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sphingolipid-related genes in
clinical outcomes of
breast cancer
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Huilin Chen1, Shuhan Zhao1, Yuhan Dai1, Mingjie Zheng1,
Yiqin Xia1* and Hui Xie1*

1Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University,
Nanjing, China, 2Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China
Background:Despite tremendous advances in cancer research, breast cancer (BC)

remains a major health concern and is the most common cancer affecting women

worldwide. Breast cancer is a highly heterogeneous cancer with potentially

aggressive and complex biology, and precision treatment for specific subtypes

may improve survival in breast cancer patients. Sphingolipids are important

components of lipids that play a key role in the growth and death of tumor cells

and are increasingly the subject of new anti-cancer therapies. Key enzymes and

intermediates of sphingolipid metabolism (SM) play an important role in regulating

tumor cells and further influencing clinical prognosis.

Methods: We downloaded BC data from the TCGA database and GEO database,

on which we performed in depth single-cell sequencing analysis (scRNA-seq),

weighted co-expression network analysis, and transcriptome differential

expression analysis. Then seven sphingolipid-related genes (SRGs) were

identified using Cox regression, least absolute shrinkage, and selection operator

(Lasso) regression analysis to construct a prognostic model for BC patients. Finally,

the expression and function of the key gene PGK1 in the model were verified by in

vitro experiments.

Results: This prognostic model allows for the classification of BC patients into

high-risk and low-risk groups, with a statistically significant difference in survival

time between the two groups. The model is also able to show high prediction

accuracy in both internal and external validation sets. After further analysis of the

immune microenvironment and immunotherapy, it was found that this risk

grouping could be used as a guide for the immunotherapy of BC. The

proliferation, migration, and invasive ability of MDA-MB-231 and MCF-7 cell lines

were dramatically reduced after knocking down the key gene PGK1 in the model

through cellular experiments.
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Conclusion: This study suggests that prognostic features based on genes related

to SM are associated with clinical outcomes, tumor progression, and immune

alterations in BC patients. Our findingsmay provide insights for the development of

new strategies for early intervention and prognostic prediction in BC.
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1 Introduction

According to the International Agency for Research on Cancer

(LARC), the incidence of BC accounts for 11.7% of all cancers,

making it the most prevalent cancer in the world (1). Research on

BC has been a hot topic both nationally and internationally, and

despite improvements in the early detection and treatment of BC,

patients still face serious challenges in terms of poor prognosis (2, 3).

To help in BC diagnosis and therapy, it is worthwhile to investigate

novel BC prognostic models and discover new biomarkers.

Metabolomics has become widely acknowledged as having a

significant impact on the onset and progression of BC throughout

the past ten decades (4–8). Sphingolipids are an important

component of lipids and SM has become a hot research topic.

Sphingolipid metabolism is closely involved in the regulation of

apoptosis and proliferation, providing a basis for physiological and

pathological studies of various diseases (9–12). Sphingolipid

metabolomic is an essential part of cell signaling and is pivotal in

regulating the dynamic balance of cell proliferation, differentiation,

and apoptosis (13). Ceramide (Cer) and sphingosine (SPH) regulate

cell death, senescence, and cell cycle arrest, and sphingosine-1-

phosphate (S1P) promotes cell proliferation and possesses anti-

apoptotic properties (14, 15). Ceramide and S1P are also important

signaling molecules for a variety of basic cellular physiological and

biochemical responses such as inflammation, vascular endothelial

barriers, immune cell transport, stress response, apoptosis, and

autophagy, and are involved in regulating vital activities such as

angiogenesis and smooth muscle contraction and diastole (16, 17).

Recently, abnormal levels of sphingolipid molecules have been

detected in the serum of BC patients, suggesting a corresponding

role of sphingolipid molecules in the development of BC (18, 19).

However, the association between SM and breast cancer biology and

clinical outcomes is not fully understood. Therefore, understanding

the specific mechanisms and targeting interventions are crucial for BC

diagnosis and treatment, and the use of SRGs to predict treatment

efficacy and clinical prognosis deserves further study.

Single-cell sequencing analysis is a new sequencing method,

which has attracted many researchers because of its accuracy.

Single-cell sequencing gives us a way to precisely assess gene

expression at the cellular level (20). Bioinformatics analysis of

single cells and transcriptome sequencing for cancer immune

microenvironment (TME) analysis and survival analysis are

important analytics as they provide new biomarkers for precision

cancer diagnosis and treatment. Risk profiles are widely used to

predict prognostic outcomes in various types of cancer, and risk
02
profiles constructed across multiple cancer types have been shown to

outperform traditional methods (including pathology and imaging

estimates) in predicting the clinical prognosis (21–23). Therefore, it is

of clinical importance to explore new prognostic features.

We downloaded BC public data for this study from the TCGA

and GEO databases. Through comprehensive bioinformatics analysis,

a new prognostic model was finally constructed using 7 SRGs. Based

on risk levels, BC patients were split into two groups: high- and low-

risk. Additionally, in BC patients, changes in immune infiltration and

immunological checkpoints can be detected using the sphingolipid

metabolic profile. Our study might offer a fresh perspective on the

investigation of BC diagnosis and care.
2 Materials and methods

2.1 Transcriptome data acquired
and processing

Breast cancer RNA expression profiles, gene mutation, and

corresponding clinical data were retrieved from the TCGA database

(n=1095) and divided into a training group and validation group by

7:3, in which the training group was used to construct the model, and

the validation group was used to check the stability and accuracy of

the model. Simultaneously, the GEO expression profiles of GSE20685

were downloaded for use as an external independent validation

cohort. All data were in TPM format and log2 was transformed for

subsequent analysis. Adjustments for the batch effect between TCGA-

BC and GSE20685 were made with the “sva” package.
2.2 scRNA-seq data acquired and processing

From the GEO database, the single-cell data set GSE161529 of BC

was retrieved. There are ten samples in all in the dataset. We

performed the quality control of scRNA-seq data by “seurat” and

“singleR” R packages. We kept cells with less than 10% mitochondrial

genes, cells with more than 200 genes overall, and genes whose

expression spanned from 200 to 7000 and were expressed in at least

three cells to keep high-quality scRNA-seq data. A total of 50,917

eligible cells were selected for further exploration. The remaining cells

were further scaled and normalised using a linear regression model

with the “Log-normalisation” technique. After data normalization,

the top 3,000 hypervariable genes were distinguished according to the

“FindVariableFeatures” function. As these data were obtained from
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several samples, we utilised the “FindlntegrationAnchors” function of

the canonical correlation analysis (CCA) method to eliminate the

batch effects disrupting downstream analysis. Subsequently, we used

the “IntegrateData” and “ScaleData” functions to adequately integrate

and scale the data, respectively.

Anchor points were identified by principal component analysis

(PCA) dimensionality reduction. The t-distributed stochastic

neighbour embedding (t-SNE) approach was used to examine the

top 20 PCs to find meaningful clusters. Cell cycle heterogeneity along

the clusters was evaluated based on the cell cycle markers embedded

in the “seurat” package.
2.3 The acquisition of sphingolipid-
related genes

The GeneCards database served as a source for sphingolipid-

related genes, and a total of 110 SRGs with a relevance score greater

than 1.0 were selected for subsequent investigation.
2.4 AUCell

scRNA-seq data were used to obtain the most relevant genes

affecting sphingolipid metabolic (SM) activity. The “AUCell R”

package, which determines the active status of gene sets in scRNA-

seq data, was employed to assign sphingolipid activity scores to each

cell lineage. The percentage of highly expressed gene sets in each cell

was estimated using the gene expression rankings of each cell based

on the area under the curve (AUC) value of the selected SRGs. AUC

values were larger for cells that expressed more genes. Cells actively

involved in sphingolipid gene sets were determined using the “AUCell

explore Thresholds” function. The cells were then divided into high-

and low-sphingolipid-AUC groups based on the median AUC score

and visualizes using the “ggplot2 R” tool.
2.5 Single sample gene set
enrichment analysis

To calculate the precise score of a gene set enriched in a sample,

ssGSEA analysis was frequently utilised. In this study, ssGSEA

analysis was used to determine the SM scores for each TCGA-

BC patient.
2.6 Weighted co-expression
network analysis

The “WGCNA” package in R implements WGCNA, a systems

biology technique for creating the TCGA-BC gene co-expression

network. Based on the interconnectivity of each gene set and the

relationship between the gene set and the phenotype, WGCNA can be

used to find highly covarying gene sets and to identify possible

biomarker genes or therapeutic targets. In this work, WGCNA was

used to identify the gene modules associated with SM score in BC and

to identify the associated genes.
Frontiers in Immunology 03
2.7 Establishment of a risk signature
associated with sphingolipid

First, a univariate Cox analysis was used to extract the

sphingolipid-related genes having prognostic value. The prognostic

model was then built after the Lasso regression was used to further

screen prognostic SRGs. Each BC can therefore be given a risk score

using the algorithm in this manner. Based on the median value,

patients in the TCGA-BC cohort were divided into high- and low-risk

groups. Then, we investigated how the two groups’ prognoses varied

from one another and evaluated the model’s precision.
2.8 Independence and validity assessment of
the prognostic model

To calculate the probabilities of OS at 1, 3, and 5 years, we

developed a nomogram combining the risk score, age, gender,

pathological stage, and other clinical parameters as independent

prognostic factors. In the meantime, survival curves were plotted

using the Kaplan-Meier method for prognostic reasons, and log-rank

tests were run to assess the statistical significance (24). To assess the

nomogram’s accuracy, calibration and ROC curves were created. Using

decision curve analysis, we further assessed the net benefit of the

nomogram and clinical features alone (DCA). To assess the prognostic

significance of risk score clinical features, stratified analysis was used

(age, gender, clinical stage, and pathological T stage).
2.9 Analysis of the correlation between
prognostic models and tumor immunity
and immunotherapy

We determined the degree of immune infiltration for BC patients

in the TCGA database from the TIMER 2.0 database, which contains

the results of seven evaluation methods (25). Heatmaps were created

using these data to quantify the relative proportions of immune cell

infiltration in the TME. Subsequently, ssGSEA analysis of genes in the

prognostic risk assessment model was carried out using the R package

GSEABase with immune-related properties (26). The “estimate” R

package allows users to determine the relative abundance of stromal

cells, immune cells, and tumor cells to then compare these values

across different risk categories.
2.10 Mutational landscape and
drug sensitivity

The “maftools” software was used to generate the gene mutation

profiles of BC patients after they were retrieved from the TCGA

database. The detailed gene mutation files were merged with the risk

score. Additionally, we calculated the half-maximal inhibitory

concentrations (IC50) of common chemotherapeutic drugs using

the R package “pRRophetic,” which allowed us to assess the

relationship between the risk score and drug sensitivity. IC50 values

were compared between the two risk groups using Wilcoxon signed-

rank tests.
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2.11 Cell culture and tissue collection

The First Affiliated Hospital of Nanjing Medical University

provided the tissue samples, which were stored at -80°C. Twenty

tissue pairings, including tumor tissue (T) and precancerous tissue

(N), were collected from BC patients undergoing tumor resection

between February 2021 and March 2021. Our hospital’s Institutional

Ethical Board gave the study its approval (2010-SR-091). The clinical

sample information of 20 pairs of patient tissues was presented in

Supplementary Table S1. The Cell Resource Center of Shanghai Life

Sciences Institute provided the HBL-100 human normal breast

epithelial cell line and the MDA-MB-231, HCC1806, MCF-7, and

BT-474 human BC cell lines. These cells were cultured in DMEM or

RPMI-1640 (Gibco BRL, USA). All cells were grown at 37°C with 5%

CO2 in 10% fetal bovine serum (FBS) from Gibco BRL in the

United States.
2.12 Reverse transcription-quantitative PCR

RNA was isolated using the TRIzol reagent (Invitrogen, Carlsbad,

California). Using the HiScript RT Mix (Vazyme, Nanjing, China),

total RNA (500ng) was further reverse transcribed into cDNA.

Quantitative real-time PCR (qRT-PCR) was performed using the

SYBR Green Kit (Vazyme, Nanjing, China). The internal controls

were GAPDH. Tsingke Biotech (Beijing, China) designed all primers,

and detailed primer sequences were presented in Supplementary

Table S2.
2.13 RNA interference

RiboBio created the PGK1-targeting siRNAs and the

accompanying negative controls (Si-NC) (Guangzhou, China). To

transfect siRNAs, Invitrogen’s Lipofectamine 3000 was utilised.

Through RT-qPCR, the transfection effectiveness was validated.

Supplementary Table S2 contains a list of the sequences.
2.14 Cell proliferation assay

The Cell Counting Kit-8 (CCK-8; Vazyme, Nanjing, China) was

used to detect cell proliferation. We seeded the cells in 96-well plates

at 2×103 cells per well. The plate was then incubated with 10 ml CCK-
8 labeling reagent (A311-01, Vazyme, Nanjing, China) per well for 2

hours in the dark at 37°C. The absorbance of the cells was measured at

450 nm wavelength with the enzyme-labeled meter (A33978, Thermo,

USA) to analyse the viability of the cells. It was detected for 0, 24, 48,

72, 96, and 120 hours.
2.15 Colony formation

We transfected 1000 cells and kept them in 6-well plates for

approximately 14 days. Two weeks later, we saw the cell clones with

the naked eye. Next, the cells were rinsed and fixed for 15 minutes in

4% paraformaldehyde (PFA). Crystal violet (Solarbio, China) staining
Frontiers in Immunology 04
was performed for 20 minutes, dried at room temperature, and

counted per well.
2.16 Transwell assay

Transwell experiments included cell migration and invasion

experiments. In the upper chamber, treated cells were cultivated in

a 200 ml serum-free medium with 2×104 cells per well. To assess the

cells’ ability to invade and migrate, the upper portion of the plate was

either precoated with Matrigel solution (BD Biosciences, USA) or left

untreated. Additionally, a bottom chamber with 600mL of 10% serum

medium was available. The cells were fixed with 4% PFA, stained with

0.1% crystal violet (Solarbio, China), and counted under a

light microscope.
2.17 Animal models

The Committee on the Ethics of Animal Experiments at Nanjing

Medical University gave its approval to all animal experiments. For

the xenograft model, female BALB/c five-week-old BALB/c mice were

used. MDA-MB-231 cells that were stably transfected with PGK1 and

control cells were implanted into the left and right groins of the mice

independently for tumorigenicity tests. Every five days, the tumor

weights and volumes were assessed. The xenograft tumors were

separated from their surrounding tissue and weighed 25 days

following the injection.
2.18 Statistical analysis

Software called GraphPad Prism (version 8.0) was used to analyse

experimental data. Three independent experiments recorded the data as

mean ± standard deviation (SD). We tested the comparisons among the

groups with Student’s t-tests (*P<0.05, **P<0.01, ***P<0.001).
3 Results

3.1 Single-cell sequencing data analysis

Figure 1 displayed the study’s flowchart. On the single-cell data set,

we conducted quality control. To confirm the validity of the cell

samples, as seen in Supplementary Figure S1A, we removed some

cells and restricted the percentage of mitochondrial genes, ribosomal

genes, and red blood cell genes. Sequencing depth and total intracellular

sequences exhibit significantly substantial positive associations (R=0.92,

Supplementary Figure S1B). The PCA reduction plot did not reveal any

appreciable variations in cell cycles (Supplementary Figure S1C). The

study contained 10 samples, where each sample’s cell distribution was

largely constant. This suggests that there was no noticeable batch

impact on the samples, which might be used for further analysis

(Supplementary Figure S1D). Supplementary Figure S1E displays the

expression of the genes that identify the cell type. Subsequently, all cells

were classified by the dimensionality reduction algorithms, namely, t-

SNE into 19 more detailed clusters (Figure 2A). There are eight
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different types of cells, such as Fibroblasts, Monocytes/macrophages,

and tumor cells (Figure 2B). The AUCell R package was used to

determine each cell’s SM activity to explore the SRGs’ expression

features. Higher AUG values were seen in cells that expressed more

genes, which were primarily orange-colored B cells and plasma cells

(Figures 2C, D). All cells were assigned an AUC score for the

corresponding SRGs and divided into two groups (high-and low-

sphingolipid-AUC groups) by AUC score threshold values. To

elucidate the potential biological mechanisms of distinct AUC scores,

we performed differential and functional analyses to identify DEGs and

pathways related to glycosylation between high-and low-sphingolipid-

AUC subgroups. We identified 1,221 genes most likely to influence SM

by differential analysis. These terms were mainly related to oxidative
Frontiers in Immunology 05
phosphorylation, apoptosis, fatty acid metabolism, and the p53

pathway (Figure 2E).
3.2 Weighted co-expression
network analysis

Figure 3A shows that TCGA and GEO cohorts independently, with

significant batch effect. After removing the batch effect, more accurate

results were obtained (Figure 3B). WGCNA was used to look for gene

sets that were covarying with sphingolipid in more detail. As seen in

Figure 3C, the data is more consistent with the power-law distribution

and the mean connectivity tends to be stable when the soft domain value
FIGURE 1

The flowchart of this study.
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is 6; making the data suitable for further study. As seen in Figure 3D, 12

non-gray modules were generated after merging the modules with a

similarity lower than 0.25 and setting the minimum number of modules

to 100 and deepSplit to 2. According to Figures 3E, F, we discovered that

the blue and brown modules, which each contained 3,787 genes, were

most closely related to SM (COR = 0.65, P<0.001).
3.3 Construction and validation of
sphingolipid-related prognostic model

To further explore how SRGs relate to the prognosis of BC patients,

we intersected the most relevant genes affecting sphingolipid metabolic

activity obtained in single-cell. Furthermore, Bulk-RNA analysis and
Frontiers in Immunology 06
303 genes were used for subsequent analysis (Figure 4A). We used the

training set in TCGA-BC for model construction, and a total of 63

prognostic genes were obtained by univariate analysis (P<0.01). Next,

LASSO Cox regression analysis was employed to develop the

prognostic model (Figure 4B). A total of seven model genes

(TAGLN2, CHI3L1, PGK1, ATP6AP1, MIA, PSME1, TTC39C) were

finally screened out under optimal regularisation parameters. The

prognostic model was calculated as follows:

risk score =o
k

n=i
(CoefiExp i)

Coefi and Expi represented the coefficient and expression of each

model gene, respectively, and the risk score for each sample was

calculated by the above formula. By using the aforementioned
A B

D

EC

FIGURE 2

Annotation of cell subsets and identification of differentially expressed genes. (A) The results of the dimension reduction cluster analysis are shown in the
tSNE diagram. (B) Cells were annotated into 8 different types of cells. (C, D) All cells were scored according to sphingolipid-associated genes (SRG) and
were divided into high and low groups. (E) Analysis of differentially expressed genes between high and low groups.
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formula, the risk score for each sample was determined. Based on

median values, patients were split into high-risk and low-risk groups.

Of the seven genes used to construct the model, three were risk factors

and four were protective factors (Figure 4C). It was discovered that the

model could effectively group BC patients in both the training cohort

and the test cohort by performing PCA and t-SNE evaluation of the

model’s seven genes in the training set and validation set, respectively

(Figures 4D, E). We performed ROC curve analysis in both the training

and test cohort to further investigate the precision of sphingolipid in the

assessment of the prognosis of BC patients. The area under the curve

(AUC) values for the TCGA train, test, and full cohort were all more

than 0.7 (Figures 4F–H). We discovered that the areas under the curve

at 1, 3, and 5 years for the GEO test group were 0.768, 0.707, and 0.711,
Frontiers in Immunology 07
respectively (Figure 4I). In Figures 4J–L, we discovered that the high-

risk group had a poor prognosis in the TCGA train, test, and entire

cohort (P<0.001). Similarly, we saw that patients in the high-risk group

in the GSE20685 test cohort had a considerably worse prognosis than

those in the high-risk group (P<0.001, Figure 4M). This shows that the

prognostic model related to sphingolipids is highly accurate at

predicting patient outcomes in both cohorts.
3.4 A nomogram’s construction

Using clinical information and a risk score, a nomogram was

created to more accurately quantify the risk of BC patients
A B

D

E F

C

FIGURE 3

Weighted Co-Expression Network Analysis. (A) No significant batch effects were observed in the TCGA cohort and GEO cohorts. (B) Removing the batch
effect. (C–F) Weighted Co-Expression Network Analysis. The blue and brown modules were most associated with sphingolipids, of which 3,787 genes
were extracted.
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(Figure 5A). The nomogram can help determine patient risk more

accurately and direct future treatment decisions. We also carried out

the decision curve and concordance index study, which determines

the area of each clinical feature and none’s horizontal axis to assess

the clinical decision value. Results indicated that this nomogram’s

efficacy was superior to that of other clinical indicators, indicating

that it is effective in forecasting patients’ prognoses and can serve as a

clinical decision-making tool (Figures 5B, C). Prognostic ROC

analysis was carried out to thoroughly assess the accuracy of this

nomogram. According to the findings, the area under the curve

(AUC) was 0.888, 0.804, and 0.765 in 1, 3, and 5 years, respectively

(Figures 5D–F).
Frontiers in Immunology 08
3.5 Clinicopathological analysis of the
prognostic signature in BC

We made a clinical heat map to determine the differences in

clinical features between the two risk groups. Figure 6A shows

noteworthy differences in tumor age, T, and N stage (P<0.05)

between these two groups. Interestingly, there were older age

patients and more advanced N, M stage patients in the high-risk

group (Figures 6B–E). The differences in drug resistance between the

two groups were further discussed and presented in Figures 6F–I. We

found that CP724714, Lapatinib, WZ3105, and Pyrimethamine may

be candidates for treating drugs for the high-risk group. This will
A B

D E

F G IH

J K L M

C

FIGURE 4

Construction and Validation of Sphingolipid-Related Prognostic Model. (A) The intersection of genes obtained in single-cell analysis and bulk-RNA
analysis. (B) LASSO Cox regression analysis to develop the prognostic model. (C) The role of seven model genes. (D, E) PCA and t-SNE analysis in the
training set and validation set, respectively. The seven model genes did a more accurate job of dividing patients into two groups. (F–H) The area under
the curve (AUC) values for the TCGA train, test, and full cohort. (I) The areas under the curve at 1, 3, and 5 years for the GEO test group. (J–L) Survival
analysis in the TCGA train, test, and entire cohort (P<0.001). (M) Survival analysis in the GSE20685 test cohort.
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provide a reference for choosing the most suitable drugs for

clinical practice.
3.6 Mutation landscape analysis

The overview of mutations in the BC samples was exhibited in

Figure 7A, among which the most common mutation type was a

missense mutation. The top 3 most frequent mutant genes were

TP53, MUC16, and MAP3K1. We also examined representative

gene variants in the groups at high and low risk (Figure 7B). Genes

such as TP53, GATA3, ZFHX4, SPTA1, and DMD had the top five

mutation frequencies in the high-risk group. The top five genes with
Frontiers in Immunology 09
the highest mutation frequencies in the low-risk group were

PIK3CA, CDH1, MAP3K1, PTEN, and NEB respectively.

Figure 7C analysed the mutations of 7 SRGs used to construct the

model in 961 BC samples, among which CHI3L1 and PGK1 had

mutations. Furthermore, we examined the mutation symbiosis of

the top 25 genes and discovered that PIK3CA and NEB, MAP3K1,

KMT2C, GATA3, CDH1, and TP53 all shared a mutation symbiosis

(P<0.05, Figure 7D). Furthermore, we found a mutation symbiosis

between CHI3L1 and PGK1 (Figure 7E). The levels of tumor

mutation burden (TMB) between the two risk groups differed

significantly, and there was a positive connection between risk

ratings and TMB values (Figures 7F, G). We investigated the

prognostic impact of TMB combined with the two groups on OS.
A
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C

FIGURE 5

The Construction of a Nomogram. (A) Nomogram to assess the risk of BC patients. (B) Decision curve. (C) Concordance index study. (D–F) Prognostic
ROC analysis in 1, 3, and 5 years, respectively. ***P<0.001.
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Survival analysis suggested that higher TMB levels were relevant

with worse OS (Figures 7H, I).
3.7 Immune landscape and immunotherapy

We determined the degree of immune cell infiltration in each

sample using the CIBERSORT method to better understand the

distribution and association of the relative content of 22 tumor-

infiltrating immune cells (TICs) in the TCGA-BC cohort. Except for

uncharacterised cells, common lymphoid progenitor cells, and M2

macrophages, the low-risk group appeared to have larger levels of

immune infiltration than the high-risk group (Figure 8A). The low-
Frontiers in Immunology 10
risk group then had higher stromal scores, immunological scores, and

ESTIMATE scores (P<0.001), indicating a higher overall immune

level and immunogenicity of the TME in that group. We also looked

at tumor purity, and the results showed a positive correlation between

the two (Figures 8B, C). Due to the significance of immune

checkpoints for immunotherapy’s success in tumors, we also looked

into how immune checkpoint expression varied between the two

groups. 37 immune checkpoint genes were significantly upregulated

in low-risk patients. A substantial elevation of the immunological

checkpoint genes CD276 and TNFSF4 was observed in the high-risk

group (Figure 8D). Patients with this subtype of the tumor might

benefit from targeted therapy against immunological checkpoints that

have increased expression.
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FIGURE 6

Clinical correlation analysis. (A) There were significant differences in N stage, T stage, total stage, and survival between high and low-risk groups. (B) The
age difference of patients between high and low-risk groups. (C) M stage difference of patients between high and low-risk groups. (D) N stage difference
of patients between high and low-risk groups. (E) Total stage difference of patients between high and low-risk groups. (F–I) Potential drug screening in
high-risk patients. *P<0.05, **P< 0.01, ***P<0.001.
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3.8 SRGs risk score predicts treatment
response assessment

We first compared the immune typing of the high and low-risk groups

with the traditional immune typing. We compared the immunological

subtype distributions of BC in various risk categories. The findings showed

that the immunophenotyping of the various groups varied significantly

(Figure 9A). Regarding how TMB and immunotherapy interact, to

determine if patients with various risk patterns respond to

immunotherapy differently, a tumor immune dysfunction and exclusion

(TIDE) analysis was performed. According to the findings, the high-risk

group responded to immunotherapy better since they had a lower TIDE

score (Figure 9B). The relationship between SRG risk scores and positive

immune checkpoint blockade (ICB) related signals was then further
Frontiers in Immunology 11
investigated. The findings demonstrated a substantial positive correlation

between risk scores and DNA replication, cell cycle, the Fanconi anemia

pathway, homologous recombination, mismatch repair, and nucleotide

excision repair (Figure 9C). It can be seen from Figure 9C that there is a

significant positive correlation between CHI3L1 and immune-related

genes. It can be seen from the previous analysis that the HR of CHI3L1

is 0.87415, thus it can be speculated that CHI3L1 may be a key gene to

activate the adaptive immune response in the tumor microenvironment

and that ATP6AP1 is significantly negatively correlated with immune

genes. From the previous analysis, it can be seen that the HR of ATP6AP1

is 1.64752, so it can be speculated that ATP6AP1 may have an inhibitory

effect on the immune response, thus promoting the growth and metastasis

of tumors. From the above analysis, we can estimate that CHI3L1 and

ATP6AP1 can determine the prognosis of patients by changing the state of
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FIGURE 7

Gene mutation analysis. (A) Mutation landscape in the BC samples. (B) The representative gene variants in the groups at high and low-risk groups. (C)
The mutations of 7 model SRGs. (D) The mutation symbiosis of the top 25 genes. (E) The mutation symbiosis between CHI3L1 and PGK1. (F) Differences
in tumor mutation burden (TMB) levels between the two risk groups. (G) The correlation between TMB and risk score. (H, I) Correlation analysis between
TMB and prognosis.
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TME, which may provide a new idea for clinical treatment (Figure 9D).

Furthermore, IPS can contribute to screening patients who are susceptible

to immunotherapy. In our research, the low-risk subtype has higher IPS

and blocker scores than the high-risk subtype, highlighting that low-risk

patients may be more susceptible to immune checkpoint inhibitors (ICIs)

treatment and derive more significant benefits (Figure 9E).
3.9 Expression and prognosis of PGK1 in
BC samples

A pan-cancer analysis of PGK1 expression levels showed that

PGK1 was highly expressed in BC relative to normal tissues

(Figure 10A). To further determine the prognosis of PGK1, survival
Frontiers in Immunology 12
analysis of overall survival (OS), disease-specific survival (DSS), and

progression-free survival (PFS) was performed in TCGA, and patients

with high PGK1 expression were shown to have a bad prognosis

(P<0.05, Figures 10B–D). At the same time, we intensively analysed

PGK1 relapse-free survival (RFS) in GSE22219 and obtained the same

result (Figure 10E). Similarly, the GEPIA dataset showed similar

results (Supplementary Figure S2A).
3.10 Experimental validation of PGK1

We further determined the function of PGK1 by in vitro

experiments. We did the same validation with 20 pairs of breast

cancer tissue samples from our hospital. In clinical samples, we
A B

D

C

FIGURE 8

Analysis of immune microenvironment. (A) The distribution and association of the 22 tumor-infiltrating immune cells (TICs) in the TCGA-BC cohort. (B, C) Correlation
analysis of immune score and risk score, ESTIMATE score and risk score, Stromal score and risk score, tumor purity and risk score. (D) Differences in the abundance
of immune-checkpoint-related genes between high and low-risk groups. *P<0.05, **P< 0.01, ***P<0.001, ns indicates No significance.
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observed similar expression trends (Figure 10F). As expected, PGK1

was highly expressed in 14 of the 20 pairs of tissue samples.

Figure 10G shows that PGK1 is highly expressed in four BC cell

lines compared to HBL-100 cell lines, and PGK1 expression was

highest in MDA-MB-231 and MCF-7 cells compared to other breast

cancer cells. These outcomes confirmed the accuracy of the

bioinformatics studies mentioned above.
3.11 Experimental validation of PGK1

As mentioned previously, PGK1 was the highest expression level in

MDA-MB-231 and MCF-7 cell lines, so we carried out gene knockdown

in these two cell lines. These two cell lines saw a considerable change in
Frontiers in Immunology 13
PGK1 expression (Figure 10H). In CCK-8, we observed that the

proliferation activity of PGK1 knockout MCF-7 cells was significantly

reduced compared with the control cells (Figure 10I). Similar results were

observed in cell line MDA-MB-231 (Figure 10J). To further verify the

effect of PGK1 on the proliferation ability of BC cells, we also conducted

cloning experiments. The results showed that the number and volume of

colonies formed by the two cell lines decreased after the PGK1 gene

knockdown (Figure 11A). Next, we conducted healing and transwell

experiments to analyse the effects of PGK1 on the migration and invasion

ability of BC cells. The results showed that the migration and invasion

ability of BC cells were significantly weakened after PGK1 was knocked

down (Figures 11B, C). As shown in Figure 11D, PGK1 knockdown

inhibited tumor growth, resulting in decreased tumor volume and weight

compared to control groups.
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FIGURE 9

Correlation analysis of treatment response. (A) Immune typing of high and low-risk groups. (B) The difference in TIDE scores between high and low-risk
groups. (C) The relationship between SRG risk scores and positive immune checkpoint blockade (ICB) related signals. (D) CHI3L1 and ATP6AP1 may affect
the prognosis of patients by changing the state of the tumor microenvironment. (E) Differences in IPS reactivity between high and low-risk groups.
***P<0.001.
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4 Discussion

The most frequent form of cancer in women, BC has a

considerable negative impact on patients’ quality of life and comes

at a significant financial cost to society (27). Existing conventional

treatments have limited benefits for BC, and postoperative recurrence

and drug resistance remain major issues in the clinical management

of BC. The main causes of BC’s poor prognosis and treatment results

are believed to be its high heterogeneity and complex TME (28).

By modulating signaling functions in the signaling network of

tumor cells, sphingolipids and their metabolites contribute

significantly to the maintenance of cell growth and signal
Frontiers in Immunology 14
transduction, controlling a variety of biological processes including

growth, proliferation, migration, invasion, and metastasis (13). The

functions of many sphingolipid regulators (mainly Cer, SPH, and

S1P) are of great importance and are closely related to both the

development and progression of cancer, so they can also be used in

anticancer therapy. Eugen Ruckhäberle et al. date examined the

expression of 43 genes related to the sphingolipid metabolic

pathway in 1,269 BC samples using a gene microarray approach.

Investigators found that sphingosine kinase 1 (SPHK1), ceramide

galactosyltransferase (UGT8), and ganglioside GD3-synthase

(ST8SIA1) showed high expression activity in estrogen receptor-

negative BC. In contrast, glucosylceramide synthase (GCS),
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FIGURE 10

Expression analysis and experimental validation of PGK1. (A) Pan-cancer expression profile of PGK1. (B–D) The overall survival (OS), disease-specific
survival (DSS), and progression-free survival (PFS) analysis of PGK1 in the TCGA cohort. (E) The Relapse free survival (RFS) analysis of PGK1 in the
GSE22219 cohort. (F) PCR assay of clinical samples. PGK1 was highly expressed in BC. (G) PCR assay revealed the expression of PGK1 in different cell
lines. PGK1 was highly expressed in four BC cell lines compared to HBL-100 cell lines. (H) PGK1 was knocked down in MCF-7 and MDA-MB-231. (I, J)
CCK-8 showed that the proliferation activity of the cells that knockdown PGK1 was dramatically reduced. *P<0.05, **P< 0.01, ***P<0.001.
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dihydroceramide synthase (LASS4, LASS6), and acidic ceramidase

(ASAH1) were expressed at higher levels in estrogen receptor-positive

BC (29). The study also found that SPHK1 expression correlated with

prognosis, with 75. 8 ± 1. 9% of patients with low SPHK1 expression

being metastasis-free at 5 years, while only 64. 9 ± 3. 6% of patients

with high SPHK1 expression were metastasis-free at 5 years. As more

research has been conducted, more findings have shown that SPHK1

protein levels in BC patients correlate with the grade of tumor
Frontiers in Immunology 15
progression and are potential indicators of tumor malignancy

grading (30, 31).

This study explored the role of SRGs in BC by combining single-

cell sequencing and WGCNA. Seven SRGs were screened by Cox

regression and Lasso regression analysis, and prognostic models of

BC were created using these seven genes. The model divides patients

into high and low-risk groups based on median risk values by

assessing each patient’s risk score, with the high-risk group having
A
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FIGURE 11

In vitro experiment after PGK1 knockdown. (A) After PGK1 knockdown, the cloning ability of MDA-MB-231 and MCF-7 cell lines decreased significantly.
(B) Healing test. After PGK1 knockdown, the migration ability of MDA-MB-231 and MCF-7 cell lines decreased significantly. (C) Transwell assay. After
PGK1 knockdown, the migration and invasion abilities of MDA-MB-231 and MCF-7 cell lines were significantly decreased. (D) Photographs of tumors
obtained from the different groups of nude mice transfected with sh-NC, sh-PGK1. The average weight and tumor size were used to observe tumors.
(*P<0.05, **P<0.01, ***P<0.001).
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a significantly lower prognosis than the low-risk group. To validate

the accuracy of the model, we performed ROC curves on both the

training cohort and the test cohort, with AUC values greater than 0.7

at 1, 3, and 5 years, while the maximum AUC value (0.837) was

detected at 5 years. In addition, clinically relevant ROC curves and

decision curves show that risk scores outperform other clinical

characteristics in terms of the efficiency of clinical application. The

proportion of stage II-IV patients was greater in the high-risk group

compared to the low-risk group, which is consistent with the

traditional clinical grading. These findings imply that the model can

more accurately forecast a BC patient’s prognosis. We also identified

four chemotherapeutic agents that were sensitive in the high-risk

group, namely CP724714, Lapatinib, WZ3105, and Pyrimethamine.

Among them, Lapatinib has been approved for use in patients with

advanced or metastatic BC (32, 33); CP724714 (HER2/ErbB2

inhibitor) is also in clinical trials for BC patients (34–36); and the

FDA-approved antibacterial drug etanercept (PYR) has shown

therapeutic activity in mouse models of BC, with direct tumor

suppression and immunostimulatory effects (37). These outcomes

emphasise how accurate our approach is at predicting outcomes and

treating BC patients.

In the growth of tumors, the TME is crucial. The prognosis of

patients may be impacted by the different immune cells’ tumor invasion

(38, 39). Previous studies have reported that M1 macrophages in BC are

associated with increased tumor cell apoptosis and decreased metastasis,

while M2 types are associated with invasion and metastasis (40, 41). In

BC TME, Tumor-associated macrophages (TAMs) are often present as

theM2 type and play a role in promoting BC progression (42). Our study

found more M1 macrophage infiltration in the low-risk group and more

M2 macrophages in the high-risk group, which also corroborates

previous work. In our study, TMB levels were also found to be

positively correlated with risk scores. Previous studies have shown that

patients with higher TMB levels may show better sensitivity to

immunotherapy (43). We further performed a survival analysis and

found that the high-risk group with a high tumor mutation burden, had

the worst prognosis, suggesting that patients in the high-risk group may

show better sensitivity to immunotherapy. Based on this, we compared

the TIDE scores of the two patient groups and discovered that the high-

risk group’s TIDE ratings were lower, which again raises the possibility

that these individuals may be more responsive to immunotherapy. These

results offer more evidence that our risk model is connected to the

immunological environment and can forecast the outcome of

BC patients.

The gene with the greatest HR in our created signature is PGK1

(phosphoglycerate kinase 1), which has been linked to a bad prognosis in

BC. Our cellular assays show that PGK1 is highly expressed in breast

cancer and that knockdown of PGK1 expression greatly reduces the

activity, invasion, and migration ability of BC cells. This adds to the

evidence that PGK1 plays a role in BC. Many previous studies have shown

that PGK1 has a function in malignant tumors. Therapeutic inhibition of

PPARa-HIF1a-PGK1 signaling targeting acute myeloid leukemia

according to Jie Zha et al (44). Overexpression of PGK1 in prostate

cancer cells has been reported to increase cell metastasis through the

CXCR4/CXCL12 axis (45). PGK1-mediated phosphorylation of Beclin1 at

Ser30 is positively associated with poor prognosis in glioblastoma (46). In

our study, PGK1 was also found to be a potential target for BC.
Frontiers in Immunology 16
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In conclusion, our results suggest that the model constructed with

7 SRGs can predict the prognosis of BC patients well. Furthermore,

we have verified the function of PGK1 in BC through cellular

experiments and screened candidate vaccine genes for BC. These

results might offer useful information for creating fresh BC

treatment plans.
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