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Analysis of immunotherapeutic
response-related signatures in
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carcinoma
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State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of
Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China
Background: Esophageal squamous cell carcinoma (ESCC) is one of the most

common and lethal malignant diseases. Immunotherapy has been widely studied

and has exhibited potential in ESCC treatment. However, there are only a portion

of ESCC patients have benefited from immunotherapy. We herein identified

immunotherapeutic response-related signatures (IRRS) and evaluated their

performance in ESCC prognosis and immunotherapeutic responsiveness.

Methods: We constructed an IRRS using the gene expression data of 274 ESCC

patients based on y -30significantly differentially expressed genes, which were

compared responders and non-responders from various patient cohorts treated

with immunotherapy. Survival analysis was performed in both the GSE53625 and

TCGA-ESCC cohorts. We also explored the differences in the tumor

microenvironment between the high-IRRS and low-IRRS score groups using

single-cell data as a reference. Three immunotherapy cohorts were used to

verify the value of the IRRS in predicting immunotherapy response.

Results: Twelve immunotherapy-related genes were selected to construct a

signature score and were validated as independent prognostic predictors for

pat ients with ESCC. Pat ients with high IRRS scores exhibited an

immunosuppressive phenotype. Therefore, patients with low IRRS scores may

benefit from immunotherapy.

Conclusions: IRRS score is a biomarker for immunotherapy response and

prognosis of ESCC.

KEYWORDS

esophageal squamous-cell carcinoma (ESCC), immunotherapy, prognosis, tumor

microenvironment, immunotherapeutic responsiveness, single-cell RNA sequencing
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Introduction

Esophageal cancer (EC) ranks the 9th most common cancer

worldwide and 6th leading cause of cancer deaths globally (1).

Esophageal squamous cell carcinoma (ESCC) is the most prevalent

EC subtype. In low-income countries, ESCC accounts for over 90% of

all EC cases (2–4). Surgical resection is the most primarily and

effective treatment for early stage ESCC (5). Chemotherapy

(fluoropyrimidine combined with oxaliplatin) is global standard

first-l ine therapy for advanced ESCC (6). Preoperative

chemoradiation and targeted therapy are optional strategies for

ESCC (7, 8). Nevertheless, these therapy strategies provide only

mild survival benefits for advantaged ESCC patients. Most ESCC

cases are difficult to diagnose at early stage, with a 5-year survival rate

of 20%–30% (9, 10).

Immunotherapy of cancer has achieved significant success in the

treatment of various malignancies (11). In recent decades, many trials

have been conducted to assess immunotherapies as prospective

treatment options for ESCC. Immune checkpoint blockade has been

considered as sequential therapy or second-line therapy for advanced

ESCC (12). Nivolumab group has been reported to show better median

overall survival time (10.9 months) than chemotherapy group (8.4

months) (12). Pembrolizumab achieved an objective response rate of

14.3% in patients with ESCC and had better effective in high PD‐L1

expression patients (13). However, not all cancer patients respond well

to immunotherapy, and it is difficult to identify the subsets of patients

who are expected to benefit from immunotherapy. Multiple factors,

including remodeling of the tumor microenvironment (TME), immune

cell infiltration, and checkpoint expression, may be determinants of the

response to immunotherapy (14–16). The interaction between cells in

the tumor microenvironment might affect anticancer treatment (17).

Recently, single-cell RNA sequencing can distinct cellular populations

and provide cell-type-specific gene expression patterns (6). The

deconvolution algorithms has been proved to enable estimates

cellular populations in bulk sequencing data (18). Integrated single-

cell and bulk RNA sequencing analysis enable us to get a further

understanding of TME. However, better prognostic tools and

biomarkers are required to accurately predict tumor characteristics

and immunotherapeutic responsiveness.

In the present study, we established a novel risk model based on

immunotherapeutic response-related genes and systematically

explored their potential importance as predictive biomarkers for

prognosis and immunotherapy response. Our risk signature model

can be used to guide individualized ESCC treatment.
Methods

Acquisition and processing of datasets

Two ESCC datasets (GSE53625 and GSE160269) were

downloaded via the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). The GSE53625 dataset

comprised 179 ESCC samples and 179 adjacent, matching non-

tumor tissues. The single cell RNA (scRNA) sequencing data
Frontiers in Immunology 02
GSE160269 dataset was composed of 208,659 single cells from 60

ESCC samples.

In addition, 95 ESCC samples were downloaded from The Cancer

Genome Atlas (TCGA; https://portal.gdc.cancer.gov). The melanoma

immunotherapy cohorts (GSE78220 and GSE91061) were also

downloaded from the GEO database. Immunotherapy cohort

IMvigor210 was downloaded from the IMvigor210CoreBiologies

package (19). Gastric adenocarcinomas(STAD) immunotherapy

cohort was downloaded from the Cancer Research Institute (CRI)

iAtlas platform(https://isb-cgc.shinyapps.io/iatlas/) (20). The details

of these cohorts were summarized in Supplement Table 2.

For prognostic analysis, eligible subjects with the standard that

available follow-up and prognostic information.

A list of genes, which have significant difference of expression

between responders and non-responders in immunotherapy cohorts,

was obtained from the TISIDB database (http://cis.hku.hk/TISIDB/)

(21). Genes that met the cutoff criteria of false discovery rate (FDR) <

0.05 and |log2-fold change (FC)| > 1 were considered

immunotherapeutic response-related genes (IRRGs). A total of 798

genes were included in this study after their intersection with

the datasets.
Construction and validation of the
immunotherapeutic response-related
signature

IRRGs differentially expressed between paracancerous (n = 179)

and cancerous (n = 179) tissues were identified using the R limma

package(3.50.3) (22) based on the thresholds of an adjusted p < 0.05

and | log2 (fold change) | > 1. IRRGs significantly associated with

overall survival (OS) in ESCC were identified by univariate Cox

regression using the survival package (3.2-11) in R. Next, the

differentially expressed genes (DEGs) and prognostic genes were

investigated using the R ggvenn package (0.1.9) to identify

prognostic cellular senescence-related DEGs. The least absolute

shrinkage and selection operator (LASSO) Cox regression analysis

(23) was performed using the R glmnet package (4.1-4) (24) to

construct the risk score model. We performed 1000 substitution

samplings in the dataset, which were separated into high- and low-

score groups according to the optimal cutoff value of the IRRS as

calculated by the cutoff package, and the performance of the IRRS was

subsequently evaluated.
Annotation and functional
enrichment analyses

Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA)

analyses were performed using the R cluster Profiler package (4.2.2)

(25). DEGs between the high- and low-risk groups were subjected to

pathway and functional enrichment analyses. Pathways with P < 0.05,

FDR < 0.25 and absolute normalized enrichment score (|NES|) > 1

were considered significant.
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Analysis of scRNA sequencing data from
ESCC patients

scRNA-seq data were obtained from the GSE160269 dataset. We

profiled the transcriptomes of 208,659 single cells, including 97,631

immune and 111,028 non-immune cells from 60 ESCC samples. The

data provided eight main cell populations, namely epithelial cells

(N = 44,730), fibroblasts (N = 37,213), endothelial cells (N = 11,267),

pericytes (N = 3102), fibroblastic reticular cells (FRC; N = 1,319), T

cells (N = 69,278), B cells (N = 22,477), and myeloid cells (N = 19,273)

(26). The TME cells were analyzed in this study. The Seurat package

(version 4.1.1) (27) was used for quality filtering and downstream

analyses. We performed principal component analysis (PCA) with

RunPCA, and cell clusters were identified using the “FindNeighbors”

and “FindClusters” functions. Cluster-specific marker genes were

identified using the “FindAllMarkers” function. The results were

visualized on a tSNE plot of the top ten PCs using RunTSNE.

Twenty-five immune cells and 16 non-immune stromal cell

subtypes were identified in the TME. Pseudotime trajectory analysis

was performed using the R monocle package (2.22.0) (28).
Deconvolution and cell communication
analysis

We enumerated the proportions of distinct cell subpopulations in

the bulk tissue expression profiles using CIBERSORTx (18) and

intercellular communication was evaluated using NicheNet (29).

We used a previously described single-cell reference matrix file to

create a custom signature matrix. Cell types from the scRNA-seq data

were based on prior categorizations.
Statistical analysis

Data and graphs were all created utilizing the R software (version

4.1.0.). Receiver operating characteristic (ROC) curves were plotted

using the R package “timeROC” (0.4). The statistical significance of

normally distributed variables was evaluated using unpaired Student’s

t-tests, and nonnormally distributed variables were estimated using

the Wilcoxon rank sum test. Categorical variables between two

groups were compared by Fisher’s exact test. Statistical significance

was two-sided, and p value < 0.05 was considered as the threshold

for significance.
Results

Identification of differentially expressed
immunotherapeutic response-related genes
in ESCC

We downloaded a genelist about immunotherapeutic response

from the TISIDB database (21) and intersected with the ESCC

datasets from GEO and TCGA. 798 genes were obtained. These

immunotherapeutic response-related genes were compared between

paracancerous and cancerous tissues in the GSE53625 ESCC cohort
Frontiers in Immunology 03
and 226 DEGs were identified (Figure 1A). We used GO and KEGG

pathway enrichment analyses to gain insight into the biological

process of these DEGs. KEGG analysis revealed that the 226 DEGs

were involved in cytokine–cytokine receptor interactions, protein

digestion and absorption, complement, and coagulation cascades.

GO pathway enrichment analysis demonstrated that the DEGs were

enriched in extracellular matrix structural constituents, receptor

ligand activity, and signaling receptor activator activity among

others (Figure S1).

Univariate Cox analysis of the 798 immunotherapeutic response-

related genes showed that 54 genes were significantly associated with

OS in GSE53625 ESCC cohort. (p < 0.05; Supplementary Table 1).

Among the 54 genes, 20 genes were overlapped with the 226 DEGs

(Figures 1B, D). Cox analysis of these 20 overlapping genes showed 10

genes to be protective factors with a Hazard ratio (HR) < 1 and the

other 10 genes to be risk factors with an HR > 1 for ESCC prognosis

(Figure 1C). These results implied that the expressions of these 20

overlapping genes may exert important influence in ESCC

progression and prognosis.
Establishment of the IRRS in ESCC

The LASSO algorithm was used to obtain the coefficients of the 20

genes mentioned above and to construct an immunotherapeutic

response-related signature (IRRS) for survival prediction. Based on the

optimum l value, twelve genes were selected to be the IRRS, indicating

the prognostic signature (Figures 1E, F). The risk score of each patient

was calculated based on the formula: risk score = (0.02884450*expression

value of STAR6) + (-0.09624035*expression value of HPSE) +

(0.21499692*expression value of KCNMA1) + (0.17381030*expression

value of ANO1) + (0.44276994*expression value of SERPINH1) +

(-0.18003164*expression value of BCAT1) + (-0.01284725*expression

value of USP2) + (-0.02837151*expression value of NKAIN2) +

(-0.06109935*expression value of IGFL2) + (-0.05416382*expression

value of CASP14) + (-0.01472970*expression value of CFTR) +

(0.01164075*expression value of SYNPO2). Patients in the training

cohorts were classified into low- and high-risk groups based on the

cut-off value of the risk score (Figures 2A–C). Kaplan–Meier curve

demonstrated that the prognosis of ESCC patients in the high-risk group

was significantly poorer than that in the low-risk group (p < 0.0001;

Figure 2D). We then performed Time-dependent ROC analysis and

found the areas under the curve (AUCs) of the IRRS model for the 2-, 3-,

and 4-year OS were 0.715, 0.731, and 0.76, respectively (Figure 2E). The

correlation between the IRRS and patients’ clinicopathological

characteristics, including age, sex, drinking and smoking status, N

stage, T stage and TNM stage (Figure S2) was demonstrated.

Furthermore, patients with late-stage ESCC had higher IRRS scores

(Figure 2F, G). However, there was no significant correlation between

IRRS score and other clinicopathological factors.

To verify the prognostic value of the IRRS, the TCGA-ESCC

cohort was enrolled using the same method applied to the training

dataset. The analysis revealed that patients in the high-risk score

group have a poorer prognosis (p = 0.044; Figure S3A). The area

under the time-dependent ROC curve (AUC) values in the TCGA-

ESCC cohort were 0.823, 0.811, and 0.844 at 2, 3, and 4 years,

respectively (Figure S3B).
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Univariate and multivariate Cox analyses indicated that age,

TNM stage and IRRS score were independent prognosticfactors for

the ESCC patients (Figure 3A, B). We then constructed a predictive

nomogram to improve the prognosis capacity of the IRRS score

model and to provide a visualization and quantitative method for

predicting 2-, 3-, and 4-year OS (Figure 3C). The concordance index

(C-index) of this model was 0.704, and the AUCs of the 2-, 3-, and 4-
Frontiers in Immunology 04
year OS for the nomogram were 0.763, 0.77, and 0.807, respectively

(Figure 3D), which were superior to the prognostic efficacy of the

IRRS score alone (0.715.0.731 and 0.76, respectively). We plotted

calibration curves to evaluate the performance of the nomogram. The

results showed the model’s predictions curve were close to the ideal

curve (Figures S4A–C). These results suggested that the nomogram

model has a great prediction power for ESCC patients.
A B

D

E F

C

FIGURE 1

Identification of immunotherapeutic response-related genes in Esophageal squamous-cell carcinoma (ESCC). (A) Volcano plot of immunotherapeutic
response related genes in the GEO cohort. The blue and red dots indicate down- and upregulated genes. (B) Venn diagram of the intersection between the
differentially expressed genes and prognostic genes. (C) Forrest plot of the univariate Cox regression analysis of 16 overlapping genes. (D) The gene
expression of 20 overlapping genes between ESCC and normal tissues. Tumor, red; Normal, blue. ****p < 0.0001; ns, no statistical significance; GEO, Gene
Expression Omnibus. (E) LASSO coefficient profiles of 10 candidate genes. (F) Cross-validation for tuning parameter selection in the LASSO regression.
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Esophageal squamous cell carcinoma is a disease with highly somatic

alterations. We used validation cohort TCGA-ESCC cohort to detected

mutation. The top 30 mutated genes in the high and low SIRGs score

groups are shown in Figures S5A, B. ESCC driver TP53 was high in high

risk group compared with low risk group (Figures S5C, D) (30). The IRRS

score was no difference between high- and low- risk group (Figure S5E).

To provide the mechanistic explanation for the predictive

significance of IRRS and describe the possible mechanisms
Frontiers in Immunology 05
underlying the predictive role of the signature, we performed

differential gene expression analyses on the training cohort. DEGs

between the two groups were identified by applying the screening

threshold of FDR < 0.05 and |log2FC| ≥ 1, GO and KEGG pathway

analyses were performed based on these DEGs. The results showed

that immune responses, such as interleukin-1 receptor binding and

the IL-17 signaling pathway, were enriched in these DEGs (Figure

S4G). In addition, GSEA analysis revealed that focal adhesion, ECM
A B

D

E F G

C

FIGURE 2

Survival analysis of immunotherapeutic response-related signature. (A) The rank of IRRS scores. (B) Survival status in the training cohort. (C) Heatmap of
expression levels of twelve genes in the high- and low-score groups. (D) Kaplan–Meier curve of training cohort grouped by IRRS score. (E) Time-
dependent ROC curve analysis of the prognostic model (2, 3, and 4 years). (F, G) The correction between IRRS score and patient’s clinicopathological
stage, including T stage and TNM stage.
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receptor interaction, and TGF-b signaling were significantly enriched

in the high IRRS score group (Figure 3E), whereas glutathione and

linoleic acid metabolism and Nod-like receptor signaling were

enriched in the low IRRS score group (Figure 3F). Taken together,

these results indicated the high risk group may possess

immunosuppressive TME.
Frontiers in Immunology 06
Identification of the association between the
IRRS and the tumor microenvironment using
scRNA sequencing data

scRNA sequencing data was analyzed to further explore the

synergistic effect of the IRRS and the TME cells in ESCC. We used
A B

D

E F

C

FIGURE 3

Establishment of the IRRS score-based nomogram (A, B) Forest plot of univariable and multivariable Cox regression analysis of IRRS and overall
survival in the training cohort. (C) Nomogram to predict the probability of OS in 2, 3 and 4 years for ESCC. (D) AUC values of ROC predicted 2, 3
and 4 year OS rates of Nomogram. (E) GSEA analysis of the high IRRS score group. (F) GSEA analysis of the low IRRS score group.
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the previously profiled transcriptomes of ~208,659 single cells with

eight main cell populations (Figures 4A, B), among which fibroblasts,

endothelial cells, T cells, B cells, pericytes and myeloid cells were

analyzed. Next, 40 cell clusters, including T helper 17 (TH17) cells,

follicular helper T (TFH1/2) cells, naïve T (TN) cells, regulatory T

(Treg) cells, memory T (TMEM-CD4/CD8) cells, effector T (TEFF)

cells, exhausted T (TEX) cells, monocytes (Mono01-03), tumor-

associated macrophages (TAM01-04),dendritic cells (tDC, pDC,

cDC), mast cells (Mast), resting B cells, activated B cells, germinal

center B cells (GCB), plasma cells, normal mucosa fibroblasts (NMF),

normal activated fibroblasts (NAF1/2), cancer-associated fibroblasts

(CAF1-4), vascular smooth muscle cells (VSMC), normal endothelial

cells (NEC1-3) and tumor endothelial cell (TEC1-3) were identified

by t-SNE analysis (Figures 4C–G; Figures S6A–E). We then used

CIBERSORTx to infer cell-type abundance from bulk RNA-seq data

using scRNA data, and estimated the proportions of the 42 cell types

in the training dataset. The proportions of TME cell types between the
Frontiers in Immunology 07
high- and low-risk groups was compared using the Kruskal–Wallis

test. The profiles of the high- and low-risk groups are shown in

Figure 4H and Figure S6F. The abundance of TEX, NAF2, CAF4, and

VSMC increased, and the abundance of Mono1, TAM03, and NEC2

decreased in the high-risk group (p < 0.05; Figure 4I). The cell

proportions between low and high risk groups demonstrated

significantly distinct TME patterns.

The roles of these cells in the different groups were investigated.

The trajectories of CD8+ T cells, CAFs, and TAMs were calculated

using the Monocle method. The trajectory of CD8+ T cells ranged

from TN to TEX, TEFF, and TMEM, with CD8 being an intermediate

cluster (Figures 5A–C). As expected, TCF7 and CXCR5 were

downregulated during the pseudotime, but immune checkpoint

genes such as PDCD1, CTLA4, LAG3, and HAVCR2 increased

along the pseudotime axis (Figure 5D). The trajectory of CAFs was

from CAF1 to CAF4 (Figures 5E, F), and markers of CAFs with

immunosuppressive functions (31)–FAP, ITGB1, and TNFSF4–were
A B

D E

F G

I

H

C

FIGURE 4

Visualization plots of scRNA-seq data. (A, B) tSNE plot of 208,659 cells from ESCC. (C–G) tSNE plots of T cells, Myeloid cells, B cells, Fibroblasts and Endothelial
cells colored by cell type. (H) Fractions of each cell type in low- and high-SIRGs score group. (I) The different TME cells in low- and high-IRRS score groups.
*p<0.05, **p<0.01, ***p<0.001, ns, not significant.
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upregulated along the pseudotime axis. ECM markers such as FN1,

COL1A1, and TAGLN were also gradually enriched along the

trajectory. (Figure 5G). The pseudo-ordering of tumor-associated

macrophages is organized into two main branches (Figures 5H–K).

The division of the TAMs is complex. TAMs display remarkable

plasticity and are regulated by their local microenvironment (32). M1

macrophage markers (CD68, TNF, and CXCL9) and M2 macrophages

markers (IL10, VEGFA, MSR1) were expressed in both intermediate

clusters of TAM03 (Figure 5L). We considered TAM03 to be in a state

of constant transition between the different TAM types.
Frontiers in Immunology 08
These results implied that high-level IRRS may exhibit an

immunosuppressive phenotype mediated by the high abundance of

exhausted T cells and CAFs.
NicheNet revealed intercellular
communication

To further identify the TME interaction between IRRS subtypes,

intercellular communication was inferred using NicheNet analysis, a

computational method that models cell−cell communication by using
A B

D

E F G

I

H

J K

L

C

FIGURE 5

Characterization of major trajectories. (A) Pseudotime trajectory of CD8+T cells colored by cell types. (B) Pseudotime trajectory of CD8+T cells colored
by pseudo-time. (C) Distribution of CD8+T cells. (D) Expression of CD8+T marker genes across pseudotime. (E) Pseudotime trajectory of cancer-
associated fibroblasts colored by cell types. (F) Pseudotime trajectory of cancer-associated fibroblasts colored by pseudotime. (G) Distribution of cancer-
associated fibroblasts. (H) Expression of tumor-associated macrophages marker genes across pseudotime. (I) Pseudotime trajectory of CD8+T cells
colored by cell types. (J) Pseudotime trajectory of tumor-associated macrophages colored by pseudotime. (K) Distribution of tumor-associated
macrophages. (L) Expression of tumor-associated macrophages marker genes across pseudotime.
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prior knowledge to prioritize ligand–receptor pairs. We inferred that the

modes of intercellular communication differed by risk group. TGFB1-

related ligand−receptor pairs were predicted to be increased in the high-

risk group (Figures 6A–D), and IFNG-related ligand−receptor pair

receptors were predicted to be increased in the low-risk group

(Figures 6E–G). CXCL12-CXCR4 and HLA-E-KLRC1 were predicted

in TEX cells compared to other cell types (Figure 6A); PDGFRB-

PDGFRA expression was predicted in CAF4 cells (Figure 7B); BMP4-

BMPR2 was predicted in VSMCs (Figure 6C); and CD40LG-CD40 was

predicted in TAM03 cells (Figure 6F) and increased the antitumor

immune response (33, 34). The complex crosstalk in the TME

indicates different immunosuppressive levels between high- and low-

risk groups. We used only 12 IRRS genes for NicheNet analysis in

differentially expressed cell types to predict the target ligands of IRRS
Frontiers in Immunology 09
(Figure 6H), and these ligand–receptor interactions may be applied as a

guide for immunotherapy.
Predictive potential of the IRRS for
immunotherapy response

Recent studies showed that the immune checkpoint associated-genes

can modulate immune infiltration (35). We compared the expression of

20 inhibitory immune checkpoint molecules between high and low IRRS

group. (Figure 7A). CTLA4 and HAVCR2, which are exhausted T-cell

markers, were found expressed at high levels in the high IRRS group

whereas PD-L1 tend to be expressed at high levels in the low IRRS group.

We then analyzed the correlation between the IRRS and Tumor Immune
A B

D

E F

G H

C

FIGURE 6

Cell–cell communications result. (A–G) Heatmap visualizing NicheNet analysis of receptors of prioritized ligands expressed by (A) exhausted T (TEX)
cells, (B) cancer-associated fibroblasts (CAF4) cells, (C) vascular smooth muscle cells (VSMC), (D) normal activated fibroblasts (NAF2), (E) tumor-
associated macrophages (TAM03), (F) monocytes (Mono01), and (G) normal endothelial cells (NEC2). (H) NicheNet analysis of ligand-receptor
interactions of IRRS.
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Dysfunction and Exclusion (TIDE), which are recognized as

immunotherapy predictors (36, 37). As expected, the differences

observed in the TIDE analysis were similar to those observed in the

scRNA analysis. We found that patients in the high-risk group tended to

achieve higher T-cell exclusion, CAF and TIDE scores. (Figures 7B–D).

More importantly, we performed Kaplan–Meier survival analysis to

investigate the predictive role of immunotherapy on OS using the

immunotherapy cohort, including the IMvigor210, STAD and

melanoma cohorts (GSE78220 and GSE91061). In the IMvigor210

cohort, patients in the complete response (CR) and partial response

(PR) groups tended to achieve lower IRRS scores (Figure 7E). As depicted

in Figure 7F, low-risk patients had prolonged OS compared with high-

risk patients. A similar result was observed in the melanoma and STAD
Frontiers in Immunology 10
cohorts (Figures 7G, H; Figure S7). These results proposed that patients

with low IRRS scores may benefit from immunotherapy.
Discussion

ESCC is one of the most common esophageal cancer subtypes in

Asian populations, only a subset of ESCC patients can benefit from

immunotherapy. It is important to identify the population of patients

expected to respond to immunotherapy and their specific TME. In

our study, We established a survival prediction model -IRRS by the

gene expression of twelve senescence features in the GEO dataset. The

IRRS was validated using the TCGA cohort and displayed robust
A

B D

E F G H

C

FIGURE 7

Estimation and validation of IRRS in immunotherapeutic. (A) The expression levels of 20 immune checkpoint genes in different IRRS score groups.
*p < 0.05; **p < 0.01; ns, no statistical significance; (B–D) The distribution of TIDE scores, T cell excel in the high-risk and low-risk groups. (E) The
distribution of IRRS scores between two immunotherapy response groups in the melanoma cohort. (F) Kaplan–Meier curves for high and low IRRS
score patient groups in the melanoma cohort. (G) The distribution of IRRS scores between the two immunotherapy response groups in the
IMvigor210 cohort. (H) Kaplan–Meier curves for high and low IRRS score patient groups in the IMvigor210 cohort.
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predictive capability. We also used scRNA-seq as a reference to

characterize cell types within TME. Two external immunotherapy

cohorts were chosen to verify the efficacy of the IRRS score in

predicting immunotherapy response. The results provide new

insights for deep understanding of the mechanism for prognosis

and immunotherapy response associated with the TME, which may

benefit ESCC patients’ precision care.

Twelve immunotherapeutic response-related genes (STRA6,

HPSE, KCNMA1, ANO1, SERPINH1, BCAT1, USP2, NKAIN2,

IGF12, CASP12, CFTR, and SYNPO2) were herein selected to

establish the IRRScore prognostic model. These genes have been

reported to associated with tumor progression and immune

suppressive TME in ESCC and other cancers. Specifically, HPSE,

ANO1, and SERPINH1 have been shown to be prognostic indicators

of ESCC (38–41). STRA6, IGFL2, USP2 and CASP14 are associated

with the prognosis of other cancers, including hepatocellular

carcinoma, bladder cancer, gastric cancer and clear cell renal cell

carcinoma (42–48).The overexpression of CFTR suppressed the

proliferation and migration/invasion of ESCC cells and was

associated with a good patient prognosis (49). SERPINH1 and

BCART1 are associated with various immune checkpoint genes in

some cancers (41, 50, 51). The absence of NK cell-heparanase

impa i red the e ff ec t o f immune checkpoin t b lockade

immunotherapy (39). KCNMA1, a large potassium (BK) ion

channel, is a possible target for cancer immunotherapy (52).

SYNPO2 and CFRT expression play an important role predicting

the efficacy of immune checkpoint inhibitor therapy (53, 54). Based

on the previous studies, we believe that the IRRS has the potential to

reflect ESCC prognosis based on the alterations of immune landscape.

scRNA-seq enables a comprehensive investigation of cell diversity

in heterogeneous ESCC tissue samples. We deconvoluted the bulk

ESCC RNA-seq data using ESCC scRNA-seq data to estimate cell-

type proportions to avoid errors from changes in expression patterns.

TEX, CAF4, NAF2 and VSMCs proportions were significantly higher

in ESCC patients in the high risk group. TEX is characterized by

elevated expression of inhibitory receptors (55).Trajectory analysis

revealed that CAF1 was transformed into CAF4. The markers of

CAFs, constituting an immunosuppressive environment, increased

along the pseudotime (31). The higher abundance of TEX and CAF4

suggests that patients with higher IRRS scores may have an

immunosuppressive TME. TAMs exhibit a high degree of plasticity,

and TAM03 expressed both M1 and M2 macrophage markers,

suggesting that it is sensitive to the internal environment.

The interactions between immune and non-immune stromal cells

may promote an immunosuppressive ESCC TME. TGF-b-related
ligand−receptor pairs were predicted in high-risk group cell types,

with GSEA also showing upregulated TGF-b signaling; this was

reported to be an antitumor immunity restraining factor (19, 56,

57). On the other hand, IFN-g-related ligand−receptor pairs, which

have been reported to be necessary for clinical benefit during

immunotherapy (58), were predicted in the low-risk group cell

types. The expression of exhausted T-cell markers, HAVCR2 and

CTLA-4, were also higher in ESCC specimens with high IRRS scores.

Interestingly, PD-L1 expression increased in ESCC specimens with

low IRRS scores. Participants with high PD‐L1 expression had a

higher OS rate than those with low PD‐L1 expression (59). In our

research, low IRRS score group had higher TIDE score and PD-L1
Frontiers in Immunology 11
expression, suggesting that they were more able to benefit from PD-1/

PD-L1 inhibitors treatment (36, 37, 59).

We used two external immunotherapy cohorts to further verify

the efficacy of IRRS score. In this result, low-risk patients had a

prolonged OS time compared to high-risk patients in the three

immunotherapy cohorts (IMgovir210, melanoma and STAD

cohorts). There is evidence indicates that exhausted T-cells leading

to poor responsiveness to treatment with immune checkpoint

blockade (13). The complex interaction that occurs between TME

immune checkpoint genes and IRRS may provide new insights into

patients who will benefit from treatment with immune checkpoint

inhibitor The immunotherapeutic response-related signature can be

used not only as a prognostic tool but also as a guide for

individualized immunotherapy. In our study, ANO1, HPSE and

CFTR were predicted to participate in TME crosstalk. Thus, these

genes may serve as more accurate biomarkers.

Our study still has some limitations. First, the twelve-gene

signature was developed and validated based on a public database;

thus, more experimental data are needed. Second, there are 58.1% and

55.8% patients have been treated with chemotherapy or radiotherapy

in GSE53625 and TCGA-ESCC cohorts. These proportions are

similar to patients with prior treatment in immunotherapy cohorts

which has been used as validation cohorts, such as 51.5% in

GSE91061, 42.8% in GSE78220 and 78.1% in IMvigor210 cohorts.

Since we are establishing a model to predict the survival and

immunotherapeutic effect of ESCC patients, whose gene expression

status can reflect the gene expression of patients before

immunotherapy. The current obtainable ESCC and immunotherapy

cohort are very limited. So, we can’t find a cohort which had patients

without prior treatment. We will use more accurate cohorts for

validation in the future when these dataset is obtainable. Third, the

number of immunotherapy cohorts with high-throughput sequencing

is very limited. We need to verify the applicability of our research

results in patients with ESCC receiving immunotherapy. Moreover,

the molecular functions and mechanisms of prognostic IRRS should

be further elucidated using basic experiments.
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