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National Clinical Research Center for Child Health, Hangzhou, China
Spinal cord injury (SCI) and spinal cord tumor are devastating events causing

structural and functional impairment of the spinal cord and resulting in high

morbidity and mortality; these lead to a psychological burden and financial

pressure on the patient. These spinal cord damages likely disrupt sensory,

motor, and autonomic functions. Unfortunately, the optimal treatment of and

spinal cord tumors is limited, and the molecular mechanisms underlying these

disorders are unclear. The role of the inflammasome in neuroinflammation in

diverse diseases is becoming increasingly important. The inflammasome is an

intracellular multiprotein complex and participates in the activation of caspase-1

and the secretion of pro-inflammatory cytokines such as interleukin (IL)-1b and

IL-18. The inflammasome in the spinal cord is involved in the stimulation of

immune-inflammatory responses through the release of pro-inflammatory

cytokines, thereby mediating further spinal cord damage. In this review, we

highlight the role of inflammasomes in SCI and spinal cord tumors. Targeting

inflammasomes is a promising therapeutic strategy for the treatment of SCI and

spinal cord tumors.
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1 Introduction

Spinal cord injury (SCI) is a devastating event that results in the structural and

functional impairment of the spinal cord and may be caused by trauma to or infection or

degeneration of the spinal cord (1). SCI incidence is approximately 13 per 100,000 people

(2). It results in a varying extent of disability, scoping from partial or complete sensory or

motor dysfunction to acute and chronic complications. These complications are

accompanied by neuropathic pain, cardiovascular complexities, impaired pulmonary

function, pressure ulcers, autonomic dysreflexia, or reduced mobility (3, 4), which have

a considerable impact on patients and are an important cause of death after SCI (5).

Current treatments for SCI include surgery, drug therapy, and cell therapy. However, these

strategies can only improve symptoms and mitigate progression but cannot completely

repair the injured spinal cord (6). Thus, SCI can impose a huge psychological and financial
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burden on individuals as well as society. Taken together, it is

necessary to understand the mechanism of SCI and seek an

emerging therapeutic blueprint.

The pathological process after SCI can be mainly divided into

primary injury and secondary injury. Primary spinal cord injury is

caused by the physical injury itself (7), followed by secondary injury

caused by a series of biological events, including inflammation,

ischemia, oxidative stress, axonal degeneration, astrocyte

proliferation, necrosis, apoptosis, and glial scar formation (8).

Although the central nervous system (CNS) possesses an innate

regenerative capacity, the spinal cord has a poor regenerative ability,

which is further complicated by both primary and secondary

injuries during SCI. Moreover, the spinal cord regeneration of

axons is usually decided by many factors, including the intrinsic

growth potential of the CNS neurons, the inhibitory signals

produced from CNS myelin damage, reactive astrogliosis, nerve

growth factor, and neurotrophic factor (9).

Spinal cord tumors are a heterogeneous group of neoplasms

that can be classified into primary and metastatic tumors. Primary

spinal tumors account for only approximately 5%–12% of all

primary CNS tumors (10) and can be classified into intradural,

intramedullary, and extramedullary tumors based on their location.

The spinal cord and spine are the common sites of tumor

metastasis, and symptomatic metastatic epidural spinal cord

compression can occur in 5% to 10% of patients with cancer (11).

Owing to the anatomical site of the midline structure, the swelling

caused by neuroinflammation is often not tolerated and may result

in neurological deficits in both primary and metastatic tumors (12).

SCI and spinal cord tumors are not independent, as spinal tumor-

associated compression causes 10% of new-onset SCI and 26% of

non-traumatic SCI (13). Patients with spinal tumors might present

with acute worsening of neurological function, which often

necessitates prompt surgical decompression. Spinal tumors causing

SCI are particularly challenging to treat; early diagnosis,

multidisciplinary care, and appropriate rehabilitation are necessary

to improve the outcomes and quality of life of these patients (14).

The biological process of an immune response is pivotal to the

progression and recovery of SCI and the development of spinal cord

tumors. Inflammasomes, as innate immune sensors, are

multiprotein complexes that play an essential role in defense

against pathogens and sterile inflammation (15). Inflammasomes

have been demonstrated to be responsible for metabolic diseases,

cardiovascular diseases, and tumors (16). However, the mechanism

of immune response in SCI and spinal cord tumors remains

unclear. This article reviews the mechanism, immune response,

and application of inflammasomes in SCI and spinal cord tumors to

provide novel insights for the treatment.
2 Inflammasome

The inflammasome is a multi-molecular complex consisting of

three units: a sensor, an adaptor molecule called ASC (apoptosis-

associated speck-like protein containing a caspase-activation and

recruitment domain [CARD]), also known as PYCARD, and pro-

caspase-1. Currently, the sensors that have been identified include
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NLR family pyrin domain containing (NLRP)1, NLRP3, and NOD-

like receptor family CARD domain containing 4 (NLRC4)), absent

in melanoma 2 (AIM2) or pyrin (17, 18). In line with the activation

of caspases during the formation of the inflammasome, the

inflammasome can be categorized into two types: classical and

non-classical inflammasomes, depending on whether or not the

inflammation is mediated by the caspase-1 activation (19).

Inflammasome activation is usually triggered by host recognition

of danger-related molecular patterns (DAMPs) or pathogen-related

molecular patterns (PAMPs), which are ligands for the pattern

recognition receptors (PRRs) (20). Before inflammasome activation,

the PAMPs/DAMPs signals first “trigger” the innate immune cells,

transcriptionally upregulating interleukin (IL)-1b and

inflammasome sensor expression. When the triggered cells are

stimulated by additional PAMPs/DAMPs, the inflammasome

complex assembles and initiates a proteolytic cascade, resulting in

the hydrolysis and release of IL-1b and IL-18. Programmed cell

death in inflammatory forms, called pyroptosis, usually occurs.

In the CNS, DAMPs and PAMPs are mainly expressed by

macrophages, astrocytes, and microglia (21). Recognition of

DAMPs and PAMPs can induce the transcription and assembly

of inflammasome proteins, such that the precursor of caspase-1 is

transformed into active caspase-1 via autocatalysis. Activated

caspase-1 regulates the maturation as well as the release of IL-1b,
IL-18, and IL-33 (22). Functionally, IL-1b and IL-18 bind to the

corresponding receptor to exert their biological effects (23, 24),

whereas IL-33 can promote the T-helper 2 (Th2) to release IL-13

and IL-5 (25). In non-classical activation of inflammasomes, the

release of IL-1b is mainly mediated by caspases-4 and 5 (26).

Consequently, the secretion of these cytokines further induces the

cleavage of gasdermin D (GSDMD) and drives the cell toward

pyroptosis (27). Alterations of inflammasome-related pathways

have been associated with the development and progression of

common immune-mediated and neurodegenerative diseases (28),

such as Alzheimer’s disease (29), multiple sclerosis (30), chronic

brain injury (31), stroke (31), epilepsy (32), Parkinson disease (33),

spinal cord diseases (34), and amyotrophic lateral sclerosis (35).

3 Inflammasomes are involved
in inflammation and immune
response after SCI

SCI can disrupt the homeostasis of the spinal cord

microenvironment and result in a series of pathophysiological

alterations. Inflammasomes play an essential role in this

microenvironmental imbalance, including a shift in the

components or their targets, regulation of immune cells, and the

secretion of inflammatory factors, thereby impairing regeneration

and functional recovery (Figure 1).

3.1 The role of inflammasomes

3.1.1 NLRP1 inflammasome
As the first inflammasome in the NLR family to be identified in

detail, the NLRP1 inflammasome comprises ASC, NLRP1, an
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inhibitor of apoptosis protein called X-linked inhibitor of apoptosis

protein (XIAP), caspase-1, and caspase-11 (36). Structurally, the

human NLRP1 protein contains the following protein domains: a

CARD, a function to find domain (FIIND), a nucleotide-binding

domain (NBD), a leucine-rich repeat (LRR) domain, and an N-

terminal PYD (37). NLRP1 inflammasomes have been found in

microglia and motor neurons of the spinal cord (17, 38).

Significantly enhanced NLRP1 and ASC immunoreactivity has

been reported 6 h after moderate experimental cervical SCI,

suggesting that SCI can mediate the upregulation of NLRP1

inflammasome (36). Moreover, co-immunoprecipitation of spinal

cord lysates and preimmunized serum also revealed overexpression

of ASC, NLRP1, and caspase-1 at 24 h after SCI. Interestingly, the

cleavage of XIAP into small fragments produces N-terminal

baculovirus inhibitor of apoptosis repeat (BIR)1 and BIR2
Frontiers in Immunology 03
fragments, which reduce the threshold for caspase-1 activation,

resulting in the secretion of IL-1b and IL-18, and aggravation of SCI

(39). Additionally, XIAP also mediates innate immune signaling in

a receptor interaction protein 2 (RIP2)-dependent manner (40).

Vaccari et al. also reported that NLRP1, caspase-1, and ASC levels

were elevated after SCI (41).

3.1.2 NLRP2 inflammasome
The NLRP2 inflammasome consists of NLRP2, ASC, and

caspase-1, and was discovered in human astrocytes (42). The

NLRP2 inflammasome in astrocytes can interact with the P2X7

receptor as well as pannexin-1, which is a transmembrane channel-

forming glycoprotein (43). The P2X7 receptor allows the

transmembrane fluxes of Ca2+ and causes cellular death and

necrosis in neurodegenerative diseases (44). Pannexin-1
FIGURE 1

The role of inflammasome in inflammation and immune response after spinal cord injury. The activation of inflammasome is usually launched by host
recognition of danger-related molecular patterns (DAMPs) or pathogen-related molecular pattern (PAMPs), which are considered as ligands for the
pattern recognition receptors (PRRs). The recognition of DAMPs and PAMPs can induce the transcription and assembly of inflammasome genes, and the
precursor of caspase-1 is transformed into active caspase-1 via autocatalysis, thereby resulting in the hydrolysis and release of IL-1b and IL-18, ultimately
exacerbating the inflammatory response.
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participates in intracellular Ca2+ overload during SCI by

accelerating extracellular Ca2+ influx, thereby promoting

apoptosis of spinal cord neurons (45).

3.1.3 NLRP3 inflammasome
NLRP3, an intracellular receptor, is found in neurons,

microglia, and astrocytes (46). NLRP3 becomes activated in

response to DAMPs and PAMPs and forms an inflammasome

complex with ASC and caspase-1, which subsequently induces the

activation and secretion of proinflammatory cytokines (47). The

synthesis and activation of the NLRP3 inflammasome usually

involve two procedures. First, the initiation of original signaling is

triggered by the toll-like receptor/nuclear factor (NF)-kB pathway,

increasing inflammasome transcription and promoting

posttranslational modifications; this enables the regulation of the

expression of NLRP3 inflammasome complexes and the precursors

of IL-1b as well as IL-18 under inflammatory situation (48).

Consistent with this phenomenon, Ni et al. found a high

expression of toll-like receptor 4 and an increase in NF-kB DNA-

binding activity at 72 h after SCI (49). The second signal exhibits

far-ranging responses to various stimuli, involving the assembly and

activation of inflammasome as well as the processing of IL (50).

Further, asbestos, extracellular ATP, monosodium urate crystals,

the bacterial pore-forming toxin nebramycin, and cholesterol

crystals are all known as NLRP3 irritants (51). Huang et al. found

that extracellular vesicles derived from epidural fat-mesenchymal

stem cells improved neurological functional recovery after SCI,

partly by inhibiting the activation of NLRP3 inflammasome (52).

Hu et al. demonstrated that NLRP3-related inflammation in motor

neurons was induced by microglial activation in the motor cortex,

which impaired motor function recovery after SCI. Minocycline

inhibited microglia activation, thus reducing NLRP3-related

inflammation and promoting functional recovery after SCI (53).

More recently, an increasing number of chemicals and molecules,

such as trehalose (54), cannabinoid receptor-2 (55), zinc (56),

melatonin (57), and dopamine (58), have been found to improve

functional recovery after SCI by targeting NLRP3 inflammasome

directly or indirectly.

3.1.4 AIM2 inflammasome
AIM2, a cytoplasmic double-stranded DNA (dsDNA) sensor,

belongs to the hematopoietic interferon-induced nuclear 200

(HIN200) family; it contributes to the downstream signaling of

ASC, which is responsive to the presence of bacterial as well as viral

DNA (59). In the normal spinal cord, AIM2 is mainly observed in

astrocytes, neurons, and oligodendrocytes (60). AIM2 is also found

in activated microglia or macrophages and infiltrated leukocytes

during SCI. Moreover, AIM2 can distinguish the DNA released

from damaged cells, thereby triggering programmed cell death (61).
3.2 The role of immune cells: Microglia,
macrophages, neutrophils, and astrocytes

In the CNS, microglia are the main resident macrophages,

which play an important role in the process of secondary injury
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after SCI, especially by regulating the release of proinflammatory

cytokines and chemokines (62). The number of activated microglia

was shown to increase on the first day after SCI, which then

continued to increase for 7 days until the number of cells

stabilized between 2 and 4 weeks (63). In the early stages of SCI,

activated microglia release trophic factors that promote axonal

growth and regeneration at the lesion site and play a

neuroprotective role by limiting lesion site enlargement (64).

However, activated microglia can also induce peripheral

circulating macrophages to infiltrate the injury site and express

several pro-inflammatory cytokines such as IL-1a, IL-1b, and
tumor necrosis factor-alpha (TNF-a) to mediate the

inflammatory response (65). Both macrophages and microglia

exert polarized capability with two major phenotypes, M1 and

M2 (65). M1-like cells are classically activated and resemble

activated microglia by exerting proinflammatory and destructive

effects and producing several proinflammatory cytokines (65).

Conversely, alternatively activated M2-like cells have strong

protective effects that can promote tissue remodeling, wound

healing, and angiogenesis. The microenvironment after SCI is

detrimental to M2 macrophages, and the overexpression of

TNF can inhibit the conversion of M1 to M2 (66). The ratio of

M1 to M2 reflects the proportional balance in the spinal cord

microenvironment; a disequilibrium in this proportion causes the

release of proinflammatory cytokines, including IL-1b, IL-6, and
TNF-a. The interplay between inflammasomes and microglia or

macrophages has been described by several studies. Zendedel et al.

found that ASC, the inflammasome adaptor protein, was

predominantly expressed in microglia after SCI (46). Hu et al.

demonstrated that microglial activation triggered NLRP3-related

inflammation in the motor cortex after SCI (53). Liu et al. found

that oxidation protein products, which served as biomarkers of

oxidative stress-triggered inflammatory response after SCI,

participated in NLRP3-mediated pyroptosis (67). AIM2 exerts

regulatory effects in microglia, which is associated with the

development of autoimmune encephalomyelitis in a mouse model

(68), indicating that an interplay between AIM2 and microglia may

also exist in SCI.

Neutrophils are one of the first immune cells entering the

injured site after SCI (69). Infiltrating neutrophils cause damage

to the blood-spinal barrier (BBB) and induce the release of many

inflammatory factors, triggering a cascade of inflammatory effects

(69). Various studies have shown that neuroprotective molecules

can protect spinal cord tissue by inhibiting inflammasome activity,

which is accompanied by reduced infiltration of neutrophils.

OLT1177, a selective inhibitor of the NLRP3 inflammasome,

reduced the infiltration of neutrophils and showed a protective

role in SCI (70). Similar effects and mechanisms have also been

observed for BAY 11-7082 or A438079 (71), topotecan (72), P2X4

receptors (73), asiatic acid (74), and polyphenols (75).

After SCI onset, astrocytes infiltrate the injured tissue, secrete

several inflammatory factors, and promote fibrosis (76). Mi et al.

found that silencing heat shock protein family A member 8 reduced

SCI-caused damage by blocking astrocyte activation and lowing

NLRP3 levels; knockdown of this protein protected astrocytes from

oxygen and glucose deprivation/reoxygenation-induced injury via
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the blockade of NF-kB and NLRP3 inflammasome activation (77).

ASC-dependent inflammasome formation, especially in resident

cells of the spinal cord, including astrocytes, plays a pivotal role in

the progression of secondary damage (78). Extracellular vesicles

derived from the mesenchymal stem cells have the potential to

regulate inflammasome activity after SCI. Moreover, extracellular

vesicles stimulate neural progenitor cells and modulate astrocyte

activity (79). Oligodendrocyte progenitor cells have significantly

higher levels of inflammasome proteins than astrocytes, which may

be associated with their high death rates after SCI (80).
3.3 The role of pro-inflammatory or
anti-inflammatory cytokines

Cytokines, which can be classified as proinflammatory or anti-

inflammatory mediators, are involved in neuroinflammation (81).

Various cytokines such as IL-1, IL-6, TNF-a, and leukocyte

inhibitory factors are associated with alterations in the

microenvironment in SCI (82). When in low concentrations,

several proinflammatory cytokines display protective effects by

inducing the expression of neurotrophics (83); however, at higher

concentrations, these cytokines also mediate the overexpression of

neurotoxic genes, such as inducible nitric oxide synthase,

proinflammatory proteases, and cyclooxygenase 2 (84). Moreover,

IL-1 overexpression in the spinal cord facilitates vascular

permeability and lymphocyte recruitment. Additionally, IL-6

promotes the infiltration and activation of macrophages and

microglia (85). High levels of TNF-a are found in neurons, glial

cells, and endothelial cells after SCI (86). TNF-a can enlist

neutrophils to the lesions by inducing adhesion molecules such as

intercellular adhesion molecule-1 and vascular cell adhesion

protein-1 (87). Subsequently, the permeability of endothelial cells

is altered, thereby leading to the disorder of the blood-spinal cord

barrier (88). Moreover, TNF-a can induce the death of

oligodendrocytes and cause demyelination (89). Generally, CNS

cells maintain low IL-1b levels in the brain and spinal cord that are

regulated by preassembled inflammasomes (90). Recently, it was

shown that expression of NLRP3 inflammasome components

increased in the spinal cord tissue of the mouse model of

amyotrophic lateral sclerosis and induced superoxide dismutase

1-mediated microglial IL-1b (35).
4 The role of inflammasomes in
spinal cord tumor

Aberrant activation of the inflammasomes and concurrent

overexpression of their effector molecules have been observed in

several malignancies (91). Inflammation is a hallmark of

neurodegenerative diseases and central nervous tumors (92). SCI

results in persistent inflammatory changes, which suggests that SCI

may be a risk factor for central nervous tumors, especially spinal

cord tumors. Therefore, in this review, we also summarized the
Frontiers in Immunology 05
research achievements regarding the role of inflammasomes in

spinal cord tumors.
4.1 Tumorigenesis

A common feature of all cancers is their ability to continuously

self-proliferate, which is primarily stimulated by inflammation-

driven mechanisms (93). The release of proinflammatory

cytokines, such as IL-1b and IL-18, may induce cell proliferation

in a paracrine and autocrine manner during acute and chronic

inflammation (94, 95). NLRP3 inflammasomes have also been

reported to inhibit the function of natural killer cells in the

control of carcinogenesis and metastasis (96). In addition, the

NLRP3 inflammasome exerts a critical effect on tumorigenesis

and may provide prognostic markers and promising therapeutic

targets in patients with cancer (97). In the CNS, malignant glioma is

the most common primary brain tumor with a poor prognosis. The

NLRP3 inflammasome in glioma is also constitutively activated in

glioblastoma multiforme cells (98). However, the underlying

mechanism of the NLRP3 inflammasome in spinal cord

tumorigenesis has not been fully elucidated. Further research is

needed to understand the properties of the inflammasome and

explore its therapeutic potential in spinal cord tumors. In addition

to cytokine maturation, another consequence of inflammasome

activation is the cleavage of GSDMD; the cleaved GSDMD forms

membrane pores that lead to cytokine release and culminate in cell

lysis (99). The exact relevance and function of pyroptosis executor

GSDMD during tumorigenesis remain unclear. How these different

signals are distributed in different tumor environments and

ultimately integrated into different cell types requires further

investigation (100).
4.2 Metastasis and angiogenesis

Tumor metastasis is an elusive process involving a series of

successive events, from the spread of tumor cells from the primary

lesion to the development of metastatic foci in distant organs (101).

The environment of the distant metastatic target organs experiences

reprogramming, primarily through the recruitment of immune

cells, in favor of tumor growth. Notably, NLRP3 promotes

epithelial–mesenchymal transition by enhancing transforming

growth factor-b1 (TGF-b1) signaling and activating small mother

against decapentaplegic (SMAD) (102, 103). Angiogenesis, a

gradual process of the formation of new capillaries and blood

vessels arising from pre-existing vascularity, is necessary for

tumor progression (104). It is tightly modulated by multiple pro-

and anti-angiogenic factors. Inflammasome complexes contribute

to the regulation of angiogenesis in different tissues. IL-1b,
produced by tumor cells, induces pro-angiogenic factors. IL-1b
mediates the upregulation of hypoxia-inducing factor-1a to

stimulate the overexpression of vascular endothelial growth factor

(105). Notwithstanding these studies demonstrating the angiogenic

function of IL-1b, further exploration is necessary to distinguish
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how different inflammasome complexes modulate the IIL-1b to

regulate angiogenesis in tumors.
4.3 Immunosuppression

In response to the invading tumor cells, the immune system

initiates a powerful anti-tumor reaction, and inflammatory cells

flood the tumor microenvironment (TME) (106). However, cancer

cells use several mechanisms to evade the immune system’s

surveillance. The release of IL-1b as well as IL-18, is a universally

acknowledged process for the immunosuppressive TME during the

development of multiple tumors (107, 108). Bone marrow-derived

suppressor cells (MDSCs) are crucial components of TME and

demonstrate robust immunosuppressive activity (109). NLRP3 is

crucial for accumulating MDSCs in tumors and inhibiting the anti-

tumor effect of T cells. Moreover, NLRP1 inflammasome promotes

the secretion of IL-18 in myeloma, thus resulting in accelerated

progression (110).

In summary, the occurrence of tumor is the result of multiple

factors, and long-term exposure to the inflammatory

microenvironment will increases the risk of tumor development.

As an important component of inflammatory response,

inflammasome also involve in the occurrence and development of

spinal cord tumors, as well as induce the formation of tumor blood

vessels, thereby involving in metastasis. Furthermore,

inflammasome may prompt the immunosuppression of TME

during the development of spinal cord tumors. Although the role

of inflammasome in tumors has received considerable attention,

studies in spinal cord tumors are still rare. Therefore, further

researches focus on the underlying mechanism of inflammasome

in spinal cord tumor are quite necessary.
5 Inhibiting the inflammasome
pathways

As mentioned above, the inflammasomes exert a pivotal effect

on SCI. Although there are currently no approved inflammasome

suppressor drugs for the treatment of SCI, many therapies are in

development and show great promise (Table 1).
5.1 NLRP3 inflammasome inhibition

Methylene blue alleviates neuroinflammation post-SCI by

inhibiting the activation of the NLRP3 inflammasome in microglia

(111). Polydatin, a glycoside of resveratrol, can reduce the activation

of the NLRP3 inflammasome and then relieve microglial

inflammation, which has a neuroprotective effect on SCI (112).

Wogonoside has antioxidant, anti-inflammatory, anti-allergic, and

anti-tumor properties (113). Echinoside accelerates the recovery of

motor function in rats after SCI by inhibiting the NLRP3

inflammasome (114). Oral glycyrrhizin inhibits NLRP3

inflammasome activation and promotes microglial M2 polarization
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after a traumatic SC (115). Paeonol may alleviate SCI by regulating

the NLRP3 inflammasome and pyroptosis, which is a feasible clinical

treatment for SCI (116). Ulinastatin significantly improves

neurological function after SCI by regulating the AMP-activated

protein kinase/NLRP3 inflammasome signaling pathway (117).

MCC950, a small-molecule inhibitor of NLRP3, directly interacts

with the Walker B motif within the nucleotide-binding NACHT

domain in NLRP3, thereby impeding ATP hydrolysis and inhibiting

the synthesis of NLRP3 inflammasome (118, 119). Furthermore, 3,4-

methylenedioxy-b-nitrostyrene can block NLRP3-mediated ASC

spot formation and oligomerization, but not NLRP3 agonist-

induced potassium efflux (120). OLT1177, an orally active

b-sulfonyl butyryl molecule, suppresses NLRP3 inflammasome

activation. Notably, nanomolar concentrations of OLT1177 can

inhibit the secretion of IL-1b and IL-18 following classical and

atypical activation of NLRP3 inflammasome in vitro (121). Bigford

et al. demonstrated that NLRP3 inflammasome was activated in

adipose tissue and pancreas in a chronic SCI mouse model (127).

Jiang et al. found that topoisomerase 1 inhibition prevented NLRP3

inflammasome activation and pyroptosis to improve recovery after

SCI (128). Antioxidants improved peripheral neuropathy in a tumor-

bearing mouse model by regulating spinal cord oxidative stress and

inflammation (129). Compared with NLRP3, other inflammasomes

have been less studied. Vaccari et al. showed that NLRP1

inflammasome proteins presented in the cerebrospinal fluid of

patients with SCI and traumatic brain injury (41). Yutaka et al.

found an increased expression level of NLRP2 inflammasome in the

dorsal root ganglion, which was associated with inflammatory pain

hypersensitivity (130).
5.2 Cytokine inhibition

Production of proinflammatory cytokines such as IL-1b is a

pivotal step in the development and progression of various

neurological diseases. TNF-a-stimulated gene 6 has been

demonstrated to be a promising immunomodulatory target in

neurodegenerative diseases (131). In terms of SCI, IL-1b has been

proposed as a therapeutic target. In 2020, Tang et al. found that

binding of a secretory leukocyte protease inhibitor to the promoter

region of TNF-a and IL-8 inhibited the NF-kB signaling pathway,

which exerts anti-inflammatory and anti-bacterial effects and

promotes recovery after SCI (132). TNF is another pivotal

cytokine released after SCI onset, as increased TNF expression

has been demonstrated throughout the acute and chronic stages of

SCI in the resident cells of spinal tissue. TNF inhibitors, such as

adalimumab, infliximab, and etanercept, promoted functional

recovery after SCI (122). Yuan et al. found that curcumin

inhibited a novel cytokine signaling pathway (TGF-b-SOX9) and
improved recovery after SCI (123).
5.3 Caspase-1 inhibition

Previous studies have demonstrated that the absence of caspase-

1 can alleviate neuroinflammation and neuronal damage during
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TABLE 1 Potential therapeutic agents on inflammasome after spinal cord injury.

Targets Therapeutic
agents Outcome Mechanism

Does and/or
time points of
treatment

Experimental
animal Reference

NLRP3
inflammasome
inhibition

Methylene blue

Partially inhibit
neuronal apoptosis
and improve motor

function.

Inhibit the protein levels of IL-1b, IL-18
and NLRP3 inflammasome associated
with down-regulation of intracellular
reactive oxygen species, decreased

leukocyte infiltration.

2 mg or 4 mg/kg
body weight, 15
minutes before
SCI and 3 hours

after SCI

Sprague-
Dawleyrat

(111)

Polydatin
Relieve microglial
inflammation.

Inhibit iNOS and NLRP3 inflammasome.

20 or 40 mg/kg
body weight, 30
minutes after the

SCI

Sprague-Dawley
rat

(112)

Wogonoside
Alleviate

neuroinflammation.

Alleviate NF-kB and NLRP3
overexpression and increase the activation

of IkB.

12, 25 or 50 mg/
kg for 10 days

Sprague-
Dawleyrat

(113)

Echinoside
Reduce neuron loss
and improve spinal
cord structure.

Reduce ROS level, improve the
mitochondrial membrane potential, block

activation of NF-kB, and inhibit the
NLRP3 inflammasome signaling pathway.

20 mg/kg daily
until sacrifice

Sprague-
Dawleyrat

(114)

Glycyrrhizin
Functional

improvement.
Inhibit NLRP3 inflammasome and
promote microglial M2 polarization.

10 g glycyrrhizin
given immediately

after SCI and
every 12 h for 3

days

Sprague-
Dawleyrat

(115)

Paeonol

Promote the recovery
of motor function and
spinal cord structure,
reduce spinal cord

edema.

Reduce the levels of ASC, NLRP3, N-
GSDMD, repress the contents of IL-1b,
IL-18, TNF-a and malondialdehyde, and

elevate GSH level.

60 mg/kg daily
until sacrifice

Sprague Dawley
rat

(116)

Ulinastatin

Relieve spinal cord
edema, ameliorate

neurological function
and architecture.

Inhibit NLRP3 inflammasome. 50,000 U/kg daily
Sprague-Dawley

rat
(117)

MCC950
Alleviate

neuroinflammation.
Inhibit NLRP3 inflammasome. – – (118, 119)

3,4-
methylenedioxy-
b-nitrostyrene

Alleviate
neuroinflammation.

Inhibit NLRP3 inflammasome. – – (120)

OLT1177
Inhibit

neuroinflammation
and improve function

Inhibit NLRP3 inflammasome, reduce IL-
1b and IL-18 release.

– – (121)

Cytokine
inhibition

Adalimumab,
infliximab,
etanercept

Anti-inflammatory
and anti-bacterial

effects and promotes
recovery after SCI

Inhibit the TNF signaling pathways – – (122)

Curcumin neuronal regeneration
inhibiting the expression of NF-kB and

TGF-b-SOX9
– – (123)

Caspase-1
inhibition

VX-740
Inhibit inflammatory

response.
Inhibit caspases-1 – – (124, 125)

VX-765
Inhibit inflammatory

response.
Inhibit caspases-1

100 mg/kg,
immediately after
SCI and continued
once daily for 7

days

C57BL/6 mice (124–126)
F
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SCI, which implicates the potential significance of caspase-1

inhibitors as a therapeutic target. Pralnacasan (VX-740) and its

analog VX-765 are peptide-like caspase-1 inhibitors that act by

covalent modification of the catalytic site of caspase-1, thereby

suppressing the activation of caspase-1 and the subsequent cleavage

of the precursors of IL-1b and IL-18 (124, 125). Chen et al.

demonstrated that VX-765 reduced neuroinflammation in an SCI

mouse model by inhibiting caspase-1/IL-1b/IL-18 (126).
6 Perspectives

Aberrantly-activated inflammasomes are involved in SCI and

the development of spinal cord tumors; this process depends on

several factors, such as the expression patterns and effector

molecules of inflammasomes and the profile and composition of

the spinal cord microenvironment. However, the current research

on inflammasomes in SCI and spinal cord tumors is still scarce,

with many unresolved questions, including (1) how is the

inflammasome activated in SCI and spinal cord tumors?, (2) what

are the effects of the other signaling molecules on the

inflammasome and what is the significance of their interaction in

the development of SCI and spinal cord tumors?, (3) what is the

effect of inflammasome activation in different cell types post-SCI

and on the progression of spinal cord tumors?, and (4) what are the

effects of each inflammasome pathway on host immunity and

immunotherapy? The role of inflammasome-related immune

response is less studied, which may be partly due to the difficulty

in creating an accurate animal model. With the development of

current biotechniques, new models like organoids may be applied to

investigate the detailed mechanism in SCI and spinal cord tumors.
Frontiers in Immunology 08
In this review, we highlight the role of inflammasomes and their

effector molecules in SCI and spinal cord tumors. Targeting

inflammasomes and effector molecules is expected to bring new

hope for treating SCI and spinal cord tumors, which needs to be

systematically and comprehensively studied.
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Glossary

NLR nucleotide-binding domain and leucine-rich repeats

AIM2 absent in melanoma 2

ASC apoptosis-associated speck-like protein containing a CARD

CARD caspase activation and recruitment domain

PYD pyrin domain

IFI16 IFN-g-inducible protein 16

DAMPs danger-related molecular patterns

PAMPs pathogen-related molecular patterns

PRRs pattern recognition receptors

IL-1b interleukin-1b

Th2 T-helper 2

GSDMD gasdermin D

XIAP X-linked inhibitor of apoptosis protein

FIIND function to find

NBD nucleotide-binding domain

LRR leucine-rich repeat

BIR baculovirus inhibition repeat

RIP2 receptors interaction protein 2

TLR toll-like receptors

NF nuclear factor

dsDNA double-stranded DNA

TNF-a tumor necrosis factor alpha

LIF leukocyte inhibitory factor

iNOS inducible nitric oxide synthase

COX-2 cyclooxygenase 2

ECs endothelial cells

ICAM-1 intercellular adhesion molecule

VCAM-1 vascular cell adhesion protein

GBM glioblastoma multiforme

EMT epithelial–mesenchymal transition

TGF-b1 transforming growth factor-b1

SMAD small mothers against decapentaplegic

HIF-1a hypoxia-inducing factor-1a

VEGF vascular endothelial growth factor

TME tumor microenvironment

MDSCs derived suppressor cells.
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