could maximize

therapeutic benefits at specific phases. Restoration of circadian

misalignment in JIA by physical activity can alleviate inflammation,

improve sleep and relieve disease symptoms. So, it is clearly

advantageous to increase the level of physical activity and reduce

sedentary behaviors. Yet for better compliance, children with JIA

must be offered physical activities compatible with their symptoms,

their lifestyle, and their level of fitness. However, to date the best

physical activity modalities and timing in the treatment schedule to

maximize benefits for quality of life, pain, fatigue, sleep, and

inflammation are yet to be determined.
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