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Background: The dysfunction of immune system and inflammation contribute to

the Parkinson’s disease (PD) pathogenesis. Cytokines, oxidative stress, neurotoxin

andmetabolism associated enzymes participate in neuroinflammation in PD and the

genes involved in them have been reported to be associated with the risk of PD. In

our study, we performed a quantitative and causal analysis of the relationship

between inflammatory genes and PD risk.

Methods: Standard process was performed for quantitative analysis. Allele model

(AM) was used as primary outcome analysis and dominant model (DM) and

recessive model (RM) were applied to do the secondary analysis. Then, for those

genes significantly associated with the risk of PD, we used the published GWAS

summary statistics for Mendelian Randomization (MR) to test the causal analysis

between them.

Results:We included 36 variants in 18 genes for final pooled analysis. As a result,

IL-6 rs1800795, TNF-a rs1799964, PON1 rs854560, CYP2D6 rs3892097, HLA-

DRB rs660895, BST1 rs11931532, CCDC62 rs12817488 polymorphisms were

associated with the risk of PD statistically with the ORs ranged from 0.66 to

3.19 while variants in IL-1a, IL-1b, IL-10, MnSOD, NFE2L2, CYP2E1, NOS1, NAT2,

ABCB1, HFE andMTHFR were not related to the risk of PD. Besides, we observed

that increasing ADP-ribosyl cyclase (coded by BST1) had causal effect on higher

PD risk (OR[95%CI] =1.16[1.10-1.22]) while PON1(coded by PON1) shown

probably protective effect on PD risk (OR[95%CI] =0.81[0.66-0.99]).

Conclusion: Several polymorphisms from inflammatory genes of IL-6, TNF-a,
PON1, CYP2D6, HLA-DRB, BST1, CCDC62 were statistically associated with the

susceptibility of PD, and with evidence of causal relationships for ADP-ribosyl

cyclase and PON1 on PD risk, which may help understand the mechanisms and

pathways underlying PD pathogenesis.
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1 Introduction

Parkinson’s disease (PD) is one of the most common

neurodegenerative diseases, the main risk factors for which are

genetic background, environmental variables, aging, and their

interactions (1). Its typical pathological changes include the

formation of a-synuclein (a-syn) positive inclusion bodies in

neurons and axons (Lewy bodies and Lewy neurites) and the loss

of dopaminergic neurons (1). Resting tremor, stiffness,

bradykinesia, and other clinical symptoms of PD are brought on

by the increasing weakening of dopaminergic neurons in the

substantia nigra (2). Currently, a great amount of clinical and

genetic evidences has revealed that inflammation and immune

system malfunction are related to the development of PD (3, 4).

According to some theories, both central and peripheral

inflammation begin to manifest in the prodromal stage of PD and

remain as the condition worsens (4). The origin of inflammation

arises from the central nervous system (CNS), where resting

microglia are activated by a-syn, triggering an inflammatory

cascade response that leads to the death of dopaminergic neurons

(3, 5). Particularly, the activated microglia can release pro-

inflammatory cytokines such as interleukins (ILs) and tumor

necrosis factor-a (TNF-a), which eventually produce damage to

dopaminergic neurons (6, 7). To make matters worse, immune cells

from the peripheral circulation infiltrate the brain parenchyma

through the compromised blood-brain barrier (BBB) and trigger

immune responses via several pathways (8–10). Meanwhile, higher

levels of inflammatory factors released by immune cells, such as IL-

6, IL-1b, and TNF-a are also found in peripheral blood of PD

patients, indicating the occurrence of peripheral inflammation (11,

12). However, it is important to note that the activation of

peripheral inflammatory is nonspecific and can be evaluated

using some generalized markers like neutrophil-to-lymphocyte

ratio (NLR) and platelet-to-lymphocyte ratio (PLR) (13). The

discordant central inflammatory response is enhanced

concurrently with peripheral immune system activation, which

may be a factor exacerbating the neurodegeneration (4).

Besides, autoimmunity and the impairment in resolving

inflammation also participate in the PD-related inflammation

response and promote the development of PD (10, 14, 15). There

are a high number of infiltrating T cells in the ventral midbrain of PD

patients, which are autoreactive and can recognize disease-altered

self-proteins (e.g., a-syn) as foreign antigens through

histocompatibility complex (MHC) molecules and drive helper and

cytotoxic T cell responses (10, 15). The alleles and haplotypes of

MHC class II genes, likeHLA-DRB, has been extensively studied in its

association with the risk of PD (8, 16, 17). Physiologically, a carefully

regulated immune network is involved in mitigating the progression

of inflammation to reduce the tissue damage it causes (14, 18). The

balance between effector T cells and regulatory T cells in circulation

and some specialized pro-resolving lipid mediators in CNS contribute

to the resolution of neuroinflammation and the maintenance of

immune homeostasis (18, 19). Accelerating the resolution of early

neuroinflammation induced by a-syn could prevent the damage of

dopaminergic neurons and the onset of PD (20).
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Furthermore, due to mitochondrial dysfunction, inflammation can

also be triggered by oxidative stress, which is a significant factor in

neurodegeneration (21). Oxidative stress and inflammation interact to

produce excitotoxicity, neuronal degeneration, and axonal damage, all

of which are eventually significant contributors to the development of

PD (22). Studies have shown that Nrf2, nitric oxide synthase (NOS),

manganese superoxide dismutase (MnSOD), cytochrome P450s

(CYPs), hemochromatosis (HFE) and methylenetetrahydrofolate

reductase (MTHFR) participate in the development and progress of

PD through pathways related to the oxidative stress, including

mitochondrial dysfunction, DNA damage, nerve cell apoptosis, and

neuroinflammation (23–27).

Overall, the innate and adaptive immune systems play critical

roles in the neuroinflammatory process in PD, including oxidative

stress, activation and infiltration of immune cells, and the

production of inflammatory mediators (3, 21, 28). Single

nucleotide polymorphisms (SNPs) of immunological and

inflammatory genes can influence the risk of PD by influencing

the immune system and inflammatory response since PD is directly

tied to genetics. Genetic factors in PD converge on immune

function and inflammation through the activation of immune

cells and the release of inflammatory mediators (29). Changes in

the inflammatory genes may make a person more vulnerable to the

formation of oxidative stress and the activation of the

neuroimmune system, both of which can result in the death of

dopaminergic neurons (30, 31). Researches on inflammatory

polymorphic locus identified by genome-wide association studies

(GWAS) study have also exemplified the significance of

neuroinflammation in the pathogenesis of PD (32, 33).

Although previous studies have shown a close relationship

between inflammation and PD, few studies have investigated the

causality between them. Mendelian Randomization (MR) is a

reliable genetic epidemiology method, which uses genetic variants

as instrumental variable (IV) to assure whether causality exists

between exposure and outcome, maybe a powerful tool to explore

the causality between inflammation and PD (34). Bottigliengo D

et al. investigated the causal role of inflammation on PD by

conducting MR analysis (35). They included C-reactive protein

(CRP), IL-6, IL-1 receptor antagonist and TNF-a in a two-sample

MR analysis and suggested the pro-inflammatory activity of IL-6

could be a determinant of prodromal PD. Nevertheless, other than

this study, no other articles have been reported on the causal

relationship between inflammation and PD.

Therefore, to reach a comprehensive and updated conclusion,

we performed a quantitative and causal analysis to explore the

role of inflammatory genes in PD risk in order to bring new

understanding of the mechanisms and pathways underlying PD

pathogenesis and may provide the theoretical basis for finding the

potential biomarkers and implementing anti-inflammatory and

immunological treatment in PD. In addition to the genes

included in the existing studies, we collected the original

researches related to inflammation-related genes and PD as

much as possible. Based on the function of genes, we divided

them into five groups: genes of cytokines, genes involved in the

oxidative stress, genes of neurotoxin-associated enzymes, genes
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of metabol ism-associated enzymes and inflammatory

polymorphic locus identified by GWAS study (Figure 1). Our

study would be an important supplement on the topic of PD’s

genetic susceptibility and also provide idea related to its

mechanism and treatment.
2 Methods

2.1 Quantitative analysis of associations
between inflammatory genes and PD

2.1.1 Literature searching
Researchers independently retrieved and screened literature, and

the inconsistent views were discussed with the third party. Key words

were “Parkinson’s disease”, “Parkinso*”, “variants”, “genetic”,

“specific genes” (TNF-a, IL-6, IL-1a, IL-1b, IL-10, NOS1, MnSOD,

NFE2L2, CYP2D6, PON1, CYP2E1, NAT2, ABCB1, BST1, HLA-DRB,

CCDC62, HFE, MTHFR involved in five different inflammation-

related group (genes of cytokines, genes involved in the oxidative

stress, genes of neurotoxin-associated enzymes, genes of metabolism-

associated enzymes and inflammatory polymorphic locus identified

by GWAS study) in PD). The detailed searching strategy was listed in

Supplementary Table 1.
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2.1.2 Inclusion and exclusion criteria
Inclusion criteria using PICOS (participants, interventions,

comparators, outcomes, and studies approach) were applied to

screen articles:

Participants: the PD diagnosis from each researched cohort was

according to widely accepted criteria (36, 37).

Interventions: genetic sequencing of variants in inflammation-

related genes of interest were performed by PCR-based methods or

other accepted methods;

Controls: controls were neither having PD nor other

neurological diseases.

Outcomes: available data to calculate the number of carriers and

non-carriers of the gene variants.

Studies approach: original studies provided sufficient data to do

pooled analysis.

Exclusion criteria including: 1) neurological diseases not PD or

without control groups; 2) not original studies including editorial,

review, systematic review etc.; 3) functional studies using animal or

cell models; 4) studies not having sufficient data to calculate odd

ratio (OR) and 95% confidence interval (CI) in all models.

2.1.3 Data extraction and quality control
Then, authors independently extracted the detailed

information from the included studies. The data extraction table
FIGURE 1

The genes, variants, and data analysis models included in the quantitative analysis. Eighteen genes with 36 variants from five different functional
types were included in this study. We used allele model (AM), dominant model (DM), and recessive model (RM) for quantitative analysis and the
variants in bold indicated p<0.05 in either model.
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were as follows: first author, publication year, ethnics, number of

allele carriers in cases or controls, number of cases, number of

controls, number of genotype carriers in cases, number of

genotypes in controls. The Newcastle-Ottawa Scale (NOS)

scores were used to evaluate the quality of the included articles.

If there was any disagreement on data extraction, a third

researcher was asked to make a decision.

2.1.4 Statistics analysis for quantitative analysis
Revman 5.3 software was used to calculate pooled OR and

95%CI. Three models were applied to do the association

analyses: allele model (AM, indicated “a” distribution between

case group and control group), dominant model (DM, indicated

“aa + Aa” distribution between case group and control group),

and recessive model (RM, indicated “aa” distribution between

case group and control group). “A” represented wild type allele,

“a” represented mutated allele. P <0.05 was considered

statistically significant.

The I2 and Q test were performed to analyze the heterogeneity.

If I2> 50, the random-effect model was used, otherwise if I2 ≤ 50, the

fix-effect model was applied. The publication bias was measured by

the symmetry of funnel plot. If the plot was in a symmetrical shape,

no publication bias was shown. Otherwise, publication bias was

observed. Sensitivity analysis was performed by sequentially

removing one article at a time.
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2.2 Mendelian randomization analysis
investigating causal relationship

2.2.1 Study design for causal analysis
For the genes with statistically significant results in the

quantitative analysis, we further explored the causality between

proteins they encode and the risk of PD by conducting a two-

sample MR analysis. After searching the GWAS data of the included

genes, we evaluated the causal associations between corresponding

proteins [ADP-ribosyl cyclase (coded by BST1) and PON1 (coded

by PON1)] and PD in two directions (Figure 2).

2.2.2 GWAS data sources
We used a published GWAS summary statistics from

International Parkinson Disease Genomics Consortium (IPDGC)

Study that contained 482,730 individuals with 37,688 PD from

Europe (38). ADP-ribosyl cyclase GWAS summary statistics were

obtained from a German cohort included 997 European (39). In this

study, the plasma ADP-ribosyl cyclase levels of participants were

quantified by proteomics measurements using the SOMAscan

platform. Besides, we also include the PON1 GWAS summary

statistics from the Milieu Intérieur cohort which contained 400

participants from Europe (40). The level of PON1 in plasm were

quantified by protein immunoassay. The specific information was

summarized in Table 1.
A

B

FIGURE 2

The design of Mendelian Randomization (MR) analysis to assess causality between PD and proteins coded by inflammatory genes. (A) SNPs
independently associated with ADP-ribosyl cyclase (coded by BST1) and PON1(coded by PON1) from GWAS summary statistic were used as
instrumental variables to explore the causal effect of ADP-ribosyl cyclase and PON1 on PD. (B) SNPs independently associated with PD from GWAS
summary statistic were used as instrumental variables to explore the causal effect of PD on ADP-ribosyl cyclase and PON1 respectively. In addition
to the association assumption, another two assumptions of MR include: (1) SNPs are not associated with the confounders of exposure and outcome;
(2) there is no feasible pathway between the genetic variations and outcome other than through exposure.
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2.2.3 Selection of instrument variable
There are three assumptions for instrumental variable (IV)

selection in two-sample MR analysis: (1) the selected genetic

variants are associated with the exposure; (2) the used IV variants

are not associated with the confounders of exposure and outcome;

(3) there is no feasible pathway between the genetic variations and

outcome other than through exposure (41). In detail, when using

ADP-ribosyl cyclase, PON1 and PD as exposure, we selected

associated variants with p < 5 × 10−8 (38–40). Then, the

independently associated variants were included as IV with the

criteria of r2 < 0.1 within distance of 1000kb.

2.2.4 Mendelian Randomization analysis
We used the method of inverse-variance weighting (IVW) (42)

and Mendelian randomization-pleiotropy residual sum and outlier

(MR-PRESSO) (43) as the primary outcomes that assumed that all

SNPs are valid instrument variables. In sensitivity analyses, we used

MR Egger (44) and Weighted median (45) to correct for any

potential violations of the assumptions. These methods are

performed as they operate in different ways and rely on different

assumptions for valid inferences to assess the reliability of MR

analysis. Besides, heterogeneity was analyzed by Cochran’s Q-test of

IVW and MR Egger, and pleiotropy was tested by the intercept of
Frontiers in Immunology 05
MR Egger analysis. When heterogeneity was detected for associated

relationships, we used the RadialMR package to remove outliers and

applied above analysis again (46).
3 Results

3.1 Quantitative analysis of polymorphisms
in inflammation related genes and PD risk

As can be seen from the flowchart (Figure 1 and Supplementary

Figure 1), articles were retrieved for each research gene separately

using three databases (PubMed, Embase and Web of Science

database). By removing overlapping articles, reading title/abstract

and full-text screening. Final original articles were included for

pooled analysis by different genes separately. The detailed

information of included original articles and genotypes

distributions were presented in Table 2 and Supplementary

Tables 2, 3. Thirty-six variants in 18 genes associated with

inflammatory mechanisms in PD were involved. The results of

quantitative analysis were presented in Table 3. The functions of

these genes were classified by five groups: genes of cytokines, genes

involved in the oxidative stress, genes of neurotoxin-associated
TABLE 1 Summary of genome-wide association study (GWAS) datasets for MR analysis.

Protein/Disease Gene Population Sources Ref Sample size

ADP-ribosyl cyclase BST1 European a German cohort (39) 997

PON1 PON1 European the Milieu Intérieur cohort (40) 400

Parkinson’s disease / European IPDGC (38) 482730
The International Parkinson Disease Genomics Consortium, IPDGC.
TABLE 2 The characteristics of all included publications for quantitative analysis.

Year First author Ref Region/
Country Number of cases/controls Included genes NOS

East Asian

2020 Chang, K. H. (16) China 486/473 HLA-DRB1 8

2016 Gui, Y. (47) China 765*/489* NFE2L2 7

2016 Liu, Z. (48) China 460/473 IL-10 7

2015 Chang, K. H. (49) China 596/597 BST1 7

2015 Guo, J. F. (50) China 1061*/1066* BST1 9

2015 Yu, R. L. (51) China 507/518 CCDC62 9

2014 Chen, M. L. (52) China 468/487 BST1 7

2014 Liao, Q. (53) China 765/717 MTHFR 9

2014 Liu, R. R. (54) China 341/423 CCDC62 8

2013 Chen, Y. C. (55) China 480/526 NFE2L2 6

2013 Kiyohara, C. (56) Japan 238/368 MDR1/ABCB1 7

(Continued)
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TABLE 2 Continued

Year First author Ref Region/
Country Number of cases/controls Included genes NOS

2013 Li, N. N. (57) China 783*/725* CCDC62 8

2013 Nie, K. (58) China 302/294 IL-10 7

2012 Li, D. (59) China 355/200 IL-10 6

2012 Miyake, Y. (60) Japan 229/357 BST1 9

2011 Fong, C. S. (61) China 211/218 MTHFR 9

2011 Chang, X. L. (62) China 636*/510* BST1 8

2010 Wang, V. C. (63) China 295/111 MnSOD 9

2009 Yuan, R. Y. (64) China 76/110 MTHFR 8

2008 Zhou, Y. T. (65) China 533/530 IL-1a 6

2007 Wu, Y. R (1). (66) China 493/388 IL-1a, IL-1b 8

2007 Wu, Y. R (2). (67) China 369/326 TNF-a 6

2005 Fong, C. S. (68) China 125/162 PON1 6

2005 Nishimura, M. (69) Japan 361/257 IL-1b 5

2005 Tan, E. K. (70) China 185/206 MDR1/ABCB1 8

2002 Wu, R. M. (71) China 234/251 CYP2E1 9

2001 Nishimura, M. (72) Japan 172/157 TNF-a 6

2001 Woo, S. I. (73) Korea 93/122 CYP2D6 9

2000 Nishimura, M. (74) Japan 122*/112 IL-1a, IL-1b 6

2000 Wang, J (1). (75) China 180/180 PON1 7

2000 Wang, J (2). (76) China 150/150 CYP2E1 7

2000 Yasui, K. (77) Japan 90/50* MTHFR 7

1998 Kondo, I. (78) Japan 166*/252 PON1 6

European Caucasian/West Asian

2019 Mota, A. (32) Iran 70/75 PON1 6

2017 Chuang, Y. H. (i) (79) Denmark 1547/1595 HLA-DRB1 7

2017 Ran, C. (80) Sweden 501*/509* NFE2L2 8

2016 Gupta, S. P. (81) India 89/332 NOS1 9

2016 Paul, K. C. (82) America 357*/495* NOS1 8

2016 Zahra, C. (83) Malta 178*/402* MTHFR 7

2015 Todorovic, M. (84) Australia 1338*/1379* NFE2L2 8

2014 Kumudini, N. (85) India 151/416 MTHFR 8

2013 Lee, P. C. (86) America 287*/440* PON1 8

2012 Belin, A. C. (87) Sweden 512*/550* PON1 6

2012 San Luciano, M. (88) America 381/521* IL-6 7

2011 Punia, S. (89) India 487/474 PON1 6

2010 Manthripragada, A. D. (i) (90) America 282/290 PON1 8

2010 Singh, M. (91) India 77/125 CYP2D6, NAT2 8

2010 von Otter, M. (i) (92) Sweden 165*/190* NFE2L2 6

(Continued)
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TABLE 2 Continued

Year First author Ref Region/
Country Number of cases/controls Included genes NOS

2010 von Otter, M. (ii) (92) Poland 192*/192* NFE2L2 6

2009 Camicioli, R. M. (93) Canada 51*/50* MTHFR 8

2009 Funke, C. (94) Germany 300/302* MDR1/ABCB1 6

2009 Westerlund, M. (95) Sweden 288*/313* MDR1/ABCB1 8

2009 Zschiedrich, K. (i) (96) Germany 265/123 MDR1/ABCB1 8

2009 Zschiedrich, K. (ii) (96) Serbia 42/61 MDR1/ABCB1 8

2008 Bialecka, M. (97) Poland 316/300 IL-10 8

2008 Halling, J. (98) Denmark 79/153 HFE, CYP2D6 7

2008 Singh, M. (99) India 70/100 MnSOD, CYP2E1 8

2007 Aamodt, A. H. (100) Norway 388/505 HFE 6

2007 Bialecka, M. (101) Poland 341/315 IL-10 9

2007 Wahner, A. D. (102) America 289/269 IL-1b, TNF-a 8

2006 Guerreiro, R. J. (103) Portugal 132/115 HFE 7

2006 Religa, D. (104) Poland 114/100 MTHFR 9

2006 Todorovic, Z. (105) Serbia and Montenegro 113/53 MTHFR 9

2005 Hakansson, A. (1) (106) Sweden 265*/308* IL-10 6

2005 Hakansson, A. (2) (107) Sweden 265*/308 IL-6 6

2005 Wullner, U. (108) UK 342/342 MTHFR 8

2004 Clarimon, J. (109) Finland 144*/135* PON1 7

2004 Hague, S. (110) Finland 147*/137* NOS1 6

2004 Moller, J. C. (111) Germany 176/170 IL-1a 6

2004 Ross, O. A. (112) Ireland 90/93 IL-6, TNF-a 6

2004 Tan, E. K. (113) Poland 158/139 MDR1/ABCB1 7

2003 Dekker, M. C. (114) Netherlands 197/2914 HFE 6

2003 Drozdzik, M. (115) Poland 107/103 MDR1/ABCB1 8

2003 Kelada, S. N. (116) America 150*/244* PON1 6

2002 Buchanan, D. D. (117) Australia 438/485 HFE 9

2002 Carmine, A. (118) Sweden 114*/127* PON1 6

2002 Mattila, K. M. (119) Finland 52/73 IL-1a, IL-1b 8

2002 McGeer, P. L. (120) Canada 100/100 IL-1a, IL-1b 6

2002 Schulte, T. (121) Germany 295*/270* IL-1a, IL-1b 6

2001 Akhmedova, S. N. (122) Russia 117/207 PON1 7

2001 Dodel, R. C. (123) Germany 201/197 IL-1a 7

2001 Payami, H. (124) America 576/247 CYP2D6 8

2000 Kruger, R. (125) Germany 264*/183* TNF-a 7

2000 Taylor, M. C. (126) Australia 92/122 PON1 7

1999 Akhmedova, S. (127) Russia 121/117 PON1 8

1999 Atkinson, A. (128) UK 33/75 CYP2D6 8

(Continued)
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enzymes, genes of metabolism-associated enzymes and

inflammatory polymorphic locus identified by GWAS study.

3.1.1 Genes of cytokines
Seven variants in five genes (TNF-a, IL-6, IL-1a, IL-1b, IL-

10) were included in the pooled analysis. In the results of DM
Frontiers in Immunology 08
and RM models, rs1799964 of TNF-a (RM: OR[95%CI] = 3.19

[1.66,6.13], p=0.0005) polymorphism was positively associated

with PD risk. In contrary, rs1800795 of IL-6 (DM: OR[95%CI] =

0.66 [0.55, 0.79], p<0.00001) polymorphism was negatively

associated with PD risk. About variants in IL-1a (rs1800587),

IL-1b(rs16944), IL-10 (rs1800871, rs1800896), all three models
TABLE 2 Continued

Year First author Ref Region/
Country Number of cases/controls Included genes NOS

1999 Grasbon-Frodl, E. M. (129) Germany 44/42 MnSOD 6

1999 Nicholl, D. J. (130) UK 206*/206* CYP2D6, NAT2 9

1996 Diederich, N. (131) Germany 80/108* CYP2D6 9

1994 Plante-Bordeneuve, V. (132) UK and Ireland 48/88 CYP2D6 8

1993 Kurth, M. C. (133) America 50/110 CYP2D6 7

Latino

2018 Agliardi, C. (134) Italy 354/443 TNF-a 8

2017 Chuang, Y. H. (ii) (79) France 509/1128 HLA-DRB1 7

2016 Mariani, S. (135) Italy 92*/112* HFE 7

2015 Narayan, S. (136) France 286*/580* MDR1/ABCB1 6

2013 Mariani, S. (137) Italy 78*/139 HFE 9

2012 Ahmed, I. (138) France 499/1122 HLA-DRB1 8

2012 Gorgone, G. (139) Italy 60/82 MTHFR 8

2011 Greco, V. (140) Italy 181/180 HFE 7

2011 Pascale, E. (141) Italy 146/156 IL-1b, IL-10, TNF-a 7

2010 Dutheil, F. (142) France 207/482 MDR1/ABCB1 6

2009 Rodriguez-Oroz, M. C. (143) Spain 89*/30* MTHFR 7

2008 Infante, J. (144) Spain 197*/173* IL-1a, IL-6, IL-10, TNF-a 8

2007 Caccamo, D. (145) Italy 49/86 MTHFR 8

2007 Huerta, C. (146) Spain 450/200 NOS1 7

2006 Borlak, J. (147) Italy 124/243 NAT2 9

2004 Elbaz, A. (148) France 190/419 CYP2D6 7

2003 Levecque, C. (149) France 209/488 NOS1 7

2002 Borie, C. (150) France 216*/193* HFE 6

2002 Furuno, T. (151) Italy 95/106 MDR1/ABCB1 9

1996 Bordet, R. (152) France 105/105 CYP2D6 7

1996 Lucotte, G. (153) France 47/47 CYP2D6 8

Mixed (exclude Caucasion)

2010 Manthripragada, A. D. (ii) (90) America 351/363 PON1 8

1996 Gasser, T. (154) America 115/73 CYP2D6 7

1995 Chen, X. (155) America 28*/212* CYP2D6 7
frontier
* represents the number of case/control in pool analysis is different from which is written in the original article due to censoring or data unavailable. (1), (2) represent different articles with the
same publication year and first authors. (i), (ii), (iii) represent different cohorts from the same paper. The classification of ethnicity depends on the original description in each article primarily. If
race description lacking, the classification would depend on its region. “East Asian” refers to residents from China, Japan, Korea or Singapore. “European Caucasian/West Asian” refers to
residents from Europe, America, India, north and west part of Africa and other Caucasus region. “Latino” refers to Latino, Portuguese, Spanish, Italian, French and Spanish-or- Portuguese
-spoken residents from Latin.
sin.org

https://doi.org/10.3389/fimmu.2023.1119315
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yi et al. 10.3389/fimmu.2023.1119315
TABLE 3 The results of quantitative analysis for the association between included variants and the risk of PD in different models.

Gene Variant Sample size#
Allele OR [95%CI]

Ref/Alt Allele model Dominant model Recessive model

Genes of cytokines

TNF-a rs1800629 6/1485/1464 G/A 1.12 [0.96, 1.30] 1.11 [0.94, 1.31] 1.33 [0.83, 2.13]

rs1799964 3/735/653 T/C 1.24 [0.85, 1.79] 1.10 [0.70,1.72] 3.19 [1.66,6.13]***

IL-1a rs1800587 9/2129/2000 C/T 1.03[0.91,1.16] 1.01 [0.88, 1.16] 1.17 [0.84, 1.64]

IL-1b rs16944 8/1857/1622 C/T 1.05 [0.85, 1.31] 1.06 [0.84, 1.33] 1.16 [0.77, 1.74]

IL-6 rs1800795 4/924/1093 G/C 0.82 [0.63, 1.06] 0.66 [0.55, 0.79]**** 0.85 [0.55, 1.30]

IL-10 rs1800896 6/1557/1540 A/G 1.00 [0.90, 1.11] 1.04 [0.88, 1.23] 0.94 [0.78, 1.14]

rs1800871 4/1472/1288 C/A 1.10 [0.98, 1.24] 1.07 [0.89, 1.29] 1.18 [0.98, 1.42]

Genes involved in the oxidative stress

NOS1 rs2682826 5/1246/1606 C/T 1.11 [0.89,1.38] 1.11 [0.86,1.45] 1.23 [0.92,1.66]

rs1060826 3/949/764 G/A 1.07 [0.86,1.34] 1.14 [0.94,1.40] 1.02 [0.53, 1.96]

MnSOD rs4880 3/409/253 T/C 1.14 [0.86, 1.53] 1.08 [0.71, 1.64] 1.52 [0.82, 2.82]

NFE2L2 rs6706649 4/2048/1869 G/A 1.02 [0.88, 1.19] 0.99 [0.84, 1.17] 1.44 [0.82, 2.52]

rs6721961 4/2076/1873 C/A 1.02[0.91,1.14] 1.01 [0.88,1.16] 1.04 [0.79,1.35]

rs35652124 4/2076/1868 A/G 1.03 [0.93, 1.13] 0.99 [0.81,1.21] 1.10 [0.92,1.31]

rs2706110 3/2399/2191 G/A 1.06 [0.87, 1.30] 1.08 [0.83, 1.41] 0.99 [0.76, 1.30]

rs10183914 3/2405/2210 G/A 0.95 [0.87, 1.04] 0.95 [0.85, 1.07] 0.91 [0.76, 1.08]

rs1806649 3/2412/2199 G/A 0.92 [0.77, 1.11] 0.94 [0.83, 1.07] 0.90 [0.56, 1.46]

rs2001350 3/2141/2207 A/G 1.06[0.92,1.23] 1.09[0.83,1.43] 1.27[0.67,2.42]

Genes of neurotoxin-associated enzymes

CYP2D6 rs3892097 14/1727/2087 G/A 1.14 [1.00, 1.29]* 1.29 [1.02, 1.63]* 1.06 [0.78, 1.44]

A2637 5/485/598 A/- 1.12 [0.58, 2.16] 1.12 [0.58, 2.18] NA

PON1 rs705379 3/908/1158 C/T 0.96 [0.85,1.08] 0.97 [0.80,1.18] 0.92 [0.75,1.12]

rs854560 11/2781/3176 T/A 1.20 [1.10, 1.30]*** 1.21 [1.08, 1.35]*** 1.37 [1.15, 1.62]***

rs662 10/2205/2538 A/G 1.01 [0.92, 1.10] 0.99 [0.88,1.12] 1.05 [0.88,1.24]

CYP2E1 rs2031920 3/454/501 C/T 1.13 [0.89, 1.44] 1.14 [0.86, 1.52] 1.31 [0.62, 2.76]

NAT2 rs1799929 3/406/573 C/T 0.96 [0.80, 1.16] 1.03 [0.79, 1.36] 0.84 [0.59, 1.18]

rs1799930 3/405/573 G/A 1.02 [0.80, 1.30] 1.02 [0.75, 1.37] 1.06 [0.61, 1.83]

MDR1/
ABCB1

rs1128503 4/918/918 C/T 0.98 [0.86, 1.12] 1.11 [0.91, 1.36] 0.84 [0.59, 1.19]

rs1045642 10/2159/2753 C/T 1.06 [0.97, 1.15] 1.04 [0.91, 1.19] 1.12 [0.98, 1.28]

rs2032582 7/1499/2091 T/G(A) 0.96 [0.87, 1.06] 0.99 [0.83, 1.17] 0.93 [0.80, 1.07]

Genes of metabolism-associated enzymes

HFE rs1800562 9/1644/4654 G/A 0.89 [0.73, 1.08] 0.88[0.72, 1.08] 0.93 [0.35, 2.51]

rs1799945 8/1217/4151 C/G 1.03 [0.89, 1.19] 1.02 [0.87, 1.21] 1.18 [0.70, 1.99]

MTHFR rs1801133 13/2250/2565 C/T 1.11 [0.93, 1.34] 1.15 [0.90, 1.47] 1.02 [0.85, 1.23]

rs1801131 4/550/527 A/C 1.05 [0.75, 1.47] 0.97 [0.76, 1.23] 0.77 [0.51, 1.14]

(Continued)
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(AM, DM, RM) showed these variants were not associated with

the risk of PD.

3.1.2 Genes involved in the oxidative stress
Ten variants in three genes (NOS1, MnSOD, NFE2L2) were

included for quantitative analysis. We failed to identify the

association between NFE2L2 rs6706649, rs6721961, rs35652124,

rs2706110, rs10183914, rs1806649, rs2001350, NOS1 rs2682826,

rs1060826, MnSOD rs4880 and PD risk in all three models (AM,

DM, RM).

3.1.3 Genes of neurotoxin-associated enzymes
Eleven variants in five genes (CYP2D6, PON1, CYP2E1, NAT2,

ABCB1/MDR) were included in the AM for quantitative analysis.

CYP2D6 rs3892097 (OR[95%CI] =1.14[1.00-1.29], p=0.04) variant

was positively associated with PD risk on 1727 PD cases and 2087

controls. PON1 rs854560 (OR[95%CI] =1.20 [1.10, 1.30], p<0.0001)

variant was also positively associated with PD risk in AM on 2781

PD cases and 3176 controls.

In the secondary analysis, by including 2781 PD cases and 3176

controls in DM and RM, PON1 rs854560 variant was positively

associated with PD risks (DM: OR[95%CI] =1.21 [1.08-1.35],

p=0.0007; RM: OR[95%CI] =1.37[1.15-1.62], p= 0.0003). The

significant result was also replicated by DM in CYP2D6 variant

rs3892097 (OR[95%CI] =1.29[1.02-1.63], p=0.04). Variant in

CYP2E1 (rs2031920) was not associated with PD risk. Variants in

NAT2 (rs1799929, rs1799930) or ABCB1 (rs1128503, rs1045642,

rs2032582) were not associated with PD risk either.

3.1.4 Genes of metabolism-associated enzymes
Four variants in two genes (HFE, MTHFR) were included for

quantitative analysis. We failed to identify the association between

HFE rs1800562, rs1799945, MTHFR rs1801133, rs1801131 and PD

risk in all three models (AM, DM, RM).

3.1.5 Inflammatory polymorphic locus identified
by GWAS study

We included four variants in three genes (BST1, HLA-DRB,

CCDC62) in the pooled analysis. BST1 rs11931532 was negatively

related to PD risk in pooled analysis on 1868 PD patients and 3782

controls (AM: OR[95%CI] =0.90[0.82-0.99], p=0.02). In the further
Frontiers in Immunology 10
analysis, the significant results were also presented in RM about

BST1 rs11931532 (OR[95%CI] =0.82[0.70-0.96], p=0.01). By

including 3041 PD cases and 4318 controls, we found that HLA-

DRB rs660895 was associated with PD risk negatively in all models

(AM: OR[95%CI] = 0.80 [0.74, 0.87], p <0.00001; DM: OR[95%CI]

= 0.79 [0.71, 0.87], p<0.00001; RM: OR[95%CI]=0.67[0.52-0.86],

p=0.002). CCDC62 rs12817488 was also associated with decreased

PD risk in quantitative analysis on 1608 PD cases and 1649 controls

in all models (AM: OR[95%CI] = 0.80 [0.73, 0.89], p <0.0001; DM :

OR[95%CI]=0.77[0.66-0.89], p=0.0005; RM OR[95%CI]=0.74

[0.62-0.87], p=0.0003).
3.1.6 Statistical sensitivity and bias analysis
Funnel plots of almost all quantitative analysis were symmetric,

indicating that there was no publication bias (Supplementary

Figures 2, 3). We conducted the sensitivity analysis by comparing

the changes in pooled p value, OR and 95%CI after deleting each

article at a time in turn (Supplementary Table 4). After removing

Ross, O. A. et al. (112) in IL-6 rs1800795, Hague, S. et al. (110) in

NOS1 rs1060826, Todorovic, M. et al. (84) in NFE2L2 rs2001350 or

Funke, C. et al. (94) in MDR1 rs1128503, the pooled p value or OR

changed significantly. This could be due to large or small sample

sizes, or differences in genotype distribution on account of ethnicity

and region compared with other studies.
3.2 Mendelian randomization analysis for
causal analysis

3.2.1 Causal association between ADP-ribosyl
cyclase (BST1) and PD

When using ADP-ribosyl cyclase (coded by BST1) as exposure

and PD as outcome, the primary outcome of IVWmodel showed that

an increased level of ADP-ribosyl cyclase was causally associated with

the higher risk of PD (OR[95%CI] = 1.08 [1.01, 1.16], p =0.02)

(Figure 3A). The result was almost significant in MR-PRESSO model

(OR[95%CI] = 1.08 [1.01, 1.16], p =0.07) (Figure 3A). The results of

MR Egger and Weighted median were shown in Supplementary

Table 5. Since there were high heterogeneity for above analysis

(Supplementary Table 6), we identified and removed those outliers

of SNPs. We confirmed that there was no obvious heterogeneity in all
TABLE 3 Continued

Gene Variant Sample size#
Allele OR [95%CI]

Ref/Alt Allele model Dominant model Recessive model

Inflammatory polymorphic locus identified by genome-wide association studies (GWAS) study

BST1 rs11724635 3/1293/1441 C/A 1.07 [0.96, 1.20] 1.08 [0.92, 1.27] 1.12 [0.92, 1.37]

rs11931532 3/1868/3782 T/C 0.90 [0.82, 0.99]* 0.91 [0.78, 1.06] 0.82 [0.70, 0.96]*

HLA-DRB1 rs660895 3/3041/4318 A/G 0.80 [0.74, 0.87]**** 0.79 [0.71, 0.87]**** 0.67 [0.52, 0.86]**

CCDC62 rs12817488 3/1608/1649 A/G 0.80 [0.73, 0.89]*** 0.77 [0.66, 0.89]*** 0.74 [0.62, 0.87]***
# Number of articles/patients/controls included for quantitative analysis. The Allele (Ref/Alt) represents refer allele and alter allele, respectively. OR[95%CI] represents the odd ratios with 95%
confidence interval. The values of OR [95%CI] in bold indicate statistically significant. The */**/***/**** represents the significant variants with p< 0.05, p<0.01, p<0.001, p<0.00001, respectively.
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models (Supplementary Table 6). And the causality become stronger

in both IVW (OR[95%CI] = 1.16 [1.10, 1.22], p =1.64×10-7] and MR-

PRESSO (OR[95%CI] = 1.16 [1.14, 1.17], p =1.73×10-3]

models (Figure 3A).

Reversely, when using PD as exposure and ADP-ribosyl cyclase

as outcome, the results of all analysis models showed no significant

association between them (Figure 3B and Supplementary Table 5).

And there was no evidence of heterogeneity in all models

(Supplementary Table 6).
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3.2.2 Causal association between PON1(PON1)
and PD

When using PON1 (coded by PON1) as exposure and PD as

outcome, the primary outcome of IVWmodel showed that the higher

risk of PD was significantly associated with a decreased level of

PON1, which indicated PON1 probably had protective effect on PD

risk (OR[95%CI] = 0.81 [0.66, 0.99], p =0.04) (Figure 3C). But the

causality was weaker in MR-PRESSO model (OR[95%CI] = 0.81

[0.66, 0.99], p =0.11) (Figure 3C). There was no evidence of
A

B

D

C

FIGURE 3

The results of the causal effects between ADP-ribosyl cyclase, PON1 and Parkinson’s disease by Mendelian Randomization analysis (A) The causal
effect of ADP-ribosyl cyclase on PD. (B) The causal effect of PD on ADP-ribosyl cyclase. (C) The causal effect of PON1 on PD. (D) The causal effect
of PD on PON1.. 95% confidence interval, 95% CI; inverse-variance weighted, IVW; Mendelian randomization-pleiotropy residual sum and outlier,
MR-PRESSO; Parkinson’s disease, PD. Circulars illustrate the results from primary instrumental variables (IVs) and triangles mean the results from
outliers removed IVs.
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heterogeneity in the IVW and MR-PRESSO analysis (Supplementary

Table 6). The results of MR Egger andWeighted median were shown

in Supplementary Table 5.

When we did the reverse analysis, we did not find any significant

causality in all the models (Figure 3D and Supplementary Table 5).

None of the models showed evidence of heterogeneity

(Supplementary Table 6).
4 Discussion

The immune system’s dysregulation and inflammatory

reactions are now more clearly linked to PD (30). However, due

to their reliance on a small number of genes, restricted areas, or

territories, and potential for analytical bias, the existing association

studies are not sufficiently thorough. After a combination of

quantitative analysis and two-sample MR analysis, we found that

TNF-a rs1799964, PON1 rs854560 and CYP2D6 rs3892097 were

associated with the higher risk of PD while IL-6 rs1800795, HLA-

DRB rs660895, BST1 rs11931532 and CCDC62 rs12817488 were

related to the lower risk of PD. Besides, we observed that increased

plasma level of ADP-ribosyl cyclase (coded by BST1) had causal

effect on higher PD risk while PON1(coded by PON1) shown

probably protective effect on PD risk. This study may help us to

have a deeper understanding of the relationship between the

inflammatory variations and PD, and potentially identify

biomarkers and create anti-inflammatory and immunological

therapy options for PD.

Our study is the most thorough one to date when compared to

quantitative analyses on inflammatory genetic variations associated

to PD. ZS Ulhaq conducted a meta-analysis in 2020 to clarify the

relationship between inflammatory genes and PD. It discovered that

while variations in IL-1b, TNF-a were not connected with PD risk,

variations in IL-1a, IL-6, IL-8, IL-10, and IL-18 were associated

(156). However, we came to the conclusion that TNF-a was linked

to an elevated risk of PD from our research. Although these findings

were different from what ZS Ulhaq had previously stated, our study

included the most recent original publications. Besides, genes of

oxidative stress, neurotoxic and metabolism-related enzymes, and

inflammatory polymorphism loci discovered by GWAS studies

have also been extensively studied in the past and have been

shown to impact the risk of PD. These genes were also included

in our study. Further, for the genes with statistically significant

results in the quantitative analysis, we explore the causality between

proteins they encode and the risk of PD by conducting a two-

sample MR analysis.

Regarding genes of cytokine specifically, several studies have

noted higher levels of TNF-a, ILs, and other pro-inflammatory

cytokines are presented in the peripheral blood, cerebrospinal fluid

(CSF) of patients with PD and in the striatum of post-mortem

brains from patients with PD (157–159).The inflammatory genes

encoding these molecules have also been widely studies, though the

results might be inconsistent. The gene set-association analysis did

not reveal the association between TNF-a, IL-6, IL-8 etc. and PD

(144). But Chu et al. considered TNF-a rs1799964, IL-6 rs1800795

and IL-1RA VNTR were shown to be associated with PD risk (160).
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Our study is a thorough update and addition to the prior studies

because it used bigger cohorts. We discovered a favorable

correlation between PD and a TNF- a rs1799964. The variation

may alter the expression of TNF-a or have an impact on other genes

associated with inflammation, contributing to the pathophysiology

of PD (161, 162). We also found IL-6 rs1800795 G>C decreased the

PD risk, which may lower the level of IL-6 in serum (163). A MR

analysis study also demonstrated that the pro-inflammatory activity

of the IL-6 could be a determinant of prodromal PD (35).

In addition, PD pathogenesis is highly related to oxidative

stress, which can promote the dysfunction of immune system and

inflammatory response in turn (23). By altering the detoxification of

neurotoxins in PD, metabolizing enzymes such CYPs (CYP2D6,

CYP2E1) and paraoxonase (PON1) may impact the likelihood of

developing PD. These enzymes’ activity and sensitivity to oxidative

damage are strongly related (32, 164). In our quantitative analysis,

PON1 rs854560 was positively associated with PD risks in all three

models (AM, DM and RM), which was inconsistent with the

conclusion of previous meta-analysis conducted by Liu Y. et al.

(165). Compared with Liu Y. et al., we included more studies to

reach a more reliable conclusion. Besides, we also found CYP2D6

rs3892097 significantly increased the risk of PD, which was

consistent with previous meta-analysis conducted by Lu Y. et al.

(166). CYP2D6 can catalyze the metabolism of MPTP to toxic 1-

methyl-4-phenylpyridinium ion (MPP(+)), which lead to oxidative

damage of dopaminergic neurons (167, 168). CYP2D6 rs3892097

may affect the occurrence of PD by changing the metabolic activity

of CYP2D6. GWAS has shown that genes including BST1, HLA-

DQB1 etc. involved in the “regulation of leucocyte/lymphocyte

activity” and “cytokine-mediated signaling” are associated with

PD risk (33). HLA-DRA and HLA-DRB alleles encode HLA-DR

antigen, acting as regulatory molecule involved in autoimmunity

(169). HLA-DRB variants differ in affinity with a-syn antigen

epitopes, which influence antigen recognition and subsequent

immune response (10). Patients with PD also have a higher

expression of MHC class II molecules in peripheral blood

mononuclear cells, which is consistent with the inflammatory

pattern of PD (170). Therefore, variants in HLA-DRB could alter

the risk of PD by regulating the expression of HLA-DRB or its

response to a-syn (10, 15). CCDC62/HIP1R loci were identified by

the first large-scale meta-analysis of published GWAS in PD (57).

These researches are consistent with our research results that the

variants in BST1, HLA-DRB, CCDC62 were correlated with PD risk.

Further, we conducted a two-sample MR analysis to investigate

the causality between proteins coded by inflammatory genes and the

risk of PD and we found increased plasma level of ADP-ribosyl

cyclase had causal effect on higher PD risk while PON1 shown

probably protective effect on PD risk. Cyclic ADP-ribose (cADPR)

is a signal transduction molecule downstream of the dopamine

receptors, which is synthesized from b-NAD+ by both cytosolic and

membrane-bound forms of ADP-ribosyl cyclase and/or CD38 (171,

172). Higashida, H. et al. indicated that cADPR, as an endogenous

inhibitor of mTOR signaling pathway, reduced downstream protein

synthesis and thus affected synaptic plasticity of neurons (173). The

dysregulation of dopaminergic system is associated with a variety of

neurological and psychiatric disorders, including PD (174).
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Increased ADP-ribosyl cyclase may lead to the disturbance of

dopaminergic system by inhibiting mTOR signaling pathway,

thus promoting the occurrence of PD. PON1 is an esterase

carried by high-density lipoproteins and has antioxidant and anti-

inflammatory effects (175). Its detoxification activity is considered

to be an important link between environmental exposure to

pesticides or pollutants and the risk of neurodegenerative diseases

since it is able to hydrolyze active metabolites of organophosphate

insecticides (176). The mutation at PON1 rs854560 reduced the

scavenging activity of lipoprotein free radicals, which may lead to

neuronal damage (176). Thus, a decrease in plasma PON1 level

would reduce the capacity of antioxidant and anti-inflammatory

and increase the risk of PD. Reversely, our results suggested that the

development of PD did not lead to the changes in plasma ADP-

ribosyl cyclase and PON1 levels.

Our findings indicated that the onset and progression of PD is

closely related to inflammatory response and the disorder of

immune system. It would be worth mentioning that PD and

atypical parkinsonian syndromes (APS), including multiple

system atrophy (MSA) and progressive supranuclear palsy (PSP),

have overlapping symptoms that are difficult to make an early

diagnose. Nevertheless, PD and APS have different inflammatory

patterns, which would be helpful in the differential diagnosis and

understanding of the pathogenesis of diseases. Although the

occurrence of PSP is also related to the activation of microglia

and neuroinflammation, the process may be associated with the

accumulation of phosphorylated tau protein, but not a-syn (177).

Compared with patients with PD patients, patients with PSP have

higher NLR in peripheral blood and significantly increased

expression of CRP and microglia-derived cytokines in CSF,

including IL-1b, IL-6 and TNF-a (177, 178). MSA is a rapidly

progressing neurodegenerative disease characterized by the

accumulation of oligodendrocyte inclusions composed of a‐syn
(179). Animal model of MSA shows a stronger inflammatory

response than PD model (180). Compared with the healthy

controls, the PLR in the peripheral blood of MSA patients is

significantly increased (13). The NLR and PLR in peripheral

blood show no significant difference between patients with MSA

and PD (13). However, patients with MSA have higher levels of

inflammatory markers in the CSF than patients with PD, including

CRP, serum amyloid A, IL-1b, IL-6 and TNF-a, but lower levels of
neuroprotective molecules, such as beta nerve growth factor (b-
NGF) and Delta and Notch like epidermal growth factor-related

receptor (DNER) (178, 181, 182).

Excitingly, the existence of these inflammatory patterns and

immune system alterations provides new insights into anti-

inflammatory and immunological treatment strategies for

neurodegenerative diseases, including PD. Firstly, inhibiting or

activating the function of inflammatory genes might delay or halt

disease progression during prodrome or prevent disease

progression. For example, activation of Nrf2 (the transcription

factor of NFE2L2) could alleviate the progression of

neurodegenerative diseases by counteracting oxidative stress and

inflammation (183). Besides, treatments that have anti-
Frontiers in Immunology 13
inflammatory factors or enhances anti-inflammatory ability could

reduce the occurrence and progression of neurodegenerative

diseases. A retrospective cohort study indicated that anti-TNF

therapy could effectively reduce the incidence of PD

(184).Currently, several clinical trials of anti-inflammatory and

immunological therapy for PD are underway, though no effective

outcomes are available yet (5). Since the inflammatory cascade has

an important impact on the development and progression of

neurodegeneration in PD, the initiation of more clinical trials on

PD inflammation is rational (5). Furthermore, targeting a-syn with

antibodies to slow the transmission and reverse the effects of a-syn
pathology is another direction for PD immunotherapy since a-syn
plays a key role in the pathogenesis of PD. Monoclonal antibodies

against a-syn could inhibit the spread of a-syn, reduce the loss of
dopaminergic neurons, and alleviate motor deficits in PD mouse

models (185, 186). Clinical trials have shown that PRX002/RG7935,

the monoclonal antibody against a-syn, could penetrate BBB and

efficiently reduce serum a-syn levels to alleviate the progression of

PD (187, 188). So far, the safety and tolerability of the PRX002/

RG7935 treatment have been preliminarily verified, and the next

phase of clinical trials is needed to explore its effectiveness in the

treatment of PD (188).

Nevertheless, it must be admitted that our study has several

inescapable limitations. Because we combined all of the reported

patients and controls for our quantitative analysis, these cases and

controls may not be age or sex matched, which might lead to

selection bias. Differences in race might also cause confusion. We

were unable to run a subgroup analysis on the variables because of

the dearth of data. Furthermore, barely fewer than 5 publications

were included in some of our quantitative analysis. To reach a

reliable conclusion, further unique investigations are required. Due

to the insufficient GWAS data resources, we did not conduct causal

analysis for all the proteins encoded by statistically significant genes,

only ADP-ribosyl cyclase and PON1 were analyzed.

In conclusion, we included 18 inflammatory genes, including

genes encoding cytokines, genes implicated in oxidative stress,

genes for neurotoxins and metabolism-related enzymes, and

inflammatory polymorphic loci discovered by GWAS analysis

that are strongly connected with PD pathogenesis. While

variations in IL-1a, IL-1b, IL-10, MnSOD, NFE2L2, CYP2E1,

NOS1, NAT2, ABCB1, HFE or MTHFR were not connected to PD

risk, we discovered that multiple polymorphisms from IL-6, TNF-a,
PON1, CYP2D6, HLA-DRB, BST1, and CCDC62 were statistically

correlated with PD risk. Additionally, we indicated the changes in

plasm ADP-ribosyl cyclase and PON1 level have causal effects on

the risk of PD. Further researches are needed to confirm

these findings.
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