
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ping Zheng,
The University of Melbourne, Australia

REVIEWED BY

Juan Lu,
Zhejiang University, China
Zhu Hongwen,
Shanghai Institute of Materia Medica (CAS),
China

*CORRESPONDENCE

Zhixian Guo

zx_g2764@163.com

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 08 December 2022
ACCEPTED 17 February 2023

PUBLISHED 02 March 2023

CITATION

Xu L, Gao X, Xing J and Guo Z (2023)
Identification of a necroptosis-related gene
signature as a novel prognostic biomarker
of cholangiocarcinoma.
Front. Immunol. 14:1118816.
doi: 10.3389/fimmu.2023.1118816

COPYRIGHT

© 2023 Xu, Gao, Xing and Guo. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 02 March 2023

DOI 10.3389/fimmu.2023.1118816
Identification of a necroptosis-
related gene signature as a novel
prognostic biomarker of
cholangiocarcinoma

Lixia Xu1†, Xueping Gao2†, Jiyuan Xing1 and Zhixian Guo1*

1Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou,
Henan, China, 2Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military
Medical University (Army Medical University), Gaotanyan, Chongqing, China
Background: Cholangiocarcinoma (CHOL) is the most prevalent type of

malignancy and the second most common form of primary liver cancer,

resulting in high rates of morbidity and mortality. Necroptosis is a type of

regulated cell death that appears to be involved in the regulation of several

aspects of cancer biology, including tumorigenesis, metastasis, and cancer

immunity. This study aimed to construct a necroptosis-related gene (NRG)

signature to investigate the prognosis of CHOL patients using an integrated

bioinformatics analysis.

Methods: CHOL patient data were acquired from the Gene Expression Omnibus

(GEO) (GSE89748, GSE107943) and The Cancer Genome Atlas (TCGA) databases,

with NRGs data from the necroptosis pathway in the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database. Univariate and multivariate regression

analyses were performed to establish the NRG signatures. Kaplan–Meier (KM)

curves were used to evaluate the prognosis of patients with CHOL. Functional

enrichment analysis was performed to identify key NRG-associated biological

signaling pathways. We also applied integrative multi-omics analysis to the high-

and low-risk score groups. Spearman’s rank correlation was used to clarify the

relationship between the NRG signature and immune infiltration.

Results: 65 differentially expressed (DE) NRGs were screened, five of which were

selected to establish the prognostic signature of NRGS based onmultivariate Cox

regression analysis. We observed that low-risk patients survived significantly

longer than high-risk patients. We found that patients with high-risk scores

experienced higher immune cell infiltration, drug resistance, and more somatic

mutations than patients with low-risk scores. We further found that sensitivities

to GW843682X, mitomycin C, rapamycin, and S-trityl-L-cysteine were

significantly higher in the low-risk group than in the high-risk group. Finally,

we validated the expression of five NRGs in CHOL tissues using the TCGA

database, HPA database and our clinical data.
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Conclusion: These findings demonstrate that the five-NRG prognostic signature

for CHOL patients is reasonably accurate and valid, and it may prove to be of

considerable value for the treatment and prognosis of CHOL patients in the

future.
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1 Introduction

Cholangiocarcinoma (CHOL) is a highly heterogeneous

malignancy stemming from biliary epithelia. CHOL is the most

prevalent type of malignancy and the second most common form

of primary liver cancer, accounting for approximately 20% of all

primary liver cancers (1, 2). Surgical treatment, immunotherapy,

chemotherapy, and other comprehensive tumor treatment methods

have changed the prognosis of many patients with CHOL. Patients

with CHOL nonetheless still tend to have unfavorable prognoses,

with only 10% of patients surviving for five years (3). The main

factors contributing to poor prognosis are the heterogeneity,

infiltrative nature, and rapid drug resistance of CHOL, making it

difficult to completely remove the tumor by surgical procedures and

identify the therapeutic target of CHOL (1, 4, 5). There is, therefore, a

pressing need to further explore the occurrence and progression of

CHOL to improve the treatment and survival rates of CHOL patients.

Necroptosis is a self-destruction cellular process that is regulated

via a complex signaling cascade (6), and it is closely related to key

aspects of cancer biology regulation, including tumorigenesis,

metastasis, and cancer immunity (7, 8). There is increasing evidence

that overcoming apoptosis resistance by induction of cancer cell

necroptosis may be an attractive therapeutic approach for patients

with CHOL (9–11). For instance, the application of both TNFa and

gemcitabine has been shown to induce RIPK1/RIPK3/MLKL-

dependent necrosis when apoptosis-inhibitory proteins and caspases

are blocked, as evidenced by increased expression of RIPK3 and

MLKL in CHOL cell lines (9, 12). In addition, Xu et al. found that the

alkaloid matrine can induce necroptosis in CHOL by enhancing the

expression of RIP3 and the RIP3/MLKL/ROS signaling pathway, thus

providing a new individualized strategy for overcoming

chemoresistance in CHOL therapy based on the expression of RIP3

(12). Hence, exploring the role of necroptosis in tumorigenesis and the

progression of CHOL has great potential for the diagnosis and

treatment of CHOL patients. The rapid development of high-

throughput sequencing and multi-omics studies has allowed a
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substantial body of reliable information to be obtained regarding the

treatment and prognosis of patients with CHOL (13–15).

In this study, we first profiled the necroptosis-related genes in

CHOL and developed a risk prediction model based on five genes to

explore their functional enrichment and ability to predict outcomes.

The performance of the prediction models was validated in three

independent cohorts (TCGA, GSE89748, and GSE107943).

Additionally, we examined the differences in drug resistance,

somatic mutations, and immune infiltration between the low- and

high-risk groups. In brief, our prognostic signature provides a

reliable method for predicting the prognosis of patients with

CHOL, and it offers clinicians a reference for early diagnosis and

treatment of CHOL.
2 Materials and methods

2.1 Data collection and preprocessing

TCGA biolinks was used to extract RNA-Seq data from 36

CHOL and 9 normal samples, as well as relevant clinical

information from TCGA database (http://portal.gdc.cancer.gov)

(16). Additionally, the University of California Santa Cruz

(UCSC) provided FPKM, somatic mutation, and clinical data on

CHOL. In the present study, CHOL datasets GSE89748 and

GSE107943 (17, 18) from the GEO database (https://

www.ncbi.nlm.nih.gov/geo) were downloaded using the GEO

query R package, which was used as the external validation set,

including available expression profile data and clinical information

of bile duct cancer samples. In total, 72 CHOL samples from the

GSE89748 dataset and 30 CHOL samples from the GSE107943

dataset were acquired. A total of 159 necroptosis-associated genes

(NRGs) were obtained from the necroptosis pathway (hsa04217) in

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
2.2 Identification of the expression
patterns and biological functions of
DENRGs in CHOL

First, we extracted the NRGS expression matrix from TCGA

and then screened for differentially expressed necroptosis-related

genes (DENRGs) between the CHOL and normal groups using the
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limma package (19). Significant DENRGs were visualized using

volcano plots constructed using the ggplot2 package. The criteria

for differentially expressed genes (DEGs) were FDR < 0.05 and |

log2FC| > 1. Furthermore, differences in DENRGs between the

CHOL and normal groups were visualized using boxplots. DENRGs

were also analyzed based on a protein-protein interaction (PPI)

network using the STRING database (20), and correlations between

them were visualized using heatmaps. To investigate the biological

role of DENRGs, we examined biological processes (BP), cellular

components (CC), and molecular functions (MF) according to the

Gene Ontology (GO) database and KEGG signaling pathways using

the R tool cluster Profile (21). The enrichment significance

thresholds were set at an adjusted p-value of < 0.05.
2.3 Development and validation of
DENRGs-based prognostic models

DENRGs were first identified for their prognostic values in the

TCGA cohort by univariate Cox proportional hazards regression

analysis, and the genes with p-values < 0.05 were then entered into

the multivariate Cox regression analysis. A risk score model was

built based on the expression levels of the prognosis-associated

genes and the contribution coefficient (and beta) of the multivariate

Cox proportional hazard regression model. Based on the above risk

score model, we calculated the prognostic risk value for each patient

sample in TCGA (training cohort), GSE89748 (validation cohort 1),

and GSE107943 (validation cohort 2). All CHOL samples were

divided into high- and low-risk groups, with the median risk score

as the cutoff value. Kaplan–Meier survival analyses were performed

using the ‘survival’ and ‘survminer’ (22) packages between the high-

and low-risk groups. To further assess the clinical diagnostic value

of the risk score, time-dependent receiver operating characteristic

(ROC) curves for overall survival (OS) and area under the ROC

curves (AUCs) at 1, 3, and 5 years in TCGA (training cohort),

GSE89748 (validation cohort 1), and GSE107943 (validation cohort

2) were generated using the R package “survivalROC” (23). OS is

defined as the time from randomization to death. Furthermore, we

constructed a risk plot to explore the relationship between the risk

score and the prognosis status.
2.4 Process of the screening signature for
the Cox regression model and building of
the nomogram models

Univariate Cox regression was performed to examine the

relationship between patient clinical characteristics (age, sex,

stage, pathology, weight, height, and BMI), risk score, and OS.

Significant prognostic factors (p < 0.05) in the univariate analyses

were selected for multivariate Cox regression analysis. Forest plots

were used to present the results of the univariate and multivariate

Cox analyses, including all of the above variables. A nomogram was

built based on the identified variables in the multivariate Cox

regression analysis to facilitate clinical application.
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2.5 Exploration of differences in biological
functions between CHOL subgroups

To determine the differences in biological functions between the

high- and low-risk groups, DEGs between the two groups were

screened using the limma R package with FDR thresholds of < 0.05,

and absolute log2FC > 1. A volcano plot was then used to illustrate

the DEGs using ggplot2. To visualize the expression patterns of

DEGs between the low- and high-risk groups, we used R package

(pheatmap) to generate a heatmap. All DEGs were subjected to GO

and KEGG pathway enrichment analyses using Metascape (http://

metascape.org) (24). A p-value < 0.01 and a minimum of three

counts were set as the cutoff criteria for selecting significant

enrichment results. GO and KEGG analyses were also performed

using the R package “cluster Profiler” to explore the underlying

biological roles of the DEGs (21). The enrichment results were

visualized using bar and dot plots. Gene set enrichment analysis

(GSEA) (25) was performed using cluster Profiler, with a p-value of

< 0.05 as the threshold for significantly enriched KEGG pathways.

The top 20 significantly enriched pathways ranked by normalized

enrichment scores were visualized using a ridgeline plot.
2.6 Applying integrative multi-omics
analysis between the high- and low-risk
score groups

The R package “Rcircos” (26) was used to map the

chromosomal locations of clinically significant NRGs. The

Friends tool was then used to functionally annotate these genes,

which were subsequently estimated by semantic analysis using the R

package GOSemSim (27). By building a ridgeline regression model

based on the Genomics of Drug Sensitivity in Cancer (GDSC)

database (www.cancerrxgene.org/), we predicted the half-maximal

inhibitory concentration (IC50) for chemotherapy drugs in the

high- and low-risk groups and we inferred the sensitivity of

the patients (28). To detect somatic mutations in CHOL

patients between the high-risk and low-risk subgroups, we used

the mutation annotation format (MAF) in TCGA database. The

results were visualized using a waterfall plot (oncoplot). Using the

online tool Network Analyst (29), we explored the transcriptional

regulators and chemical targets of hub necroptosis genes based on

the JASPAR Tarbase and mir-Tarbase databases.
2.7 Correlation analysis between the
prognostic DENRGs and immune
cell infiltration

Immune infiltration is a significant factor in tumor progression,

treatment, and prognosis. We used the “ESTIMATE” R package to

estimate the stromal score, immune score, and tumor purity in the

high- and low-risk subgroups (30). The R package “ggplot2” was

then applied to generate boxplots to visualize differences between

the two groups for the above-mentioned immune scores and tumor
frontiersin.org
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purity. CIBERSORT is a deconvolution algorithm that can calculate

the infiltration abundance of 22 immune cell types in all tumor

samples (31). Heatmaps were drawn using the R package pheatmap

to illustrate the fractions of immune cell types for each sample, and

a correlation analysis between 22 immune cell types and prognostic

necroptosis genes was performed using the corrplot package. The

results were visualized using the ‘pheatmap’ package. Immune

infiltration differences between the high- and low-risk groups of

CHOL patients were determined using the ggplot2 package.

Additionally, the most positively and negatively correlated gene-

immune cell pairs were displayed using a scatter plot.
2.8 Immunohistochemical analysis of five
NRGs in HPA

The protein expression of the five NRGs between CHOL and

normal tissues was measured by immunohistochemistry from the

Human Protein Atlas (HPA) (https://www.proteinatlas.org/), which

is a valuable database providing the data of immunohistochemistry

expression for specific human tissues and cells (32).
2.9 Tumor samples collection and
qRT-PCR

A total of 12 CHOL tissue samples and 10 corresponding

normal hepatobiliary duct tissues were obtained from patients

who underwent surgical resection between March 2021 and

October 2022 at the First Affiliated Hospital of Zhengzhou

University, Henan, China. The samples were immediately frozen

in liquid nitrogen after tissue resection. The total RNA of the tissue

samples was extracted using TRIzol reagent (Invitrogen) according

to the manufacturer’s protocol. The RNA samples were reverse-

transcribed into cDNA by using iScriptTM cDNA Synthesis Kit.

RT-qPCR was performed using a thermal cycler (Roche LightCycler

480) using IQTM SYBR® Green Supermixes for Real-Time PCR.

The mRNA expression was normalized to the expression of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA

and counted by the 2−DDCt method. The PCR primer sequences

are shown in Table 1. This study conforms to the guidelines issued

in the Declaration of Helsinki and was approved by the Ethics

Committee of the First Affiliated Hospital of Zhengzhou University

(Approval Number: SS-2019-018).
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2.10 Statistical analysis

All data processing and statistical analyses were performed

using R software (version 4.2.1). A detailed description of the

bioinformatics analyses is provided in the corresponding

subsections. * p < 0.05; ** p < 0.01; *** p < 0.001. A p-value <

0.05 was taken as representing statistical significance.
3 Results

3.1 Identification of DENRGs

According to the filter criteria, a total of 67 DENRGs were

screened, including 64 upregulated genes and 3 downregulated

genes. The expression distribution of the DENRGs was visualized

using volcano plots (Figure 1A). Based on the boxplot and

heatmap, it was clear that H2AW, PYGB, PYCARD, CAPN2,

BIRC3, H2AX, CHMP4C, STAT1, CHMP3, CHMP4B, CAPN1,

H2AZ1, and BAX were highly expressed in the CHOL group,

whereas FTL, GLUD1, and PYGL were expressed at very low

levels compared with the normal group (Figure S1; Figure 1B).

Principal component analysis (PCA) of these DENRGs clearly

distinguished the CHOL group from the control group

(Figure 1C). Mutation analysis indicated that missense

mutations were the most common, and TYK2 had the highest

mutation rate, which was a missense mutation with a frameshift

deletion (Figure 1D). The heat map showed that FTL, GLUD1,

and PYGL were positively correlated with each other and

negatively correlated with the other DENRGs (Figure 1E).

Furthermore, the PPI network diagram suggested that CASP8,

MLKL, and RIPK3 exhibited the strongest interactions with the

other DENRGs (Figure 1F).
3.2 GO and KEGG functional analysis of
the DENRGs

The results show that the DENGs were mainly related to cell

death processes, such as programmed necrotic cell death, midbody

abscission, necrotic cell death, mitotic cytokinetic process,

necrotic process and virtual budding, and ESCRT complex,
TABLE 1 Primer list of PCR.

Gene Name Forward primer Reverse primer

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG

PYGB AGGTGCGGAAGAGCTTCAAC TCGCGCTCGTAGTAGTGCT

IFNGR2 CTCCTCAGCACCCGAAGATTC GCCGTGAACCATTTACTGTCG

TICAM1 GCCAGCAACTTGGAAATCAGC GGGGTCGTCACAGAGCTTG

STAT6 GTTCCGCCACTTGCCAATG TGGATCTCCCCTACTCGGTG

VPS4B ATGTCATCCACTTCGCCCAAC TTGCTTGGCTTTATCACCCTG
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nucleosome, DNA packaging complex, protein DNA complex,

nuclear chromatin, tumor necrotic factor receiver superfamily

binding, tumor necrotic factor receiver binding, cytokine

receiver binding, ubiquitin-like protein ligase binding, and

protein binding (Figure 2A; Table S1). The KEGG results

suggest that the DENRGs were mainly involved in multiple

functional pathways (e.g., Necroptosis, NOD-like receptor

signaling pathway, Apoptosis, Influenza A, TNF signaling

pathway, Th17 cell differentiation, IL-17 signaling pathway, and

Neutrophil extracellular trap formation pathway) (Figure 2B;

Table S1). A panoramic view of the necroptosis pathway in

KEGG was generated (Figure 2C).
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3.3 Construction of a prognostic model
within necroptosis-associated genes

The 67 DENRGs were subjected to univariate Cox proportional

hazard regression analysis. Five prognostic genes (PYGB, IFNGR2,

TICAM1, STAT6, and VPS4B) were selected and further analyzed

using multivariate Cox proportional hazards regression analysis.

The coefficients from the multivariate Cox proportional hazards

regression model were used to evaluate the potential prognostic

factors. Risk scores were also calculated in TCGA (training cohort),

GSE89748 (validation cohort 1), and GSE107943 (validation cohort

2) according to the prognostic gene expression values and their
D

A B

E
F

C

FIGURE 1

Identification of DENRGs in the CHOL group. (A) Volcano plot of the DENRGs. Genes indicated in red, blue, and gray colors were significantly
upregulated (Up), downregulated (Down), or not significantly different (Not), respectively. (B) Heatmap showing the expression of 65 DENRGs in the
normal and CHOL samples. Red, CHOL group; Blue, normal group (C) Principal components analysis (PCA) indicating the expression patterns of
DENRGs. (D) Oncoplot of the DENRG mutations. (E) Heat map of the correlation between the DENRGs. Red colors indicate positive correlations and
blue colors represent negative correlations. The darker the color, the stronger the correlation. (F) PPI network of the DENRGs. The larger the node,
the higher the number of interactions with other genes, and the thicker the line, the higher the correlation coefficient.
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regression coefficients. Taking the median risk score of the samples

as the cutoff value, CHOL patients were divided into high- and low-

risk groups. Survival analysis showed that the low-risk group

exhibited a better outcome in TCGA (log-rank test p-value <

0.05) (Figure 3A), GSE89748 (log-rank test p-value < 0.001)

(Figure 3B), and GSE107943 (log-rank test p-value < 0.001)

(Figure 3C). Next, we performed 1-, 3-, and five-year time-

dependent ROC analyses in three independent datasets (TCGA,

GSE89748, and GSE107943). The results show that the AUC of

time-dependent ROC curves was greater than 0.6 in all datasets

(Figures 3D–F). Notably, the AUC of the 1-year time-dependent

ROC exceeded 0.7, indicating that the prognostic risk score had

good prediction abilities. A risk plot also illustrated the distributions

of the risk scores and the OS status in the three dependent datasets

(Figures 3G–I). It is worth mentioning that the increase in the

prognostic risk score and the number of death events in

patients increased.
3.4 Construction and evaluation of the
nomogram model

Univariate and multivariate Cox regression analyses were

performed on the clinical characteristics and risk scores in TCGA
Frontiers in Immunology 06
to explore the prognostic factors of patients. The results show that

two factors, the risk score and pathologic N, were significantly

associated with patient prognosis (p < 0.05) (Figures 4A, B).

Subsequently, a nomogram model for predicting 1-, 3-, and 5-

year OS was constructed, which integrated the two factors that were

significantly correlated with prognosis: pathologic N and the

prognostic risk score (Figure 4C). Besides, we established

calibration curves to verify the effectiveness of nomogram model

for predicting the rates of OS for CHOL patients at 1, 3, and 5 years.

The results showed that the calibration curves displayed a suitable

agreement between the prediction by nomogram and actual survival

(Figure S2).

A risk classification system was then constructed based on the

risk scores calculated from the nomogram model for each CHOL

patient. Using this system, the enrolled patients were divided into

low- and high-risk groups. The outcomes show that the low-risk

group had the best prognosis, and the high-risk group had the worst

prognosis (Figures 4D, E). Time-dependent ROC analysis showed

that the 1-, 3-, and 5-year nomogram models exhibited AUC > 0.7,

and even the 1- and 3-year time-dependent ROC exhibited AUC >

0.8 (Figures 4F, G). We further used decision curve analysis (DCA)

to evaluate the clinical predictive models. The results showed that

the DCA curves at 1, 3, and 5 years remained above the gray and

black lines between 0 and 1.0, in TCGA CHOL and GSE89748
A

C

B

FIGURE 2

GO and KEGG enrichment analysis of DENRGs. (A) Dot plot showing the top 10 biological functions enriched in Gene Ontology (GO) terms. (B) Bar
plot showing the top 10 signaling pathways enriched in KEGG terms. (C) Diagrammatic outline of the necroptosis pathway.
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datasets, suggesting that CHOL patients may benefit from decisions

based on the prognostic model (Figures 4H, I).
3.5 Identification of DEGs and functional
enrichment analysis

Next, we performed differential expression analysis on TCGA

CHOL datasets of the high- and low-risk groups to obtain DEGs.

According to the screening thresholds (|log2FC| > 0.5 and p < 0.05),

179 DEGs were identified in the high- and low-risk groups,

including 96 upregulated genes and 83 downregulated genes

(Figure 5A). In addition, the heatmaps revealed that the

expression patterns of genes were also classified into two

categories, along with the high- and low-risk groups (Figure 5B).

GO and KEGG functional enrichment analyses of the DEGs

were performed using Metascape. The top 20 enriched biological

function terms were displayed in the network diagrams according to
Frontiers in Immunology 07
their enrichment scores (Figures 5C, D). The GO analysis results

show that the DEGs were mainly associated with mitotic cell cycle,

mitotic spindle organization, mitotic spindle assembly, intercellular

bridge, polymeric cytoskeletal fiber, hexosyltransferase activity,

DNA, Binding transcription activator activity, and protein kinase

binding (Figure 5E). According to the KEGG analysis results,

pathways in cancer, viral carcinogenesis, TNF signaling pathway,

Salmonella infection, pathogenic Escherichia coli infection, IL−17

signaling pathway, hepatitis B, chemical carcinogenesis-receptor

activation, and apoptosis were significantly enriched (Figure 5F).

The detailed results are summarized in Table S2.

To further analyze the functional implications of the five

necroptosis gene signatures in CHOL, we performed GSEA of

TCGA CHOL expression profiles according to low- and high-risk

groups. As shown in Figure 6A, the ridgeline plot reveals the top 20

enriched KEGG terms in the low- and high-risk groups. These

results show that cytokine-cytokine receptor interaction,

alcoholism, neutrophilic extracellular trap formation, influenza A,
D

A B

E F

G IH

C

FIGURE 3

Construction and validation of the prognostic model. (A–C). KM survival curves for overall survival in TCGA training cohort (A), GSE89748 validation
cohort (B), and GSE107943 validation cohort (C). (D–F) Time-dependent ROC curve of TCGA cohort (D), GSE89748 cohort (E), and GSE107943
cohort (F). Sensitivity (TRP) = TP/(TP+FN) and false positive prediction rate (FPR) (1-specificity = FP/(FP+TN)) were used as the y-axis and x-axis
variables, where TPs (true positives) are positive predictions which belong to gold standard positives (GSPs), FNs (false negatives) are negative
predictions which belong to GSPs.TP, true positive; FP, false positive; TN, true negative. (G–I) Distributions of risk scores and OS status are shown
for TCGA cohort (G), GSE89748 cohort (H), and GSE107943 cohort (I).
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JAK-STAT signaling pathway, and cell adhesion molecules were

significantly enriched in the low-risk group (Figures 6B–G).

Detailed GSEA results are presented in Table S3.
3.6 Multi-omics analysis based on
prognostic risk scores

We then used the R package “Rcircos” to map the chromosomal

locations of the above five NRGs. The gene chromosome location

diagram revealed that PYGB, IFNGR2, TICAM1, STAT6, and

VPS4B are located on chr20, chr21, chr19, chr12, and chr18,

respectively (Figure 7A). Friends analyses of the necroptosis-

associated prognostic genes revealed that TICAM1 was the most
Frontiers in Immunology 08
important term (Figure 7B). In the low-risk group, the ESTIMATE,

immune, and stromal scores were all higher than those in the high-

risk group, according to violin plots (Figure 7C). The therapeutic

effects of the four drugs on CHOL are shown as boxplots. The

results show that the sensitivity to GW843682X, mitomycin C

(MMC), rapamycin, and S-trityl-L-cysteine (STLC) was

significantly higher in the low-risk group than in the high-risk

group (Figure 7D). The oncoplot demonstrated different mutation

patterns between the high- and low-risk groups (Figures 7E, F).

We further used Network-Analyst to obtain network diagrams

of the interaction between the five NRGs and miRNAs,

transcription factors (TFs), and potential chemicals. The results

show that 124 miRNAs targeting the five necroptosis prognosis

genes fit a network diagram (Figure 8A). In the TF-necroptosis
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FIGURE 4

Construction and evaluation of the nomogram model. (A) Univariate Cox proportional hazard regression analysis of the clinical characteristics.
(B) Multivariate Cox proportional hazard regression analysis of selected clinical characteristics. (C) Prediction of 1-, 3-, and 5-year survival
probabilities for CHOL patients using the nomogram model. (D, E). Survival curve for the low-risk and high-risk subgroups in the training dataset and
the validation dataset. (F, G). Time-dependent ROC curves of the training cohort and the validation cohort. Sensitivity (TRP) = TP/(TP+FN) and false
positive prediction rate (FPR) (1-specificity = FP/(FP+TN)) were used as the y-axis and x-axis variables, where TPs (true positives) are positive
predictions which belong to gold standard positives (GSPs), FNs (false negatives) are negative predictions which belong to GSPs.TP, true positive; FP,
false positive; TN, true negative (H, I). DCA curves of the training cohort and the validation cohort.
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prognosis gene network diagram, 114 TFs were observed

(Figure 8B). A total of 117 potential chemical targets were

identified using Network Analyst (Figure 8C).
3.7 Analysis of immune cell infiltration and
its correlation with the five NRGs

Immune cell infiltration is a critical factor in the progression of

CHOL, and it significantly affects the survival rate of patients with

CHOL (9, 33). We analyzed the relationship between the expression

of the five NRGs and infiltration of 22 immune cell types in CHOL.

The results show that IFNGR2 and STAT6 were negatively
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correlated with resting natural killer (NK) cells, whereas PYGB

was significantly positively correlated with CD8+ T cells, M0

macrophages, Tregs, and eosinophils. TICAM1 was positively

correlated with resting central memory CD4+ T cells and

activated NK cells, and VPS4B was positively correlated with

plasma cells and T follicular helper cells. STAT6 expression

positively correlated with monocytes and Tregs (Figure 9A). A

heatmap of the correlation between the 22 different immune cell

types indicates that M2 macrophages had a clear positive

correlation with monocytes; naive B cells had a clear positive

correlation with activated mast cells and naive CD4+ T cells;

memory B cells had a clear positive correlation with naive CD4+

T cells, while activated mast cells exhibited obvious inverse
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FIGURE 5

GO and KEGG functional enrichment analyses between the low- and high-risk groups. (A) Volcano plot of the DEGs. Red represents upregulated genes
(Up), blue represents downregulated genes (Down), and gray represents not significantly different genes (Not). (B) Heatmap of the DEGs between the
high-risk group and the low-risk group. Red indicates the high-risk group (High) and blue indicates the low-risk group (Low). (C) A network diagram of
the top 20 enriched biological functions. Cluster IDs are represented using different colors, while enriched terms are indicated by nodes. (D) Twenty
enriched biological functions are shown in this network diagram, and the p-values are displayed as different colors, while the enriched terms are
indicated as nodes. (E) Bar-plot of GO terms, with the height of the column indicating the enrichment score. (F) Dot plot of the KEGG enrichment
analyses results. The dot scale represents the number of genes in each KEGG term; the depth of the dot color represents the p-value.
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correlations with resting mast cells and M2 macrophages; activated

NK cells had an obvious inverse correlation with monocytes, M2

macrophages, and neutrophils (Figure 9B). The strongest positive

correlation was observed between IFNGR2 and eosinophils

(Figure 9C). In contrast, STAT6 exhibited the strongest negative

correlation with resting NK cells (Figure 9D). The high-risk and

low-risk groups exhibited significantly different levels of immune

cell infiltration in the heatmap (Figure 9E). The boxplot indicates

that there was a significant difference in the proportion of immune

cells between the high- and low-risk groups. B cells accounted for a

higher proportion in the low-risk group, whereas T cells accounted

for a higher proportion in the high-risk group (Figure 9F).
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3.8 Validation of the five NRGs expressions
in CHOL tissue samples

We further validated the expression of five NRGs using the

TCGA database, HPA database and our clinical data. TCGA

database results showed that PYGB (Figure 10A), IFNGR2

(Figure 10D), TICAM1 (Figure 10G), STAT6 (Figure 10J) and

VPS4B (Figure 10M) were expressed at high levels in CHOL

tissues. Based on the protein expression data from the HPA, the

immunohistochemistry results confirmed that the protein

expression levels of PYGB (Figure 10B), IFNGR2 (Figure 10E),

TICAM1 (Figure 10H), STAT6 (Figure 10K) and VPS4B
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FIGURE 6

GSEA analysis results between the low- and high-risk groups. (A) Ridgeline plots showing the top 20 enriched KEGG terms in the low- and high-risk
groups. ES (enrichment score) reflected the correlation between the gene set and the sample. B-G. Cytokine-cytokine receptor interaction
(B), alcoholism (C), neutrophilic extracellular trap formation (D), influenza A (E), JAK-STAT signaling pathway (F), and cell adhesion molecules
(G) were significantly enriched in the low-risk group.
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(Figure 10N) were higher in CHOL tissues than normal

hepatobiliary duct tissues. Finally, we detected their expression

levels in 10 non-tumor hepatobiliary duct tissues and 12 CHOL

tissues by using RT-qPCR assay. The results showed that the

expression levels of PYGB (Figure 10C), IFNGR2 (Figure 10F),

TICAM1 (Figure 10I), STAT6 (Figure 10L) and VPS4B (Figure 10O)

in CHOL tissues showed an overall upward trend compared with

non-tumor hepatobiliary duct tissues.
4 Discussion

CHOL is the second most common primary malignancy of the

liver after hepatocellular carcinoma, with a steady increase in its
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incidence and mortality rate (1). When hepatocytes die due to

necroptosis, the necroptosis-dominated microenvironment leads to

the development of CHOL. Recent studies have also found that

necroptosis plays a pivotal role in regulating carcinogenesis, cancer

subtypes, immunity, metastasis, and anticancer treatments (2, 3).

The molecular mechanism by which necroptosis is involved in the

genesis and development of CHOL remains unclear, however.

In this study, we focused on developing and validating a

prognostic signature for CHOL using necroptosis-related genes.

First, 65 DENRGs were identified between the CHOL and control

groups. Secondly, five genes (PYGB, IFNGR2, TICAM1, STAT6, and

VPS4B) were identified as prognostic signatures based on

multivariate Cox regression analysis. The Kaplan–Meier survival

curves in TCGA also indicate that the low-risk group had
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FIGURE 7

Multi-omics analysis based on the prognostic risk scores. (A) Chromosome localization map of necroptosis prognosis genes. (B) Friends analysis of
necroptosis prognosis genes. (C) Differences in ESTIMATE, immune, and stromal scores between the high- and low-risk groups. (D) Differences
between the high- and low-risk groups in terms of drug sensitivity. (E, F). Oncoplot mutations in the low- and high-risk groups.
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significantly longer patient survival than the high-risk group. The

survival results were also validated independently using the

GSE89748 and GSE107943 datasets. In addition, the nomogram

model was highly discriminatory for OS based on the pathologic N

and risk score. Moreover, patients with high-risk scores experienced

higher immune cell infiltration, drug resistance, and more somatic

mutations. In summary, these results suggest that the five genes

related to necroptosis play prominent roles in modulating drug

resistance, somatic mutations, and the tumor microenvironment,

indicating that these risk signatures were highly robust and accurate

in predicting the prognosis of patients with CHOL.

Our prognostic signature consists of five genes, PYGB, IFNGR2,

TICAM1, STAT6, and VPS4B, each of which plays a critical role in

necroptosis and tumor progression. PYGB codes for the protein

glycogen phosphorylase B, which is found predominantly in the

brain (34). PYGB has been reported to be involved in the

progression of gastric and liver cancers (35, 36). IFNGR2 codes
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for the IFN-g receptor, which has been found to mediate a non-

immunogenic tumor phenotype associated with checkpoint

inhibitor resistance in renal carcinoma (37, 38). TICAM1 codes

for an essential necrosome adaptor protein that functions as an

essential signal transducer in Toll-like receptor (TLR) 3 and TLR4

signaling pathways (39). It has been reported that TLR3/TICAM1

signaling is involved in tumor cell RIP3-dependent necroptosis,

which contributes to immune effector-mediated tumor elimination

(38). In our study, TICAM1 was highly expressed in the CHOL

group and was positively correlated with resting central memory

CD4+ T cells and NK cell activation, suggesting that the TICAM1

gene product is involved in the tumor microenvironment. STAT6 is

highly expressed in a variety of human cancers and has been

suggested to induce apoptosis and growth inhibition of

hepatocellular carcinoma-derived cells by lowering RANKL

expression (40). VPS4B codes for a protein that is involved in

autophagy that can reduce the sensitivity of T cell-mediated tumor
A B

C

FIGURE 8

An integrated network of TFs, miRNAs, and chemicals target the necroptosis prognosis genes. (A) The integrated network diagrams between the five
NRGs and miRNAs. (B) The integrated network diagrams between the five NRGs and TFs. (C) The integrated network diagrams between the five
NRGs and potential chemical modulators.
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cell lysis by lowering granzyme B content, and it is an essential

factor required for escaping CD8+ T cell-mediated killing in tumors

(41, 42). In keeping with this, VPS4B was negatively correlated with

follicular helper T cells and was found to be highly expressed in

CHOL in our study. Overall, our study investigated the prognostic

value of five necroptosis-related markers in CHOL. Further in-

depth experimental research is needed to explore the potential

regulatory effects of this gene set on necroptosis.

In recent years , regulation of the tumor immune

microenvironment through immunotherapy has revolutionized
Frontiers in Immunology 13
cancer treatment (43, 44). Numerous studies have confirmed that

immunotherapy based on alteration of the tumor immune

microenvironment can affect tumor metastasis, immune escape,

and immunotherapy resistance by modifying the immune response

(45–47). For instance, a study has suggested that increasing the

number or function of NK cells may be a promising approach for

the treatment of CHOL (48). Our study found a negative correlation

of STAT6 with resting NK cells, thus suggesting that STAT6 is a

potential immunotherapy target. Higher infiltration of M1 and M2

macrophages is related to a poor prognosis by accelerating tumor
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FIGURE 9

Correlation between the five NRGs and immune cell infiltration of CHOL. (A) Correlation analyses between 22 different immune cell types and the
five NRGs in the CHOL group. Red color represents positive correlation whereas blue color indicates negative correlation. (B) Heatmap of the
correlation between 22 different immune cell types. Positive correlations are in red and negative correlations are in blue. The darker the color, the
stronger the correlation. (C) Correlation analysis between IFNGR2 and Eosinophils. (D) Correlation analysis between STAT6 and resting NK cells. (E) A
heatmap showing the difference in immune cell infiltration between the high-risk and low-risk groups. (F) Box plot of the proportion of immune cell
infiltration between the high-risk and low-risk groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1118816
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2023.1118816
progression through the secretion of pro-angiogenic factors,

activation of the Wnt/b-catenin pathway, and suppression of the

antitumor functions of T cells (49). In our study, the high-risk

group, which had a poor prognosis, had a higher level of M0

macrophage infiltration, indicating that a greater number of non-

activated macrophages were present.

The DEGs between the high- and low-risk groups were enriched

in immune-related biological processes and pathways. The five

genes involved in our prognostic signature correlated with

different levels of immune cell infiltration, such as NK cells, T

cells, monocytes, M0 macrophages, and plasma cells. Our results
Frontiers in Immunology 14
show that, based on the gene signature, there were clear differences

in the degree of immune cell infiltration between the high-risk and

low-risk groups. The high-risk group tended to exhibit a higher

proportion of multiple types of T cells, whereas the low-risk group

exhibited a higher proportion of multiple types of B cells. In

addition, the low-risk group had higher stromal, immune, and

ESTIMATE scores than the high-risk group. In summary, our

prognostic signature for CHOL based on necroptosis-related

genes could reflect the tumor immune microenvironment of

CHOL, which could potentially contribute to personalized

immunotherapy and targeted therapy for patients with CHOL.
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FIGURE 10

Validation of the five NRGs expressions in CHOL tissue samples (A, D, G, J, M). The expression levels of PYGB (A), IFNGR2 (D), TICAM1 (G), STAT6
(J) and VPS4B (M) between CHOL and normal samples using the TCGA database. (B, E, H, K, N). Immunohistochemistry of PYGB (B), IFNGR2 (E),
TICAM1 (H), STAT6 (K) and VPS4B (N) in CHOL and normal samples from the HPA database. (C, F, I, L, O). Relative expression of PYGB (C), IFNGR2
(F), TICAM1 (I), STAT6 (L) and VPS4B (O) was detected by qRT-PCR in CHOL and normal samples. *p < 0.05, **p < 0.01, ***p < 0.001.
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According to previous studies examining genomic alterations,

gene mutations in CHOL usually result in poor outcomes (50). Our

study also demonstrated that necroptosis-related genes were

positively correlated with genomic alterations, and the high-risk

group (mutation rate: 31.37%) exhibited more somatic mutations

than the low-risk group (mutation rate: 23.53%). In particular,

missense mutations were by far the most predominant mutation

type found in CHOL. Moreover, PBRM1 and BAP1 exhibited

significantly increased mutation rates and multiple mutation types

in the high-risk group. In addition, the high-risk group exhibited

higher levels of resistance to treatment with GW843682X,

mitomycin C, rapamycin, and S-trityl-L-cysteine. These results

show that our prognostic signature could be used as a potential

predictor of the efficacy of medical treatment for CHOL. Moreover,

the occurrence of drug resistance may be reduced by regulation of

this signature, which could potentially lead to new breakthroughs in

the choice of individual therapeutic strategies.

However, the current study has some limitations. First, the data

gathered were from public databases, which were limited in sample

size. Future research with a larger sample size is needed to overcome

these limitations. Secondly, the identified genes have complex

functions and molecular mechanisms that need to be further

verified in cellular and animal models. Finally, more detailed

clinical follow-up data are required to confirm the value of our

prognostic model.
5 Conclusion

In this study, we shed further light on the role of necroptosis in

the prognosis of CHOL. Our results indicate that the prognostic

model derived from the five NRGs can accurately predict the

prognosis of patients with CHOL. Furthermore, the risk score

derived from the necroptosis model is associated with important

biological functions and is clinically significant. Therefore, the

predictive signature of the five NRGs may help devise

individualized treatments for patients in the future.
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