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Keloid is a type of disfiguring pathological scarring unique to human skin. The

disorder is characterized by excessive collagen deposition. Immune cell infiltration

is a hallmark of both normal and pathological tissue repair. However, the

immunopathological mechanisms of keloid remain unclear. Recent studies have

uncovered the pivotal role of both innate and adaptive immunity inmodulating the

aberrant behavior of keloid fibroblasts. Several novel therapeutics attempting to

restore regulation of the immunemicroenvironment have shown variable efficacy.

We review the current understanding of keloid immunopathogenesis and highlight

the potential roles of immune pathway-specific therapeutics.
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1 Introduction

Keloid is a type of pathological scarring unique to human skin. The disorder is

characterized by dysregulated fibroproliferation with excessive production of extracellular

matrix (ECM) and extension beyond the initial wound (1). Keloid scars are often

disfiguring, profoundly impair the quality of life and cause immense physical and

mental distress of affected individuals, especially in those with symptomatic (pruritic,
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painful) and/or hyperpigmented scars (2–4). Limited

epidemiological data suggested a female predominance, and a

higher prevalence among people of darker skin complexion, such

as those of African and Asian descents (5, 6). The prevalence of

excessive scarring in Black, Asians and Caucasians was recently

reported at 2.4%, 1.1% and 0.4%, respectively (6). Association

between excessive scarring and other systemic conditions

including hypertension (7–9), vitamin D deficiency (10, 11), and

atopic dermatitis (12, 13) has been suggested. A recent cohort of the

UK biobank found atopic dermatitis significantly associated with

excessive scarring across ethnic groups (6). Hypertension in Blacks

and vitamin D deficiency in Asians also showed significant

association with keloid formation (6).

In practice, several preventive and therapeutic therapies are

used to manage keloids. Application of silicone gel sheets, topical

corticosteroids, and intralesional corticosteroids are frequently

utilized in individuals with a history of excessive scarring after

trauma or surgeries (14). For established keloids, nonsurgical

management commonly involves intralesional corticosteroids

(e.g., triamcinolone acetonide) (5). Laser-assisted topical steroid

application is a novel alternative with better reported aesthetic

outcome (15). Intralesional injection of botulinum toxin A, 5-

fluorouracil, verapamil, bleomycin, and interferon (IFN)-a2b are

less common measures with varying efficacy (16, 17). Other

methods include laser therapy (18), and intralesional cryosurgery

(19). Monotherapy with radiation is less preferred due to the

requirement of large radiation doses (14). Successful surgical

management of keloids hinges on the ability to minimize dermal

tension (20). Body site-specific techniques have been proposed (14).

The high postsurgical recurrence rate can be ameliorated with

adjunctive radiation and/or local corticosteroids (14). There are

also anecdotal reports with tissue-engineered allografts (21) and

platelet-rich plasma (22). The associated adverse effects of

established therapies could be significant, especially with long-

term or repeated treatment. Intralesional corticosteroids, one of

the most frequent methods in both prophylactic and therapeutic

management of keloids, is associated with skin hypo-/hyper-

pigmentation, atrophy, and telangiectasia.

The pathogenesis of the exuberant scarring remains

incompletely understood. No single determining pathway has

been identified. Instead, roles of several transcription factors,

growth factors, cytokines, ECM proteins, and their associated

regulators/effectors have been implicated in experimental studies.

The dysregulated molecular profile causes imbalance within and

across stages of tissue repair. Wound healing consists of an

overlapping sequence of hemostasis, inflammation, proliferation

and re-epithelization, and remodelling (23, 24). At the

inflammation stage, the innate immune system is activated in

response to the damage-associate molecular patterns (DAMPs)

and other danger signals (23, 24). Cell debris are removed via

phagocytosis of neutrophils (23, 24). Macrophages are later

recruited. In addition to phagocytosis, macrophages play an

important role in the resolution of inflammation, setting the stage

for proliferation (23, 24). The proliferation phase is characterized by

migration of keratinocytes, angiogenesis, and formation of

granulation tissue (23, 24). Remodelling ensues with replacement
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of collagen III with collagen I and regression of blood vessels (23,

24). Across the stages, there is a complex interplay between immune

cells and fibroblasts. Moreover, the outcome of subsequent stages is

closely associated with the integrity and functionality of prior events

(23). Hence, excessive scarring could arise as primary dysfunction

of the remodelling phase or secondary to an exaggerated

inflammatory response (23, 25).

The etiology of keloids is likely multifactorial and hinges on a

constellation of factors, including genetic predisposition (26–34),

inflammation (35–39), mechanical stress (40–43), tissue hypoxia

(44–48), delayed-type hypersensitivity (49), and metabolic

dysfunction (50, 51). Familial cases of autosomal dominant

inheritance with incomplete clinical penetrance and variable

expression have been described (52–54). Several immune

pathway-associated susceptible genotypes have been identified,

including polymorphisms of interleukin (IL)-6 and transforming

growth factor (TGF)-b receptors (26–28, 55–57). Moreover,

immune cell infiltration is a hallmark of keloid tissue. Preferential

recruitment of immune cells modulates the process of skin repair

via interaction with keloid fibroblasts (58, 59). Since the 1970s, the

immunological aspect of keloid formation has been proposed (60–

63), and a potential role for autoimmunity was frequently evoked in

early reports (60, 63). With the advent of novel technologies and

laboratory methods, the interest in the immunological landscape of

keloid formation has led to vigorous investigations over the past

two decades.

The reticular dermis has been proposed as the main locale of

chronic inflammation underscoring the formation of keloid scars

with upregulation of various proinflammatory cytokines,

including IL-1a, IL-1b, IL-6, and tumor necrosis factor (TNF)-a
(35). Interestingly, there appeared to be a concomitant excess of

regulatory cell types and cytokines (64, 65). Study of keloid

histology demonstrated altered expression of ECM molecules

with increased type I/III collagen ratio, and a hypercellular

dermis with increased numbers of fibroblasts, mast cells and

macrophages, as well as varying presence of lymphocytes (1, 36,

64, 66–75). Keloid tissue also harbored a higher percentage of

mesenchymal stem cells, and the amount of which was found to be

correlated with disease recurrence (76). The role of myofibroblasts

is less defined. A recent report found that myofibroblasts, a key

feature of cultured fibroblasts in several reports, are not

characteristic of keloid lesion in vivo (77). The concept of keloid

microenvironment has been frequently evoked to describe the

complex cellular and molecular interplay that gives rise to and

sustains keloidogenesis . Recent technologies , such as

identification of differentially expressed genes via examination

of RNA sequencing data sets (74, 75, 78–80), have led to more

extensive analysis of keloid tissue. A skewed T helper (Th) 2

phenotype was recently characterized (81–85), along with a

potential co-susceptibility of keloids and atopic dermatitis (6,

12, 86). Moreover, even in the absence of comorbid atopic

dermatitis, both lesional and non-lesional skin of patients with

chronic keloids exhibit Th2 predominance (81). These features of

heightened immune response were validated in a recent

transcriptomic study, in which a globally elevated expression of

several immune pathways over the entire integument of keloid
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patients was seen, especially the Th2 and Janus kinase (JAK) 3

pathways. Increased expression of T cell, regulatory T cell (Treg),

and dendritic cell (DC) markers was also observed, along with the

expression of the innate, Th1- and Th17/Th22-signaling pathways

(85). The change in cellular composition and function is

accompanied by increased levels of IL-6, IL-10, IL-17, TGF-b,
and TNF (38, 39, 48, 78, 85, 87–94). Increase in IL-4, IL-13, IL-18,

granulocyte colony-stimulating factors, and granulocyte-

monocyte colony-stimulating factors, were also observed (39,

82–85, 87, 88). On the other hand, reduced expression of

potential anti-inflammatory mediators, such as IL-34 and IL-37,

has been reported (85, 87, 95, 96). Single-cell RNA sequencing and

spatial transcriptomics (72, 97–99), as well as epigenetics (34, 100)

are emerging fields utilized to reveal potential pathophysiological

features of keloids. One single-cell RNA sequencing study

identified a distinct macrophage-centered communication

regulatory network that may favor transition and proliferation

of M2 macrophages (72). In addition to the local characteristics,

corresponding abnormalities in the cytokine profile have been

identified in the peripheral blood of keloid patients (39). Serum

soluble human leukocyte antigen-E (sHLA-E) was recently

identified as a potential biomarker of keloid occurrence and

recurrence (101). Furthermore, aberrant immune cell

composition and activity are increasingly recognized in the non-

lesional skin of keloid patients (81, 82, 85). Reports on the

involvement of humoral immunity were less consistent. Anti-

hnRNPA2B1, an autoantibody against RNA-associated proteins,

was found to be significantly elevated in the serum of keloid

patients (73). The same study also showed deposition of

immunoglobulins (IgA, IgM) and complements (IgA, IgM, C3

and C1q) via immunofluorescence in keloid skin tissue (73). These

findings suggest a systemic pathological process underscoring the
Frontiers in Immunology 03
development of keloids, such that the risk-benefit of repeated local

therapy for susceptible individuals is called into question. Further

studies are required to elucidate the origin of the keloid-prone

immunological signatures.

In th i s rev iew , current unders tand ing of ke lo id

immunopathogenesis is discussed, with highlights of potential

pathway-targeted therapeutics.
2 The roles of immune cells
in keloid formation

2.1 Mast cells as profibrotic mediators

Mast cells cluster in tissue exposed to the external environment.

In human skin, mature mast cells are abundant near the

vasculature, lymphatics, nerves, and fibroblasts, and play a crucial

role in wound healing by initiating inflammation, facilitating re-

epithelialization, and inducing angiogenesis (68). It has been

postulated that mast cells contribute to profibrotic chronic

inflammation as well as to the common symptoms (pruritus and

erythema) associated with keloid scars (Figure 1). Silicone gel

sheeting has been shown to reduce mast cell infiltration in keloid

lesions and thus provide symptomatic relief (102).

Increased intralesional and perilesional mast cells can be

observed in keloid tissue, both perivascularly and within

abnormal collagen bundles (36, 103). Degranulated mast cells are

frequently seen in contact with active fibroblasts, indicating the

presence of cell–cell interaction (67, 103). Attenuation of such

cellular crosstalk has been achieved by blockading the

phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of

rapamycin (mTOR) pathway using green tea extract (polyphenol
FIGURE 1

The role of mast cells in keloid pathogenesis. Degranulated mast cells crosstalk with activated keloid fibroblasts via the PI3K/Akt/mTOR pathway,
leading to more collagen synthesis. Enzymes, growth factors, and cytokines released upon mast cell degranulation contribute to activation of the
RAS, upregulation of keloid fibroblasts, angiogenesis, and cutaneous symptoms. AT-II, angiotensin II; FGF-2, fibroblast growth factor 2; IL,
interleukin; PDGF, platelet-derived growth factor; PI3K/Akt/mTOR, phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin pathway; RAS,
renin–angiotensin system; TGF-b, transforming growth factor-b; TNF-a, tumor necrosis factor-a; VEGF, vascular endothelial growth factor.
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EGCG), with a corresponding reduction in type I collagen

production (104). Several pro-angiogenic factors are released by

mast cells, including vascular endothelial growth factor (VEGF),

fibroblast growth factor-2, platelet-derived growth factor, IL-6,

tryptase, and chymase. Tryptase, a serine protease, is one of the

most potent inducers of tissue angiogenesis. Tryptase-positive mast

cell density and keloid angiogenesis are positively correlated (105).

The use of transdermal tryptase inhibitors for hypertrophic scars

and keloids has been described with symptomatic benefit (105).

Mast cell chymase expression and activity are heightened in keloid

tissue. The enzyme is profibrotic and stimulates fibroblast

proliferation and collagen synthesis via the TGF-b1/Smad

signaling pathway (106). Mast cell-derived chymase enhances

angiotensin II expression, leading to local activation of the renin-

angiotensin system and upregulation of TGF-b1, TNF-a, platelet-
derived growth factor, and IL-1b in keloid fibroblasts (107).

Chymase inhibitors have been shown to possess antifibrotic

property in skin (108), cardiovascular system (109), and liver

(110) in animal models. Other means of mast cell antagonization,

e.g., with mast cell stabilizers (111) or tyrosine kinase inhibitors

(112), have not been tested in keloids.
2.2 Macrophage polarization
and chronic inflammation

M1 (classically activated, CD68-positive) and M2 (alternatively

activated, CD163-positive) are two well-established macrophage

subgroups. The two phenotypes possess opposing properties, with

the former exerting a pro-inflammatory effect and the latter an anti-

inflammatory effect (113). An imbalance between M1 and M2

macrophages has been described in several chronic inflammatory

conditions such as rheumatoid arthritis (114). Normal wound

healing is characterized by an orchestrated transition from M1-

predominant early inflammatory stages to M2-predominant

restitution (115). Dysregulation of this process leads to either

prolonged inflammation with delayed wound closure or increased

scarring. M2 macrophages are disproportionally elevated in keloid
Frontiers in Immunology 04
lesions (69–72, 74), in part due to local enrichment of Th2

cytokines. Although not yet verified, M2 dominance has also been

linked to macrophage sensitivity to mechanical signals, including

skin tension and stiffness (42). M2 macrophages initiate wound

closure via secretion of TGF-b1, a potent inducer of both fibroblast

proliferation and their differentiation into myofibroblasts (115).

Moreover, M2 macrophages induce transcription factor forkhead

box P3 (FOXP3) expression in circulating CD3+ T cells,

contributing to the formation of Tregs (64) (Figure 2).

Interestingly, while M2 predominance is clearly present,

expression of both M1 (inducible nitric oxide synthase [iNOS],

IL-12)- and M2 (IL-10, TGF-b)-associated genes and proteins is

enhanced keloid lesions compared to normal skin (64).
2.3 Tregs-derived TGF-b1 and
collagen expression

The numbers of Tregs are increased in keloid lesions (64, 65).

Tregs proliferate after cellular contact with dermal fibroblasts in the

presence of IL-15 in chronically inflamed skin (116). In keloids, they

promote preferential accumulation of collagen III in the presence of

anti-CD3/CD28 (65). In patients with multiple keloid scars, the

local infiltration of Tregs was found to be coupled with a reduction

in circulating CD4+ CD25high FOXP3+ Tregs (117). Whether the

apparent excess of local Tregs is pathogenic or merely represents a

response to inflammation remains unclear. TGF-b1 and IL-10 are

key cytokines secreted by Tregs and exert an autocrine effect (118,

119). The former mediates elaboration of matrix proteins and

stimulates the production of IL-6 by mast cells (120), while the

latter downregulates proinflammatory macrophages and promotes

B cell activation and immunoglobulin secretion (121) (Figure 3).

Interestingly, IL-10, rather than IFN-g, antagonizes the TGF-b1
effect on keloid fibroblasts (93, 122). In muscle, Tregs are known to

accumulate at injured sites and modulate the polarization of M1

macrophage to M2 macrophage (123). It is likely that they assume a

similar coordinating role in wound healing. Further investigations

are required to determine the extent to which Tregs alter the
FIGURE 2

The role of macrophages in keloid pathogenesis. M2 macrophages predominate in keloids, resulting in activation of keloid fibroblasts, Treg
differentiation, and fibrosis and angiogenesis. IGF-1, insulin-like growth factor 1; IL, interleukin; PDGF, platelet-derived growth factor; TGF-b1,
transforming growth factor b1; Th, helper T cells; Treg, regulatory T cell; VEGF, vascular endothelial growth factor.
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balance between M1 and M2 macrophages and contribute

to keloidogenesis.
2.4 Chronic stimulation and exhaustion of
CD8+ T cells

In normal skin, the majority of T cells are CD45RO+ memory T

cells. The same holds true in keloids, with a significantly higher

proportion of effector memory CD8+ T cells (TEM) and CD103

+CD8+ resident memory T cells (TRM) (117). TRM are known to

trigger an exaggerated inflammatory response to stimuli (124).

Keloid memory T cells are less adept at producing TNF-a and

more prone to generating IFN-g (117). FOXP3+ CD8- memory T

cells are also defective with decreased IL-10 secretion, resulting in

exuberant but dysregulated T cell responses in keloids (117).

Further adding to the dysregulation, the expression of granzyme

B+ CD8+ cytotoxic T cell is downregulated in keloids, a feature

presumably related to the characteristic uncontrolled growth. A

recent single-cell RNA study discovered that chronic antigenic

stimulation in keloids result in enhanced surface NKG2A

expression on CD8+ T cells and natural killer (NK) cells (125,

126), with resultant suppression of cytotoxic T cells via the

NKG2A-soluble human leukocyte antigen-E (sHLA-E) axis (101).

IL-15 (127) and TGF-b (128) were implicated in this process. The

enhanced expression of the NKG2A/CD94 complex on CD8+

cytotoxic T cells is correlated with progression of keloids. The

level of sHLA-E reflects clinical response to intralesional therapy

(triamcinolone and 5-fluorouracil) and predicts recurrence risk

(101). Furthermore, the degree of sHLA-E elevation could

differentiate keloid scars from certain malignant mimics, with the

former exhibiting significantly higher levels of sHLA-E (101).

Monalizumab, a humanized anti-NKG2A IgG4 monoclonal

antibody, exerts an antitumor effect by unleashing both cytotoxic

T cells and NK cells (125). The agent has been tested in clinical trials

as part of the immunotherapeutic regimens for advanced solid

organ cancers, such as recurrent/metastatic squamous cell

carcinoma of the head and neck (129), unresectable stage III non-

small-cell lung cancer (130), and recurrent gynecologic
Frontiers in Immunology 05
malignancies (131). Further studies are required to determine the

therapeutic potential of NKG2A/CD94 blockade for keloids.
2.5 Dendritic cells

Dermal infiltration of factor XIIIa (FXIIIa)-positive DCs is

increased in keloid scars comparing to hypertrophic scars and

mature scars (132, 133). These potent antigen-presenting cells are

thought to take part in the pathogenic epidermal–dermal

interactions in keloids (132), and DC-derived TGF-b could

contribute to the differentiation of Tregs. RNA sequencing study

confirmed increase of DC markers CD80 and CD86, as well as

markers typical of atopic DCs (OX40L+, FCϵR1+) in both lesional

and nonlesional skin of keloid patients (85). Unlike in atopic

dermatitis, where DCs have been linked to mast cell activation

and Th2, Th17 and Th22 differentiation (134, 135), the exact action

of DCs in keloids is less clear.
2.6 Natural killer cells

Flow cytometric analyses of keloid single-cell suspensions have

shown an unusually high number of NK cells (79). Although their

role in keloidogenesis is less well described, NK cells express the

surface NKG2A/CD94 complex and thus are implicated in the

NKG2A-sHLA-E axis (101). Therefore, it is possible that NK cell

activity is relatively suppressed in the TGF-b-rich, chronically
inflamed keloid milieu, and that a phenomenon paralleling

uncontrolled cancerous growth due to NK and cytotoxic T cell

exhaustion is likely present.
3 Key cytokine pathways
in keloid formation

Keloids are characterized by dysregulation of multiple signaling

pathways and associated cytokines. The best described are IL-6/IL-

17, IL-4/IL-13, canonical and non-canonical TGF-b1, and JAK/

STAT signaling (Figure 4).
3.1 The essential role of IL-6 in
inflammation

IL-6 signals through the JAK1–signal transducer and activator

of transcription (STAT) 3 pathway and the extracellular signal-

regulated kinase (ERK) 1/2–mitogen-activated protein kinase

(MAPK) pathway. Both pathways have been implicated in keloid

ECM gene expression and collagen synthesis (90, 92). IL‐6 and the

soluble IL‐6 receptor (sIL-6R) are essential for collagen production

(136). Similar to patients with systemic sclerosis (137), patients with

keloids show elevated IL-6 in the serum and skin (38, 55, 90). In

addition, IL-6 polymorphisms have been associated with

susceptibility to keloid formation across populations (55–57).
FIGURE 3

The role of regulatory T cells in keloid pathogenesis. Tregs exert
effects through the action of IL-10 and TGF-b1, leading to
suppression of M1 macrophages, activation of keloid fibroblasts, and
mast cell production of IL-6. IL, interleukin; TGF-b1, transforming
growth factor b1; Tregs, regulatory T cells.
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IL-6 is pivotal to the transition from acute to chronic inflammation

via initiation of a profibrotic state (138–140). Specifically, the cytokine

modulates the fibrogenic crosstalk between fibroblasts and

keratinocytes by inducing proinflammatory cytokines (IL-1b and

TNF-a) in monocytes via MAPK and nuclear factor kappa-light-

chain-enhancer of activated B cell (NF-kB) signaling (141).

Keratinocyte growth factor production by fibroblasts is enhanced,

and the activated keratinocytes in turn produce oncostatin M,

triggering STAT3 signaling in dermal fibroblasts (141). IL-6

production is increased in response to enhanced TGF-b1 signaling as

a downstream effector (via PI3K and p38-MAPK) (142), and in turn it

enhances TGF-b1 production by macrophages (64), creating a positive

feedback loop. IL-6 is also crucial to Th2 and M2 macrophage

polarization by initiating IL-4 secretion by CD4+ T cells) and

upregulating IL-4 receptors (IL-4R) on macrophages (141). Of note,

several experimental therapies for keloids and other forms of cutaneous

fibrosis directly or indirectly antagonize IL-6. Examples include

corticosteroids, verapamil, angiotensin receptor blocker/angiotensin

converting enzyme inhibitors, tocilizumab, pirfenidone, and

ultraviolet A (87, 141). TNF-a-stimulated gene-6 (TSG-6), a protein

suppressed in keloid fibroblasts, has been shown to attenuate IL-1b, IL-
6, and TNF-a when intradermally injected into hypertrophic scars

(143). The IL-17/IL-6 axis is crucial to sustaining a cytokine-rich,

chronically inflamed niche, augmented by an autocrine loop with

increased differentiation of Th17 and subsequent heightened secretion

of IL-6 (38). IL-17-mediated enhancement of stromal cell-derived

factor-1 (SDF-1) in keloid fibroblasts further reinforces Th17

differentiation via STAT3 mediation (89). This hyperinflammatory

milieu is the most prominent perilesionally (89). Through upregulation

of hypoxia-inducible factor-1a (HIF-1a) and STAT3, IL-17 impairs

autophagy of both normal and keloid fibroblasts, resulting in increased
Frontiers in Immunology 06
necroptosis and fibrosis. Antagonization of IL-17 via HIF-1a or SDF-

1a suppression has been demonstrated in vitro (48, 89).
3.2 The role of type 2 immunity: IL-4/IL-13

Several studies have investigated the association between

keloids and other conditions characterized by the Th2 response.

The results are variable, with some studies reporting a positive

correlation with atopic dermatitis (6, 12, 13, 81). Th2 immunity is

involved in normal wound healing as well as various fibrotic

conditions (144). IL-4 and IL-13 are key Th2 cytokines that have

wide-ranging influence across cell types as their receptors are

commonly present (144). The binding of IL-4 and IL-13 to their

cognate receptors activates the IL-4Ra/STAT6 signaling pathway, a
TGF-b-independent profibrotic mechanism (145). Both IL-4 and

IL-13 independently participate in normal and pathogenic healing.

Topical IL-4 significantly accelerates the rate of fibrotic tissue

formation, whereas IL-4 antisense oligonucleotides attenuate the

healing process in animal models (146). In mouse models of

systemic sclerosis, anti-IL-4 monoclonal antibodies prevent

progression of cutaneous fibrosis by reducing dermal collagen

deposition (147). On the other hand, IL-13 has been shown to

directly contribute to fibroblast proliferation and differentiation. IL-

13 enhances the expression of type I collagen, a-smooth muscle

actin (a-SMA), and other essential proteins involved in

fibrogenesis. Furthermore, tissue inhibitors of metalloproteinases

are attenuated while matrix metalloproteinases are upregulated in

keloid fibroblasts treated with IL-13 (83).

The expression of IL-4, IL-13 and their respective receptors is

enhanced in keloid scars (81–83, 85, 144, 145). Regression of
FIGURE 4

Signaling pathways involved in keloid formation. Several downstream pathways of TGF-b1 participate in keloid pathogenesis. Mechanical stimuli exert
an effect through Rho/ROCK and YAP/TAZ, leading to the modulation of canonical TGF-b1 signaling. The interleukin family of cytokines and NEDD4
exert profibrotic action via STAT3, independent of TGF-b1. ERK, extracellular signal-regulated kinase; IL, interleukin; JAK, Janus kinase; JNK, c-Jun
N-terminal kinase; mTOR, mammalian target of rapamycin; NEDD4, neural precursor cell expressed, developmentally downregulated 4; PI3K,
phosphatidylinositol-3-kinase; ROCK, RhoA/Rho-associated protein kinase; STAT3, signal transducer and activator of transcription 3; TGF-b1,
transforming growth factor b1; TYK2, tyrosine kinase 2; YAP/TAZ, Yes-associated protein/transcriptional coactivator with PDZ-binding motif.
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chronic keloids has been achieved with Th2-targeting therapy with

dupilumab (an anti-IL-4Ra agent) in a case report (81). Others

showed variable efficacy (148, 149). Molecular profiling of keloids

with RNA sequencing demonstrated a significant increase in Th2

expression in both lesional and non-lesional skin of keloid patients

(85). The relative dominance of the Th2 response has been

attributed to the anti-apoptotic effect conferred to CD4+ T cells

by IL-4 (39). IL−4− and IL−13−activated macrophages (M2

macrophages) are critical to resolving inflammation during

wound repair (150, 151). In chronic inflammation, these

cytokines have been shown to upregulate miR-142-5p and

suppress miR-130a-3p in macrophages, leading to a sustained

profibrogenic phenotype (152). Human dermal fibroblasts treated

with IL-4 and IL-13 exhibit drastically elevated levels of periostin

mRNA with enhanced secretion (82). Periostin is an important

promoter of RhoA/Rho-associated protein kinase (ROCK)

pathway-mediated TGF-b1 secretion impliacted in pathological

scarring (82, 153). In systemic sclerosis, periostin is correlated

with skin disease severity (154), and the serum level of IL-13

recflects severity of both skin fibrosis (155). The clinical utility of

these biomarkers in keloids remains to be determined.
3.3 The pivotal role of TGF-b1

TGF-b1 is one of the most studied mediators of fibrosis. It is

frequently implicated in keloid pathogenesis. TGF-b1 has a wide range
of cellular sources, including fibroblasts, monocytes, T cells, and platelets

(156). As a key regulator offibrogenesis, this pleiotropic cytokine plays a

pivotal role in various cutaneous and solid organ fibrotic disorders, as

well as in tumorigenesis via induction of cancer-associated fibroblasts

(156). Several monoclonal antibodies, small molecule inhibitors, small

interfering RNAs (siRNAs), and antisense oligodeoxynucleotides

targeting TGF-b1 signaling are currently under development (156).

The induction by TGF-b1 of various growth factors, including

connective tissue growth factor (CTGF) and VEGF, is crucial to the

maintenance of the ECM.Moreover, TGF-b1 exerts an autocrinal effect
that downregulates dipeptidyl peptidase-4 (DPP4) expression,

contributing to a chronically inflamed state with elevated levels of

the extracellular C-X-C motif chemokine ligand 12 (CXCL12) (157).

Fibroblasts in keloids are considerably sensitive to TGF-b compared to

those in hypertrophic scars (158, 159). These abnormal fibroblasts are

able to overcome Fas-mediated apoptosis when augmented by TGF-b1
(160). TGF-b1-induced smooth muscle actin (SMA) expression in

keloid fibroblasts contributes to increased cell rigidity, a phenomenon

common to both keloids and scleroderma (161). SMA expression is

linked to wound contracture, and the process can be inhibited with

treatment with recombinant human decorin, TNF-like weak inducer of

apoptosis (TWEAK), and SB-431542, a novel specific inhibitor of TGF-

b1 receptor kinase (162). TGF-b1 is also capable of upregulating C-

MYC and its downstream splicing regulator polypyrimidine tract-

binding protein—a key factor in tumorous growth—in keloid

fibroblasts (163). Furthermore, altered interaction between TGF-b
isoforms at the receptor level in keloid fibroblasts has been described

(164–167). The ratio of these isoforms may cause a tendency to fibrosis

(168). Accordingly, a novel truncated type II TGF-b receptor has been
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designed as an anti-scarring agent (169, 170). Both canonical and non-

canonical TGF-b1 signaling are implicated in modulating the keloid

keratinocytes to possess a metabolic profile similar to those undergoing

epithelial–mesenchymal transition with increased invasiveness (45,

171–173).
3.3.1 Modulators of the TGF-b1/Smad pathway
The canonical TGF-b signaling is enhanced in keloids, and strategic

targeting of TGF-b1/Smad has been shown to retard keloid fibroblasts

in vitro or in animal models (Supplemental Table 1). Upstream

modulators of the TGF-b1/Smad pathway, including activating

transcription factor 3 (174), CR6-interacting factor 1 (175), NLR

family CARD domain containing 5 (NLRC5) (176), and nuclear

receptor subfamily 3, group C, member 1 (NR3C1), are overexpressed

in keloid fibroblasts. HIF-1a and high temperature requirement factor

A1 activate the TGF-b1/Smad pathway and promote keloid formation

(46, 177). S100A4, a small, calcium-binding protein involved in skin and

solid organ fibrosis, is upregulated in keloid fibroblasts and inhibited by

calcimycin (178). Syndecan-1, a cell surface proteoglycan highly

expressed in wounds, also enhances the pathway in keloids (179).

Post-translational sumoylation amplifies TGF-b1/Smad signal

transduction in keloids (47).

MicroRNAs are small regulatory RNAs capable of altering post-

translational gene expression. In keloid fibroblasts, the anti-fibrotic

regulators miR-200c (180), miR-92b (181), miR-1224-5p (182), and

miR-133a-3p (183) are expressed at low levels and pro-fibrotic miR-

21is overexpressed, altering the activity of the TGF-b1/Smad pathway

(184). Peroxisome proliferator-activated receptor-g agonists have been
shown to induce miR-92b expression and thus lower TGF-b1
expression in keloids (181). MicroRNA expression is modulated by

long-noncoding RNAs. In keloids, fibroblast behavior is altered in the

presence of different long-noncoding RNAs (180, 185–188). For

example, LINC01116 contributes to a pro-fibrotic state in keloid

tissue via editing of miR-3141 (185). In addition, the BMP and

activin membrane-bound inhibitor (189), Dickkopf-3 (190), and the

receptor for activated C-kinase 1 (191) attenuate TGF-b1-induced
fibrosis; all are downregulated in keloid fibroblasts. Smad-7 provides

negative feedback to the TGF-b1/Smad system. The molecule is

suppressed due to a marked increase in the level of TGF-b inducible

early gene-1 in keloids (192). Downregulation of TRAF3IP2 in keloid

fibroblasts by FOXO4 attenuates the growth of keloid scars (193). IL-37

is a broad inhibitor of innate inflammation and regulator of TGF-b
(194, 195). Recent studies have uncovered its role in modulating several

metabolic pathways and a potential role in reversing trained immunity

(196). As seen in idiopathic pulmonary fibrosis (197), lower serum

levels of IL-37 were found to indicate higher keloid severity (95).
3.3.2 Non-canonical TGF-b pathways
Several non-canonical TGF-b pathways are involved in keloid

formation. These include the MAPK (94, 198, 199), ERK 1/2 (44, 200)

phosphatidylinositol-3-kinase (P-I3K)/AKT (44, 104, 200–202), c-Jun

amino-terminal kinase (94), p38 mitogen-activated protein kinase

(p38/MAPK) (94, 203–205), and Rho-like (82) signaling pathways.

The multi-kinase inhibitor sorafenib induces cell arrest of keloid
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fibroblasts by blockade of the intracellular TGF-b/Smad and MAPK/

ERK pathways (206). JUN (an oncogene encoding the c-Jun protein)

initiates fibrosis via CD36 in both human and murine hypertrophic

scar fibroblasts, and the blockade of CD36 exerted an anti-scarring

effect in the murine model (207).

3.3.3 Bridge to mechanical transduction:
Reciprocal cross-regulation with the integrin and
Yes-associated protein/transcriptional
coactivator with PDZ-binding motif pathways

Crosstalk between TGF-b and mechanical transduction

pathways is increasingly recognized. Among these pathways, the

integrin pathway (79, 142) and the Hippo/Yes-associated protein/

transcriptional coactivator with PDZ-binding motif (YAP/TAZ)

pathway (43, 208, 209) are the most recognized. In addition, TGF-b
interacts with Wnt/b-catenin activity in dermal fibroblasts,

upregulating ECM genes (210, 211). YAP/TAZ are important

actors in cellular mechanical transduction. These transcriptional

factors are regulated mostly by cell–cell adhesion and cell–ECM

attachment via integrins (212). Conditions that cause stiffening of

the ECM, such as inflammation, lead to a lower threshold of YAP/

TAZ activation (212). IL-6 is also known to activate YAP through

gp130 signaling (212). Activated YAP/TAZ translocate into keloid

fibroblast nuclei, a step required for wound healing (208). In liver

cirrhosis, YAP/TAZ contribute to tissue fibrosis via enhanced SMA

expression, promoting the transformation of fibroblasts into

myofibroblasts. YAP/TAZ are also implicated in the sustained

profibrotic transcriptional profile of idiopathic pulmonary fibrosis

(213). Targeted knockdown of YAP or TAZ has been shown to

significantly inhibit the activity and induce apoptosis of keloid

fibroblasts (208). Inhibition of Rho/Rho kinase signaling, a major

upstream regulator of YAP/TAZ, also attenuates fibroblast activity

(82, 214). Manipulation of the YAP/TAZ-associated pathways

could potentially reduce keloid scarring. A recent study identified

a subpopulation of dermal Engrailed-1 lineage-negative fibroblasts

in cell transplantation and transgenic mouse models that could give

rise to scar-forming Engrailed-1 lineage-positive fibroblasts during

adult wound healing (215). The process is initiated by canonical

mechanotransduction signaling and depends on YAP (215).

Inhibition or knockout of YAP prohibits Engrailed-1 activation,

favoring scarless (regenerative) wound healing via Engrailed-1

lineage-negative fibroblasts (215). Verteporfin, a small-molecule

YAP inhibitor, has been proposed as a potential novel agent for

promoting regenerative skin healing without compromising the

healing process (216).
3.4 Janus kinase/signal transducers and
activators of the transcription pathway

STAT3 is highly expressed and phosphorylated in keloid tissue

with increased activation of JAK2 (217). Moreover, STAT3 activity is

correlated with fibroblast proliferation and migration, as well as

collagen deposition, mainly due to dysregulated secretion of

cytokines resulting from altered epithelial–mesenchymal interactions

(218). Attenuation of such activity can be achieved with JAK2/STAT3

inhibitors or STAT3 siRNA (217, 219). Cytokines enriched in the
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keloid microenvironment, especially IL-6 and OSM, are strong

activators of the JAK/STAT system. Various Th2- and Th17-

cytokines, including IL-4, IL-10, IL-13, and IL-17, also signal through

JAK/STAT (85, 87). IL-6-specific hyperactivation of STAT3 has been

shown to be profibrotic due to the induction of Gremlin (a bone

morphogenetic protein [BMP] antagonist), which in turn sustains

canonical TGF-b signaling (136). Recently, RNA sequencing analyses

confirmed robust expression of JAK3 in keloid tissue (85), and

positioned STAT3 in a feedforward loop regulating a myriad of

downstream target genes involved in keloidogenesis (220). From a

metabolic viewpoint, keloids exhibit accelerated glycolysis reminiscent

of Warburg metabolism, a unique adaptive state presumably induced

by JAK2/STAT3 (50, 221). Interestingly, an in vivo study demonstrated

regulation of keloid fibroblast activity at the cost of a worsened

hyperglycolytic state with JAK1/2 blockade (222). Epigallocatechin-3-

gallate (EGCG), a green tea extract, has been found to possess

chemopreventive properties, including suppression of STAT3

signaling, potentially inhibiting keloid growth (219). ASC-J9, an

inhibitor of STAT3 phosphorylation, has shown efficacy in

suppressing keloid fibroblasts (223). AG490, a selective JAK2/STAT3

inhibitor, and STAT3−specific decoy oligodeoxynucleotides are also

beneficial in vitro (224). Oral small-molecule JAK inhibitors are

effective in treating skin and pulmonary diseases of systemic sclerosis

(225). In a case report, tofacitinib, a pan-JAK inhibitor, facilitated

control of keloid scar (226).

STAT3 was recently discovered as a transcription factor for the

neural precursor cell expressed, developmentally downregulated 4

(NEDD4) gene (227). NEDD4 encodes a ubiquitin ligase involved

in protein degradation and has been associated with susceptibility to

keloids (30, 32, 33, 228–231). NEDD4 transcript variant 3 is

overexpressed in keloid skin and is responsible for heightened

activation of NF-kB via interaction with receptor interacting

protein, an adaptor protein (29). NF-kB is more prominent in

keloids than in normal skin and contributes to impaired apoptosis

of fibroblasts (37, 232). Aspirin may potentially prevent this effect

(232). NEDD4 regulates cell contact inhibition and T cell factor/b-
catenin transcriptional activity (231). It is also linked to fibronectin

and type 1 collagen expression (231). A positive feedback loop

between STAT3 and NEDD4 has been described (29), and silencing

of NEDD4 also attenuates STAT3 (29, 227), making NEDD4 a

potential therapeutic target in keloids.
4 Other potential therapeutics

Fibroblast activation protein (FAP), a membrane-bound enzyme

with structural similarity to DPP4, is found almost exclusively on

activated fibroblasts and myofibroblasts under pathological conditions

(233), making it a potential target for selective inhibition. Similar to

DPP4, FAP upregulates extracellular CXCL12 (234). In addition to its

enzymatic activity against the ECM (and thus its association with lesion

invasiveness (234, 235), the molecule is likely pluripotent with

immunomodulatory properties (234). The FAP expression level is

enhanced in keloid fibroblasts (234, 235) and FAP modulation has

been shown to attenuate the invasiveness of scars (235). As a marker of

pathological fibroblast activation, FAP is a novel subject of interest in
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solid tumors and connective tissue disorders. Previous studies have

shown that FAP chimeric antigen receptor-T cell therapy may be

limited by systemic toxicity as FAP is also expressed on multipotent

bone marrow stromal cells (236, 237). On the other hand, FAP-

inhibiting radiopharmaceuticals have shown theranostic promise in

various malignancies and other disorders characterized by tissue

fibrosis, such as systemic sclerosis (238), rheumatoid arthritis (239),

and IgG4-related disease (240). Targeted photodynamic therapy with

an anti-FAP photosensitizer exhibits a dose-dependent therapeutic

effect on skin fibroblasts of patients with systemic sclerosis (238).

Additional pathway abnormalities, such as Notch and Toll-like

receptor signaling pathways, have been implicated in keloid

pathogenesis (51, 241, 242). Human adipose-, amnion-, bone

marrow- and Wharton’s jelly-derived mesenchymal stem cells

have been shown to inhibit proliferation, migration, and synthesis

of keloid fibroblasts in vitro, presumably though paracrine effects

(243–249). The TGF-b1/Smad and TGF−b2/Smad3 pathways,

Notch-1, and cyclooxygenase-2/prostaglandin E2 cascade were all

implicated (243–245). Further investigations are warranted to

evaluate the in vivo effects of these pathways.
5 Current challenges and future
direction in keloid research

Even with modern technologies, several factors complicate our

understanding of keloidogenesis. The lack of an ideal animal model has

impeded experimental investigations, and the examination of the

nature of keloid scars is limited by sample size. Moreover, the lack of

standardization of the site of tissue sampling complicates the

interpretation of study results. We previously reported that

the inflammatory activity within a keloid scar is most vigorous at the

periphery, corresponding to the gradational change in skin tension

(31). The gene signatures also varied at the leading edge, center and top

of keloid lesions (250). Theoretically, anti-inflammatory measures

would be most beneficial at the initial inflammatory stage of wound

healing and at the periphery of the scar. Anti-fibrotic therapy, on the

other hand, ameliorates the later stages and the more central part of the

lesion before scar maturation. To allow for timely and appropriate (i.e.,

without compromising the healing process) modulation of immune

pathways, the mechanisms regulating the transition and spatio-

temporal overlap across stages need to be better understood. Studies

focusing on explicating the cellular and molecular processes of wound

healing, could be of immense value to our understanding and

management of keloid disorder.
6 Conclusions

The keloid microenvironment is characterized by an exuberant

inflammatory response to mechanical and non-mechanical stimuli,

resulting in a complex interplay between various hyperactivated

immune components with an ultimately profibrotic cytokine profile
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and signaling. Manipulation of isolated elements or pathways has

shown variable efficacy, mostly in an experimental setting. Keloid is

increasingly characterized by an inflammatory process, and local

treatment might be insufficient for long-term control. Newer

biologics and small molecule drugs allow for more specific and

systemic targeting of immune pathways. For both approved and

experimental drugs, a critical issue is the timing of intervention, as

premature suppression of either inflammation or fibrosis could

impair wound healing. Further investigations to disentangle the

delicate process of wound healing are thus crucial for a more

targeted management of keloids.
Author contributions

Conceptualization, C-CL, C-HT, and C-BC; methodology, C-CL,

C-HT, and C-BC; resources, C-HT, W-HC, and C-BC; writing—

original draft preparation, C-CL, C-HT, and C-BC; writing—review

and editing, C-CL, C-HT, C-HC, Y-CY, W-HC, and C-BC;

visualization, C-CL, C-HT, and C-BC; supervision, C-HT, W-HC,

and C-BC; project administration, C-HT, C-HC, Y-CY,W-HC, and C-

BC. All authors contributed to the article and approved the

submitted version.
Funding

This study was supported by research grants from the Ministry

of Science and Technology, Taiwan (grant no. MOST 110-2314-B-

182A-106-MY2 to C-HT) and Chang Gung Memorial Hospital,

Taiwan (grant no. CMRPG2L0181 to C-HT).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material
The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1117630/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1117630/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1117630/full#supplementary-material
https://doi.org/10.3389/fimmu.2023.1117630
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lee et al. 10.3389/fimmu.2023.1117630
References
1. Jumper N, Paus R, Bayat A. Functional histopathology of keloid disease. Histol
Histopathol (2015) 30(9):1033–57. doi: 10.14670/hh-11-624

2. Sitaniya S, Subramani D, Jadhav A, Sharma YK, Deora MS, Gupta A. Quality-of-
Life of people with keloids and its correlation with clinical severity and demographic
profiles. Wound Repair Regener (2022) 30(3):409–16. doi: 10.1111/wrr.13015

3. Lu W, Chu H, Zheng X. Effects on quality of life and psychosocial wellbeing in
chinese patients with keloids. Am J Transl Res (2021) 13(3):1636–42.

4. Bijlard E, Kouwenberg CA, Timman R, Hovius SE, Busschbach JJ, Mureau MA.
Burden of keloid disease: A cross-sectional health-related quality of life assessment.
Acta Derm Venereol (2017) 97(2):225–9. doi: 10.2340/00015555-2498

5. Davis SA, Feldman SR, McMichael AJ. Management of keloids in the united
states, 1990-2009: An analysis of the national ambulatory medical care survey.
Dermatol Surg (2013) 39(7):988–94. doi: 10.1111/dsu.12182

6. Ung CY, Warwick A, Onoufriadis A, Barker JN, Parsons M, McGrath JA, et al.
Comorbidities of keloid and hypertrophic scars among participants in uk biobank.
JAMA Dermatol (2023) . 159(2):172–81. doi: 10.1001/jamadermatol.2022.5607

7. Rutherford A, Glass DA2nd. A case-control study analyzing the association of
keloids with hypertension and obesity. Int J Dermatol (2017) 56(9):e187–e9.
doi: 10.1111/ijd.13618

8. Adotama P, Rutherford A, Glass DA2nd. Association of keloids with systemic
medical conditions: A retrospective analysis. Int J Dermatol (2016) 55(1):e38–40.
doi: 10.1111/ijd.12969

9. Snyder AL, Zmuda JM, Thompson PD. Keloid associated with hypertension.
Lancet (1996) 347(8999):465–6. doi: 10.1016/s0140-6736(96)90042-2

10. El Hadidi HH, Sobhi RM, Nada AM, AbdelGhaffar MMM, Shaker OG, El-
Kalioby M. Does vitamin d deficiency predispose to keloids Via dysregulation of
koebnerisin (S100a15)? a case-control study.Wound Repair Regener (2021) 29(3):425–
31. doi: 10.1111/wrr.12894

11. Yu D, Shang Y, Luo S, Hao L. The taqi gene polymorphisms of vdr and the
circulating 1,25-dihydroxyvitamin d levels confer the risk for the keloid scarring in
chinese cohorts. Cell Physiol Biochem (2013) 32(1):39–45. doi: 10.1159/000350121

12. Kwon HE, Ahn HJ, Jeong SJ, Shin MK. The increased prevalence of keloids in
atopic dermatitis patients with allergic comorbidities: A nationwide retrospective
cohort study. Sci Rep (2021) 11(1):23669. doi: 10.1038/s41598-021-03164-4

13. Lu YY, Lu CC, Yu WW, Zhang L, Wang QR, Zhang CL, et al. Keloid risk in
patients with atopic dermatitis: A nationwide retrospective cohort study in taiwan. BMJ
Open (2018) 8(7):e022865. doi: 10.1136/bmjopen-2018-022865

14. Ogawa R. The most current algorithms for the treatment and prevention of
hypertrophic scars and keloids: A 2020 update of the algorithms published 10 years ago.
Plast Reconstr Surg (2022) 149(1):79e–94e. doi: 10.1097/prs.0000000000008667

15. Abd El-Dayem DH, Nada HA, Hanafy NS, Elsaie ML. Laser-assisted topical
steroid application versus steroid injection for treating keloids: A split side study. J
Cosmet Dermatol (2021) 20(1):138–42. doi: 10.1111/jocd.13521

16. Wu W, Zhao Y, Chen Y, Zhong A. Comparing the efficacy of multiple drugs
injection for the treatment of hypertrophic scars and keloid: A network meta-analysis.
Aesthetic Plast Surg (2022). doi: 10.1007/s00266-022-03163-4

17. Lee JH, Kim SE, Lee AY. Effects of interferon-Alpha2b on keloid treatment with
triamcinolone acetonide intralesional injection. Int J Dermatol (2008) 47(2):183–6.
doi: 10.1111/j.1365-4632.2008.03426.x

18. Bouzari N, Davis SC, Nouri K. Laser treatment of keloids and hypertrophic
scars. Int J Dermatol (2007) 46(1):80–8. doi: 10.1111/j.1365-4632.2007.03104.x

19. Har-Shai Y, Mettanes I, Zilberstein Y, Genin O, Spector I, Pines M. Keloid
histopathology after intralesional cryosurgery treatment. J Eur Acad Dermatol Venereol
(2011) 25(9):1027–36. doi: 10.1111/j.1468-3083.2010.03911.x

20. Ogawa R, Akaishi S, Huang C, Dohi T, Aoki M, Omori Y, et al. Clinical
applications of basic research that shows reducing skin tension could prevent and treat
abnormal scarring: The importance of Fascial/Subcutaneous tensile reduction sutures
and flap surgery for keloid and hypertrophic scar reconstruction. J Nippon Med Sch
(2011) 78(2):68–76. doi: 10.1272/jnms.78.68

21. Osswald SS, Elston DM, Vogel PS. Giant right plantar keloid treated with
excision and tissue-engineered allograft. J Am Acad Dermatol (2003) 48(1):131–4.
doi: 10.1067/mjd.2003.48

22. Jones ME, Hardy C, Ridgway J. Keloid management: A retrospective case review
on a new approach using surgical excision, platelet-rich plasma, and in-office superficial
photon x-ray radiation therapy. Adv Skin Wound Care (2016) 29(7):303–7.
doi: 10.1097/01.Asw.0000482993.64811.74

23. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: A
critical step during wound healing. Cell Mol Life Sci (2016) 73(20):3861–85.
doi: 10.1007/s00018-016-2268-0

24. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res (2012) 49
(1):35–43. doi: 10.1159/000339613
Frontiers in Immunology 10
25. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: Molecular and
cellular mechanisms. J Invest Dermatol (2007) 127(3):514–25. doi: 10.1038/
sj.jid.5700701

26. Bayat A, Bock O, Mrowietz U, Ollier WE, Ferguson MW. Genetic susceptibility
to keloid disease and transforming growth factor beta 2 polymorphisms. Br J Plast Surg
(2002) 55(4):283–6. doi: 10.1054/bjps.2002.3853

27. Bayat A, Bock O, Mrowietz U, Ollier WE, Ferguson MW. Genetic susceptibility
to keloid disease and hypertrophic scarring: Transforming growth factor Beta1
common polymorphisms and plasma levels. Plast Reconstr Surg (2003) 111(2):535–
43. doi: 10.1097/01.Prs.0000041536.02524.A3

28. Bayat A, Bock O, Mrowietz U, Ollier WE, Ferguson MW. Genetic susceptibility
to keloid disease: Transforming growth factor beta receptor gene polymorphisms are
not associated with keloid disease. Exp Dermatol (2004) 13(2):120–4. doi: 10.1111/
j.0906-6705.2004.00165.x

29. Fujita M, Yamamoto Y, Jiang JJ, Atsumi T, Tanaka Y, Ohki T, et al. Nedd4 is
involved in inflammation development during keloid formation. J Invest Dermatol
(2019) 139(2):333–41. doi: 10.1016/j.jid.2018.07.044

30. Nakashima M, Chung S, Takahashi A, Kamatani N, Kawaguchi T, Tsunoda T,
et al. A genome-wide association study identifies four susceptibility loci for keloid in the
japanese population. Nat Genet (2010) 42(9):768–71. doi: 10.1038/ng.645

31. Tsai CH, Ogawa R. Keloid research: Current status and future directions. Scars
Burn Heal (2019) 5:2059513119868659. doi: 10.1177/2059513119868659

32. Velez Edwards DR, Tsosie KS, Williams SM, Edwards TL, Russell SB. Admixture
mapping identifies a locus at 15q21.2-22.3 associated with keloid formation in african
americans. Hum Genet (2014) 133(12):1513–23. doi: 10.1007/s00439-014-1490-9

33. Zhu F, Wu B, Li P, Wang J, Tang H, Liu Y, et al. Association study confirmed
susceptibility loci with keloid in the chinese han population. PloS One (2013) 8(5):
e62377. doi: 10.1371/journal.pone.0062377

34. Liu S, Yang H, Song J, Zhang Y, Abualhssain ATH, Yang B. Keloid: Genetic
susceptibility and contributions of genetics and epigenetics to its pathogenesis. Exp
Dermatol (2022) 31:1665–75. doi: 10.1111/exd.14671

35. Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation
in the reticular dermis. Int J Mol Sci (2017) 18(3):606. doi: 10.3390/ijms18030606

36. Bagabir R, Byers RJ, Chaudhry IH, Müller W, Paus R, Bayat A. Site-specific
immunophenotyping of keloid disease demonstrates immune upregulation and the
presence of lymphoid aggregates. Br J Dermatol (2012) 167(5):1053–66. doi: 10.1111/
j.1365-2133.2012.11190.x

37. Messadi DV, Doung HS, Zhang Q, Kelly AP, Tuan TL, Reichenberger E, et al.
Activation of nfkappab signal pathways in keloid fibroblasts. Arch Dermatol Res (2004)
296(3):125–33. doi: 10.1007/s00403-004-0487-y

38. Zhang Q, Yamaza T, Kelly AP, Shi S, Wang S, Brown J, et al. Tumor-like
stem cells derived from human keloid are governed by the inflammatory niche
driven by il-17/Il-6 axis. PloS One (2009) 4(11):e7798. doi: 10.1371/
journal.pone.0007798

39. Nangole FW, Ouyang K, Anzala O, Ogengo J, Agak GW. Multiple cytokines
elevated in patients with keloids: Is it an indication of auto-inflammatory disease? J
Inflammation Res (2021) 14:2465–70. doi: 10.2147/jir.S312091

40. Ogawa R, Okai K, Tokumura F, Mori K, Ohmori Y, Huang C, et al. The
relationship between skin Stretching/Contraction and pathologic scarring: The
important role of mechanical forces in keloid generation. Wound Repair Regener
(2012) 20(2):149–57. doi: 10.1111/j.1524-475X.2012.00766.x

41. Song H, Liu T, Wang W, Pang H, Zhou Z, Lv Y, et al. Tension enhances cell
proliferation and collagen synthesis by upregulating expressions of integrin avb3 in
human keloid-derived mesenchymal stem cells. Life Sci (2019) 219:272–82.
doi: 10.1016/j.lfs.2018.12.042

42. Zhou B, Gao Z, Liu W, Wu X, Wang W. Important role of mechanical
microenvironment on macrophage dysfunction during keloid pathogenesis. Exp
Dermatol (2022) 31(3):375–80. doi: 10.1111/exd.14473

43. Feng F, Liu M, Pan L, Wu J, Wang C, Yang L, et al. Biomechanical regulatory
factors and therapeutic targets in keloid fibrosis. Front Pharmacol (2022) 13:906212.
doi: 10.3389/fphar.2022.906212

44. Zhang Q, Oh CK, Messadi DV, Duong HS, Kelly AP, Soo C, et al. Hypoxia-
induced hif-1 alpha accumulation is augmented in a co-culture of keloid fibroblasts and
human mast cells: Involvement of Erk1/2 and pi-3k/Akt. Exp Cell Res (2006) 312
(2):145–55. doi: 10.1016/j.yexcr.2005.10.006

45. Ma X, Chen J, Xu B, Long X, Qin H, Zhao RC, et al. Keloid-derived keratinocytes
acquire a fibroblast-like appearance and an enhanced invasive capacity in a hypoxic
microenvironment in vitro. Int J Mol Med (2015) 35(5):1246–56. doi: 10.3892/
ijmm.2015.2135

46. Lei R, Li J, Liu F, Li W, Zhang S, Wang Y, et al. Hif-1a promotes the keloid
development through the activation of tgf-b/Smad and Tlr4/Myd88/Nf-kb pathways.
Cell Cycle (2019) 18(23):3239–50. doi: 10.1080/15384101.2019.1670508
frontiersin.org

https://doi.org/10.14670/hh-11-624
https://doi.org/10.1111/wrr.13015
https://doi.org/10.2340/00015555-2498
https://doi.org/10.1111/dsu.12182
https://doi.org/10.1001/jamadermatol.2022.5607
https://doi.org/10.1111/ijd.13618
https://doi.org/10.1111/ijd.12969
https://doi.org/10.1016/s0140-6736(96)90042-2
https://doi.org/10.1111/wrr.12894
https://doi.org/10.1159/000350121
https://doi.org/10.1038/s41598-021-03164-4
https://doi.org/10.1136/bmjopen-2018-022865
https://doi.org/10.1097/prs.0000000000008667
https://doi.org/10.1111/jocd.13521
https://doi.org/10.1007/s00266-022-03163-4
https://doi.org/10.1111/j.1365-4632.2008.03426.x
https://doi.org/10.1111/j.1365-4632.2007.03104.x
https://doi.org/10.1111/j.1468-3083.2010.03911.x
https://doi.org/10.1272/jnms.78.68
https://doi.org/10.1067/mjd.2003.48
https://doi.org/10.1097/01.Asw.0000482993.64811.74
https://doi.org/10.1007/s00018-016-2268-0
https://doi.org/10.1159/000339613
https://doi.org/10.1038/sj.jid.5700701
https://doi.org/10.1038/sj.jid.5700701
https://doi.org/10.1054/bjps.2002.3853
https://doi.org/10.1097/01.Prs.0000041536.02524.A3
https://doi.org/10.1111/j.0906-6705.2004.00165.x
https://doi.org/10.1111/j.0906-6705.2004.00165.x
https://doi.org/10.1016/j.jid.2018.07.044
https://doi.org/10.1038/ng.645
https://doi.org/10.1177/2059513119868659
https://doi.org/10.1007/s00439-014-1490-9
https://doi.org/10.1371/journal.pone.0062377
https://doi.org/10.1111/exd.14671
https://doi.org/10.3390/ijms18030606
https://doi.org/10.1111/j.1365-2133.2012.11190.x
https://doi.org/10.1111/j.1365-2133.2012.11190.x
https://doi.org/10.1007/s00403-004-0487-y
https://doi.org/10.1371/journal.pone.0007798
https://doi.org/10.1371/journal.pone.0007798
https://doi.org/10.2147/jir.S312091
https://doi.org/10.1111/j.1524-475X.2012.00766.x
https://doi.org/10.1016/j.lfs.2018.12.042
https://doi.org/10.1111/exd.14473
https://doi.org/10.3389/fphar.2022.906212
https://doi.org/10.1016/j.yexcr.2005.10.006
https://doi.org/10.3892/ijmm.2015.2135
https://doi.org/10.3892/ijmm.2015.2135
https://doi.org/10.1080/15384101.2019.1670508
https://doi.org/10.3389/fimmu.2023.1117630
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lee et al. 10.3389/fimmu.2023.1117630
47. Lin X, Wang Y, Jiang Y, Xu M, Pang Q, Sun J, et al. Sumoylation enhances the
activity of the tgf-b/Smad and hif-1 signaling pathways in keloids. Life Sci (2020)
255:117859. doi: 10.1016/j.lfs.2020.117859

48. Lee SY, Lee AR, Choi JW, Lee CR, Cho KH, Lee JH, et al. Il-17 induces
autophagy dysfunction to promote inflammatory cell death and fibrosis in keloid
fibroblasts Via the Stat3 and hif-1a dependent signaling pathways. Front Immunol
(2022) 13:888719. doi: 10.3389/fimmu.2022.888719

49. Fong EP, Bay BH. Keloids – the sebum hypothesis revisited. Med Hypotheses
(2002) 58(4):264–9. doi: 10.1054/mehy.2001.1426

50. Li Q, Qin Z, Nie F, Bi H, Zhao R, Pan B, et al. Metabolic reprogramming in
keloid fibroblasts: Aerobic glycolysis and a novel therapeutic strategy. Biochem Biophys
Res Commun (2018) 496(2):641–7. doi: 10.1016/j.bbrc.2018.01.068

51. Onoufriadis A, Hsu CK, Ainali C, Ung CY, Rashidghamat E, Yang HS, et al.
Time series integrative analysis of rna sequencing and microrna expression data reveals
key biologic wound healing pathways in keloid-prone individuals. J Invest Dermatol
(2018) 138(12):2690–3. doi: 10.1016/j.jid.2018.05.017

52. Marneros AG, Norris JEC, Olsen BR, Reichenberger E. Clinical genetics of
familial keloids. Arch Dermatol (2001) 137(11):1429–34. doi: 10.1001/
archderm.137.11.1429

53. Clark JA, Turner ML, Howard L, Stanescu H, Kleta R, Kopp JB. Description
of familial keloids in five pedigrees: Evidence for autosomal dominant inheritance
and phenotypic heterogeneity. BMC Dermatol (2009) 9:8. doi: 10.1186/1471-5945-
9-8

54. Chen Y, Gao JH, Liu XJ, Yan X, Song M. Characteristics of occurrence for han
chinese familial keloids. Burns (2006) 32(8):1052–9. doi: 10.1016/j.burns.2006.04.014

55. Abdu Allah AMK, Mohammed KI, Farag AGA, Hagag MM, Essam M, Tayel
NR. Interleukin-6 serum level and gene polymorphism in keloid patients. Cell Mol Biol
(Noisy-le-grand) (2019) 65(5):43–8. doi: 10.14715/cmb/2019.65.5.7

56. Zhu XJ, Li WZ, Li H, Fu CQ, Liu J. Association of interleukin-6 gene
polymorphisms and circulating levels with keloid scars in a chinese han population.
Genet Mol Res (2017) 16(2):gmr16029110. doi: 10.4238/gmr16029110

57. Tosa M, Watanabe A, Ghazizadeh M. Il-6 polymorphism and susceptibility to
keloid formation in a japanese population. J Invest Dermatol (2016) 136(5):1069–72.
doi: 10.1016/j.jid.2016.01.019

58. Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin
wound healing: Mechanisms and novel therapeutic targets. Adv Wound Care (New
Rochelle) (2018) 7(7):209–31. doi: 10.1089/wound.2017.0761

59. Wilgus TA. Immune cells in the healing skin wound: Influential players at each
stage of repair. Pharmacol Res (2008) 58(2):112–6. doi: 10.1016/j.phrs.2008.07.009

60. Yagi KI, Dafalla AA, Osman AA. Does an immune reaction to sebum in wounds
cause keloid scars? beneficial effect of desensitisation. Br J Plast Surg (1979) 32(3):223–
5. doi: 10.1016/s0007-1226(79)90037-7

61. Bloch EF, Hall MGJr., Denson MJ, Slay-Solomon V. General immune reactivity
in keloid patients. Plast Reconstr Surg (1984) 73(3):448–51. doi: 10.1097/00006534-
198403000-00020

62. Smith CJ, Smith JC, Finn MC. The possible role of mast cells (Allergy) in the
production of keloid and hypertrophic scarring. J Burn Care Rehabil (1987) 8(2):126–
31. doi: 10.1097/00004630-198703000-00008

63. Kazeem AA. The immunological aspects of keloid tumor formation. J Surg
Oncol (1988) 38(1):16–8. doi: 10.1002/jso.2930380106

64. Jin Q, Gui L, Niu F, Yu B, Lauda N, Liu J, et al. Macrophages in keloid are potent
at promoting the differentiation and function of regulatory t cells. Exp Cell Res (2018)
362(2):472–6. doi: 10.1016/j.yexcr.2017.12.011

65. Chen Y, Jin Q, Fu X, Qiao J, Niu F. Connection between t regulatory cell
enrichment and collagen deposition in keloid. Exp Cell Res (2019) 383(2):111549.
doi: 10.1016/j.yexcr.2019.111549

66. Wilgus TA, Wulff BC. The importance of mast cells in dermal scarring. Adv
Wound Care (New Rochelle) (2014) 3(4):356–65. doi: 10.1089/wound.2013.0457

67. Arbi S, Eksteen EC, Oberholzer HM, Taute H, Bester MJ. Premature collagen
fibril formation, fibroblast-mast cell interactions and mast cell-mediated phagocytosis
of collagen in keloids. Ultrastruct Pathol (2015) 39(2):95–103. doi: 10.3109/
01913123.2014.981326

68. Ud-Din S, Wilgus TA, Bayat A. Mast cells in skin scarring: A review of animal
and human research. Front Immunol (2020) 11:552205. doi: 10.3389/
fimmu.2020.552205

69. Li X, Wang Y, Yuan B, Yang H, Qiao L. Status of M1 and M2 type macrophages
in keloid. Int J Clin Exp Pathol (2017) 10(11):11098–105.

70. Seoudy WM, Mohy El Dien SM, Abdel Reheem TA, Elfangary MM, Erfan MA.
Macrophages of the M1 and M2 types play a role in keloids pathogenesis. Int Wound J
(2022) 20(1):38–45. doi: 10.1111/iwj.13834

71. Xu X, Gu S, Huang X, Ren J, Gu Y, Wei C, et al. The role of macrophages in the
formation of hypertrophic scars and keloids. Burns Trauma (2020) 8:tkaa006.
doi: 10.1093/burnst/tkaa006

72. Feng C, Shan M, Xia Y, Zheng Z, He K, Wei Y, et al. Single-cell rna sequencing
reveals distinct immunology profiles in human keloid. Front Immunol (2022)
13:940645. doi: 10.3389/fimmu.2022.940645
Frontiers in Immunology 11
73. Jiao H, Fan J, Cai J, Pan B, Yan L, Dong P, et al. Analysis of characteristics
similar to autoimmune disease in keloid patients. Aesthetic Plast Surg (2015) 39(5):818–
25. doi: 10.1007/s00266-015-0542-4

74. Xia Y, Wang Y, Xiao Y, Shan M, Hao Y, Zhang L. Identification of a diagnostic
signature and immune cell infiltration characteristics in keloids. Front Mol Biosci
(2022) 9:879461. doi: 10.3389/fmolb.2022.879461

75. Yin X, Bu W, Fang F, Ren K, Zhou B. Keloid biomarkers and their correlation
with immune infiltration. Front Genet (2022) 13:784073. doi: 10.3389/
fgene.2022.784073

76. Nang’ole WF, Omu A, Ogeng’o JA, Agak GW. Do mesenchymal stem cells
influence keloid recurrence? Stem Cells Cloning: Adv Appl (2022) 15:77–84.
doi: 10.2147/SCCAA.S373551

77. Hahn JM, McFarland KL, Combs KA, Powell HM, Supp DM. Myofibroblasts are
not characteristic features of keloid lesions. Plast Reconstr Surg Glob Open (2022) 10
(11):e4680. doi: 10.1097/gox.0000000000004680

78. Shan M, Liu H, Song K, Liu S, Hao Y, Wang Y. Immune-related gene expression
in skin, inflamed and keloid tissue from patients with keloids. Oncol Lett (2022) 23
(2):72. doi: 10.3892/ol.2022.13192

79. Li Y, Li M, Qu C, Li Y, Tang Z, Zhou Z, et al. The polygenic map of keloid
fibroblasts reveals fibrosis-associated gene alterations in inflammation and immune
responses. Front Immunol (2021) 12:810290. doi: 10.3389/fimmu.2021.810290

80. Yuan B, Miao L, Mei D, Li L, Hu Z. A signature of genes featuring Fgf11 revealed
aberrant fibroblast activation and immune infiltration properties in keloid tissue. Emerg
Med Int (2022) 2022:4452687. doi: 10.1155/2022/4452687

81. Diaz A, Tan K, He H, Xu H, Cueto I, Pavel AB, et al. Keloid lesions show
increased il-4/Il-13 signaling and respond to Th2-targeting dupilumab therapy. J Eur
Acad Dermatol Venereol (2020) 34(4):e161–e4. doi: 10.1111/jdv.16097

82. Maeda D, Kubo T, Kiya K, Kawai K, Matsuzaki S, Kobayashi D, et al. Periostin is
induced by il-4/Il-13 in dermal fibroblasts and promotes Rhoa/Rock pathway-mediated
tgf-b1 secretion in abnormal scar formation. J Plast Surg Handb Surg (2019) 53(5):288–
94. doi: 10.1080/2000656x.2019.1612752

83. Oriente A, Fedarko NS, Pacocha SE, Huang SK, Lichtenstein LM, Essayan DM.
Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. J
Pharmacol Exp Ther (2000) 292(3):988–94.

84. Shan M, Liu H, Hao Y, Meng T, Feng C, Song K, et al. Il-4 and Ccr7 play an
important role in the development of keloids in patients with a family history. Am J
Transl Res (2022) 14(5):3381–94. doi: 10.3390/ijms23168862

85. Wu J, Del Duca E, Espino M, Gontzes A, Cueto I, Zhang N, et al. Rna sequencing
keloid transcriptome associates keloids with Th2, Th1, Th17/Th22, and Jak3-skewing.
Front Immunol (2020) 11:597741. doi: 10.3389/fimmu.2020.597741

86. Hajdarbegovic E, Bloem A, Balak D, Thio B, Nijsten T. The association between
atopic disorders and keloids: A case-control study. Indian J Dermatol (2015) 60(6):635.
doi: 10.4103/0019-5154.169144

87. Zhang D, Li B, Zhao M. Therapeutic strategies by regulating interleukin family
to suppress inflammation in hypertrophic scar and keloid. Front Pharmacol (2021)
12:667763. doi: 10.3389/fphar.2021.667763

88. Do DV, Ong CT, Khoo YT, Carbone A, Lim CP, Wang S, et al. Interleukin-18
system plays an important role in keloid pathogenesis Via epithelial-mesenchymal
interactions. Br J Dermatol (2012) 166(6):1275–88. doi: 10.1111/j.1365-
2133.2011.10721.x

89. Lee SY, Kim EK, Seo HB, Choi JW, Yoo JH, Jung KA, et al. Il-17 induced stromal
cell-derived factor-1 and profibrotic factor in keloid-derived skin fibroblasts Via the
Stat3 pathway. Inflammation (2020) 43(2):664–72. doi: 10.1007/s10753-019-01148-1

90. Ghazizadeh M, Tosa M, Shimizu H, Hyakusoku H, Kawanami O. Functional
implications of the il-6 signaling pathway in keloid pathogenesis. J Invest Dermatol
(2007) 127(1):98–105. doi: 10.1038/sj.jid.5700564

91. Uitto J. Il-6 signaling pathway in keloids: A target for pharmacologic
intervention? J Invest Dermatol (2007) 127(1):6–8. doi: 10.1038/sj.jid.5700604

92. Tosa M, Ghazizadeh M, Shimizu H, Hirai T, Hyakusoku H, Kawanami O.
Global gene expression analysis of keloid fibroblasts in response to electron beam
irradiation reveals the involvement of interleukin-6 pathway. J Invest Dermatol (2005)
124(4):704–13. doi: 10.1111/j.0022-202X.2005.23592.x

93. Shi CK, Zhao YP, Ge P, Huang GB. Therapeutic effect of interleukin-10 in keloid
fibroblasts by suppression of tgf-b/Smad pathway. Eur Rev Med Pharmacol Sci (2019)
23(20):9085–92. doi: 10.26355/eurrev_201910_19311

94. Li Q, Cheng F, Zhou K, Fang L, Wu J, Xia Q, et al. Increased sensitivity to tnf-a
promotes keloid fibroblast hyperproliferation by activating the nf-kb, jnk and P38
mapk pathways. Exp Ther Med (2021) 21(5):502. doi: 10.3892/etm.2021.9933

95. Khattab FM, Samir MA. Correlation between serum il 37 levels with keloid
severity. J Cosmet Dermatol (2020) 19(9):2428–31. doi: 10.1111/jocd.13290

96. Zhao Y, Shi J, Lyu L. Critical role and potential therapeutic efficacy of
interleukin-37 in the pathogenesis of keloid scarring. J Cosmet Dermatol (2020) 19
(7):1805–6. doi: 10.1111/jocd.13357

97. Liu X, Chen W, Zeng Q, Ma B, Li Z, Meng T, et al. Single-cell rna-sequencing
reveals lineage-specific regulatory changes of fibroblasts and vascular endothelial cells
in keloids. J Invest Dermatol (2022) 142(1):124–35.e11. doi: 10.1016/j.jid.2021.06.010
frontiersin.org

https://doi.org/10.1016/j.lfs.2020.117859
https://doi.org/10.3389/fimmu.2022.888719
https://doi.org/10.1054/mehy.2001.1426
https://doi.org/10.1016/j.bbrc.2018.01.068
https://doi.org/10.1016/j.jid.2018.05.017
https://doi.org/10.1001/archderm.137.11.1429
https://doi.org/10.1001/archderm.137.11.1429
https://doi.org/10.1186/1471-5945-9-8
https://doi.org/10.1186/1471-5945-9-8
https://doi.org/10.1016/j.burns.2006.04.014
https://doi.org/10.14715/cmb/2019.65.5.7
https://doi.org/10.4238/gmr16029110
https://doi.org/10.1016/j.jid.2016.01.019
https://doi.org/10.1089/wound.2017.0761
https://doi.org/10.1016/j.phrs.2008.07.009
https://doi.org/10.1016/s0007-1226(79)90037-7
https://doi.org/10.1097/00006534-198403000-00020
https://doi.org/10.1097/00006534-198403000-00020
https://doi.org/10.1097/00004630-198703000-00008
https://doi.org/10.1002/jso.2930380106
https://doi.org/10.1016/j.yexcr.2017.12.011
https://doi.org/10.1016/j.yexcr.2019.111549
https://doi.org/10.1089/wound.2013.0457
https://doi.org/10.3109/01913123.2014.981326
https://doi.org/10.3109/01913123.2014.981326
https://doi.org/10.3389/fimmu.2020.552205
https://doi.org/10.3389/fimmu.2020.552205
https://doi.org/10.1111/iwj.13834
https://doi.org/10.1093/burnst/tkaa006
https://doi.org/10.3389/fimmu.2022.940645
https://doi.org/10.1007/s00266-015-0542-4
https://doi.org/10.3389/fmolb.2022.879461
https://doi.org/10.3389/fgene.2022.784073
https://doi.org/10.3389/fgene.2022.784073
https://doi.org/10.2147/SCCAA.S373551
https://doi.org/10.1097/gox.0000000000004680
https://doi.org/10.3892/ol.2022.13192
https://doi.org/10.3389/fimmu.2021.810290
https://doi.org/10.1155/2022/4452687
https://doi.org/10.1111/jdv.16097
https://doi.org/10.1080/2000656x.2019.1612752
https://doi.org/10.3390/ijms23168862
https://doi.org/10.3389/fimmu.2020.597741
https://doi.org/10.4103/0019-5154.169144
https://doi.org/10.3389/fphar.2021.667763
https://doi.org/10.1111/j.1365-2133.2011.10721.x
https://doi.org/10.1111/j.1365-2133.2011.10721.x
https://doi.org/10.1007/s10753-019-01148-1
https://doi.org/10.1038/sj.jid.5700564
https://doi.org/10.1038/sj.jid.5700604
https://doi.org/10.1111/j.0022-202X.2005.23592.x
https://doi.org/10.26355/eurrev_201910_19311
https://doi.org/10.3892/etm.2021.9933
https://doi.org/10.1111/jocd.13290
https://doi.org/10.1111/jocd.13357
https://doi.org/10.1016/j.jid.2021.06.010
https://doi.org/10.3389/fimmu.2023.1117630
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lee et al. 10.3389/fimmu.2023.1117630
98. Shim J, Oh SJ, Yeo E, Park JH, Bae JH, Kim SH, et al. Integrated analysis of
single-cell and spatial transcriptomics in keloids: Highlights on fibrovascular
interactions in keloid pathogenesis. J Invest Dermatol (2022) 142(8):2128–39.e11.
doi: 10.1016/j.jid.2022.01.017

99. Xie J, Chen L, Cao Y, Wu D, Xiong W, Zhang K, et al. Single-cell sequencing
analysis and weighted co-expression network analysis based on public databases
identified that tnc is a novel biomarker for keloid. Front Immunol (2021) 12:783907.
doi: 10.3389/fimmu.2021.783907

100. Jones LR, Young W, Divine G, Datta I, Chen KM, Ozog D, et al. Genome-wide
scan for methylation profiles in keloids. Dis Markers (2015) 2015:943176. doi: 10.1155/
2015/943176

101. Xu H, Zhu Z, Hu J, Sun J, Wo Y, Wang X, et al. Downregulated cytotoxic Cd8
(+) t-cell identifies with the Nkg2a-soluble hla-e axis as a predictive biomarker and
potential therapeutic target in keloids. Cell Mol Immunol (2022) 19(4):527–39.
doi: 10.1038/s41423-021-00834-1

102. Eishi K, Bae SJ, Ogawa F, Hamasaki Y, Shimizu K, Katayama I. Silicone gel
sheets relieve pain and pruritus with clinical improvement of keloid: Possible target
of mast cells . J Dermatolog Treat (2003) 14(4):248–52. doi : 10.1080/
09546630310016808

103. Shaker SA, Ayuob NN, Hajrah NH. Cell talk: A phenomenon observed in the
keloid scar by immunohistochemical study. Appl Immunohistochem Mol Morphol
(2011) 19(2):153–9. doi: 10.1097/PAI.0b013e3181efa2ef

104. Zhang Q, Kelly AP, Wang L, French SW, Tang X, Duong HS, et al. Green tea
extract and (-)-Epigallocatechin-3-Gallate inhibit mast cell-stimulated type i collagen
expression in keloid fibroblasts Via blocking pi-3k/Akt signaling pathways. J Invest
Dermatol (2006) 126(12):2607–13. doi: 10.1038/sj.jid.5700472

105. Ammendola M, Leporini C, Marech I, Gadaleta CD, Scognamillo G, Sacco R,
et al. Targeting mast cells tryptase in tumor microenvironment: A potential
antiangiogenetic strategy. BioMed Res Int (2014) 2014:154702. doi: 10.1155/2014/
154702

106. Dong X, Zhang C, Ma S, Wen H. Mast cell chymase in keloid induces
profibrotic response Via transforming growth factor-b1/Smad activation in keloid
fibroblasts. Int J Clin Exp Pathol (2014) 7(7):3596–607.

107. Wang R, Chen J, Zhang Z, Cen Y. Role of chymase in the local renin-
angiotensin system in keloids: Inhibition of chymase may be an effective therapeutic
approach to treat keloids. Drug Des Devel Ther (2015) 9:4979–88. doi: 10.2147/
dddt.S87842

108. Shiota N, Kakizoe E, Shimoura K, Tanaka T, Okunishi H. Effect of mast cell
chymase inhibitor on the development of scleroderma in tight-skin mice. Br J
Pharmacol (2005) 145(4):424–31. doi: 10.1038/sj.bjp.0706209

109. Takai S, Jin D. Improvement of cardiovascular remodelling by chymase
inhibitor. Clin Exp Pharmacol Physiol (2016) 43(4):387–93. doi: 10.1111/1440-
1681.12549

110. Takai S, Jin D. Chymase as a possible therapeutic target for amelioration of
non-alcoholic steatohepatitis. Int J Mol Sci (2020) 21(20):7543. doi: 10.3390/
ijms21207543

111. Gallant-Behm CL, Hildebrand KA, Hart DA. The mast cell stabilizer ketotifen
prevents development of excessive skin wound contraction and fibrosis in red duroc
pigs. Wound Repair Regener (2008) 16(2):226–33. doi: 10.1111/j.1524-
475X.2008.00363.x

112. Mukhopadhyay A, Do DV, Ong CT, Khoo YT, Masilamani J, Chan SY, et al.
The role of stem cell factor and c-kit in keloid pathogenesis: Do tyrosine kinase
inhibitors have a potential therapeutic role? Br J Dermatol (2011) 164(2):372–86.
doi: 10.1111/j.1365-2133.2010.10035.x

113. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and
fibrosis. Immunity (2016) 44(3):450–62. doi: 10.1016/j.immuni.2016.02.015

114. Fukui S, Iwamoto N, Takatani A, Igawa T, Shimizu T, Umeda M, et al. M1 and
M2 monocytes in rheumatoid arthritis: A contribution of imbalance of M1/M2
monocytes to osteoclastogenesis. Front Immunol (2017) 8:1958. doi: 10.3389/
fimmu.2017.01958

115. Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate
scar formation and chronic wound healing. Int J Mol Sci (2017) 18(7):1545.
doi: 10.3390/ijms18071545

116. Clark RA, Kupper TS. Il-15 and dermal fibroblasts induce proliferation of
natural regulatory t cells isolated from human skin. Blood (2006) 109(1):194–202.
doi: 10.1182/blood-2006-02-002873

117. Chen Z, Zhou L, Won T, Gao Z, Wu X, Lu L. Characterization of Cd45ro+
memory t lymphocytes in keloid disease. Br J Dermatol (2018) 178(4):940–50.
doi: 10.1111/bjd.16173

118. Turner JA, Stephen-Victor E, Wang S, Rivas MN, Abdel-Gadir A, Harb H, et al.
Regulatory t cell-derived tgf-b1 controls multiple checkpoints governing allergy and
autoimmunity. Immunity (2020) 53(6):1202–14.e6. doi: 10.1016/j.immuni.2020.10.002

119. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of
immune cells in the tumour environment by tgfbeta. Nat Rev Immunol (2010) 10
(8):554–67. doi: 10.1038/nri2808

120. Ganeshan K, Bryce PJ. Regulatory t cells enhance mast cell production of il-6
Via surface-bound tgf-b. J Immunol (2012) 188(2):594–603. doi: 10.4049/
jimmunol.1102389
Frontiers in Immunology 12
121. Fickenscher H, Hör S, Küpers H, Knappe A, Wittmann S, Sticht H. The
interleukin-10 family of cytokines. Trends Immunol (2002) 23(2):89–96. doi: 10.1016/
S1471-4906(01)02149-4

122. Hasegawa T, Nakao A, Sumiyoshi K, Tsuboi R, Ogawa H. Ifn-gamma fails to
antagonize fibrotic effect of tgf-beta on keloid-derived dermal fibroblasts. J Dermatol Sci
(2003) 32(1):19–24. doi: 10.1016/s0923-1811(03)00044-6

123. Villalta SA, Rosenthal W, Martinez L, Kaur A, Sparwasser T, Tidball JG, et al.
Regulatory t cells suppress muscle inflammation and injury in muscular dystrophy. Sci
Transl Med (2014) 6(258):258ra142. doi: 10.1126/scitranslmed.3009925

124. Ariotti S, Hogenbirk MA, Dijkgraaf FE, Visser LL, Hoekstra ME, Song JY, et al.
T cell memory. skin-resident memory Cd8⁺ t cells trigger a state of tissue-wide
pathogen alert. Science (2014) 346(6205):101–5. doi: 10.1126/science.1254803
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