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Skin-associated adipocytes in skin
barrier immunity: A mini-review

Jingyan Guan †, Congxiao Wu †, Yunfan He* and Feng Lu*

Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University,
Guangzhou, Guangdong, China
The skin contributes critically to health via its role as a barrier tissue against a

multitude of external pathogens. The barrier function of the skin largely depends

on the uppermost epidermal layer which is reinforced by skin barrier immunity. The

integrity and effectiveness of skin barrier immunity strongly depends on the close

interplay and communication between immune cells and the skin environment.

Skin-associated adipocytes have been recognized to play a significant role in

modulating skin immune responses and infection by secreting cytokines,

adipokines, and antimicrobial peptides. This review summarizes the recent

understanding of the interactions between skin-associated adipocytes and other

skin cells in maintaining the integrity and effectiveness of skin barrier immunity.
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1 Introduction

As the largest organ and outermost layer of the human body, the skin serves as the first-line

defense against various external pathogenic factors, including physical, chemical, and biological

stresses, and plays a pivotal role in preventing dehydration. Maintenance of these functions

relies primarily on a sound skin barrier; any functional or structural defect of the skin barrier

may induce various skin diseases such as atopic dermatitis (AD) (1) and psoriasis (2). In

addition to the skin physical barrier, which mainly consists of keratinocytes and their products,

skin barrier immunity is also recently found to play an important role in maintaining integrity

of skin barrier (3). Recent studies found that skin-resident immune cells, including Langerhans

cells (LCs), dendritic cells (DCs), innate lymphoid cells (ILCs), and T cells, work along with the

skin-resident structural cells, such as keratinocytes and fibroblasts to protect the homeostatic

balance of skin barrier immunity (4). The integrity of skin barrier closely depends on the

homeostasis of skin barrier immunity and challenged when homeostasis is irreversibly

compromised. During the last few years, it has been recognized that skin-associated

adipocytes, which located in the subcutis and at the bottom of the dermis, may play

important roles in modulating skin immunity by producing various cytokines, adipokines,
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and antimicrobial peptides (AMPs) (5). Studying of the effect of skin-

associated adipocytes on skin barrier immunity may deepen our

understanding of skin barrier system (4, 6, 7). Therefore, this mini-

review will summarize the recent developments and current

understanding of how the skin-associated adipocytes mediate

multiple facets of skin barrier immunity.
2 Composition of skin barrier and
location of skin-associated adipocytes

Skin barrier can be functionally divided into four levels, namely,

the microbiome barrier, the chemical barrier, the physical barrier, and

the immune barrier (8). As the outermost layer, the microbiome

barrier is composed of abundant microbial communities which act as

the first line of defense. The commensal microbes play important

roles in inhibiting the colonization of pathogenic bacteria (9) and in

suppressing inflammatory cytokines released by skin-resident cells

(10). The chemical barrier commonly refers to a series of protective

molecules produced by different types of skin cells, including AMPs

(11), natural moisturizing factors (NMFs) (12), epidermal lipids (13),

and cutaneous pH-contributing factors. With regard to the physical

barrier, the stratum corneum (SC) and tight junctions (TJs) are the

most important components. The SC consists of several layers of

denucleated and flattened cornified cells, which result from the

terminal differentiation of keratinocytes (14), the TJs are

transmembrane proteins expressed by keratinocytes in the stratum

granulosum (SG) and function as connections between adjacent

keratinocytes (15). The immune barrier is composed of various

resident immune cells in the epidermis and dermis. In addition,

other skin structural cells exert immunologic functions and work

together with immune cells to maintain immune barrier integrity.

These four elements of the skin barrier are not independent of one

another. Instead, they are inextricably interconnected, and each

element influences the others. Any dysfunction in the barrier

compartment may lead to a vicious circle, compounding damage to

the barrier and resulting in various dermatoses.

The skin consists of several distinct layers and a series of cutaneous

appendages, of which the epidermis forms the outermost layer and

accounts for the majority of the barrier function. The next layer is the

dermis, which can be subdivided into papillary and reticular dermis

(16). Skin-associated adipocytes reside in the reticular dermis and

subcutis, where they form dermal white adipose tissue (dWAT) and

subcutaneous white adipose tissue (sWAT), respectively. In mice and

rats, these two layers are clearly separated by a thin layer of skeletal

muscle called the panniculus carnosus (17). However, in human skin,

there is no distinct demarcation between dWAT and sWAT, and the

existence of dWAT has not yet been confirmed because of the difficulty

in tracing (18).
3 The immunoregulating potential of
skin-associated adipocytes

WAT used to be merely considered as an energy storage site with

simple functions, such as mechanical protection and thermal
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insulation (6). However, recent studies demonstrated that adipose

tissue acts as an endocrine organ with a pivotal role in the regulation

of immune responses (19). Adipocyte is the most common cell type in

WAT; however, adipose tissue also contains a variety of immune cells.

The cross-talk between adipocytes and immune cells remarkably

affects the local inflammatory state. For instance, receptors for the

macrophage-derived factors interleukin (IL)-1b and tumor necrosis

factor (TNF), as well as receptors for the cytokine IL-17 produced by

helper T (Th) 17 cells, are expressed on the surface of adipocytes and

mediate downstream pro-inflammatory signals (20, 21). In addition,

receptors for the anti-inflammatory cytokine IL-10 are enriched in

mature adipocytes and contribute to the creation of an anti-

inflammatory milieu (22). Moreover, adipocytes produce an array

of inflammatory cytokines and chemokines, including several ILs,

notably IL-6, IL-1b, TNF-a, and monocyte chemoattractant protein-1

(MCP-1) (23, 24). In addition, the immunoregulatory potency of

skin-associated adipocytes depends on adipokines, a series of small

bioactive proteins produced by adipocytes (25). Based on their

inflammatory properties, adipokines can be classified as pro-

inflammatory and anti-inflammatory (26, 27) (Table 1).
3.1 Pro-inflammatory adipokines

Leptin, one of the most abundant pro-inflammatory adipokines

expressed by skin adipocytes (61), and the first to be discovered, has

been extensively investigated in skin biology (62). The Janus kinase/

signal transducer and activator of transcription (JAK/STAT) signaling

pathway is the main signaling pathway activated by leptin (63).

Moreover, other inflammatory signaling pathways, including the

mitogen-activated protein kinase (MAPK), phosphoinositide 3-

kinase (PI3K), PPAR gamma coactivator/peroxisome proliferator-

activated receptor (PGC/PPAR), adenosine monophosphate kinase

(AMPK), and extracellular signaling-regulated kinase 1/2 (ERK1/2)

pathways can be stimulated by leptin (64). In addition to adipocytes,

leptin is secreted by keratinocytes, fibroblasts, and sebocytes. These

cells also possess leptin receptors and, therefore, respond to leptin in

addition to secreting it (65–67). In vitro studies have demonstrated

that leptin treatment can induce or enhance the production of pro-

inflammatory cytokines (such as TNF-a, IL-6, and IL-8) and the

expression of inflammatory enzymes (cyclooxygenase [COX]-2 and

5-lipooxygenase [LOX]) in human keratinocytes, synovial fibroblasts,

and SZ95 sebocytes (28–31). Moreover, leptin affects the secretion

profile of multiple immune cells, such as monocytes/macrophages,

neutrophils, natural killer (NK) cells, eosinophils, basophils, and T

cells, which would further aggravate pro-inflammatory processes

(32–34).

Chemerin, for which receptors are widely present on the surface

of immune cells including T cells, NK cells, DCs, monocytes/

macrophages, and neutrophils, is an adipokine that is considered as

chemoattractant and modulator of the immune response (37).

Chemerin has a stronger chemotactic potency in NK cells and DCs

migration than the classic chemokines C-X-Cmotif chemokine ligand

(CXCL) 8 and CXCL12 (approximately 20-fold and 100-fold stronger,

respectively) (38, 39). In the human skin, chemerin is expressed in

both the epidermis and dermis, but its distribution varies between

healthy and diseased skin. In healthy skin, chemerin is mainly
frontiersin.org
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produced by keratinocytes and rarely occurs in the dermis. In

contrast, the skin of patients with psoriasis shows decreased

chemerin expression in keratinocytes and an abnormal increase in

chemerin expression in the dermis (68). Although many reports have

confirmed the pro-inflammatory characteristics of chemerin in

facilitating the secretion of pro-inflammatory cytokines such as

TNF-a, IL-1b and IL-6 (40–42), Cash et al. reported its anti-

inflammatory effects (43). In a mouse model of zymosan-induced

inflammation, neutrophils and monocytes were suppressed by

chemerin in a chemokine-like receptor 1-dependent manner.

However, since another study ruled out the direct anti-

inflammatory effect of chemerin on macrophages ex vivo (69),

thereby emphasizing that more investigations are needed to

confirm the anti-inflammatory capacity of chemerin.

Visfatin, also known as pre-B-cell colony-enhancing factor

(PBEF), has been identified as an adipokine in the last two decades
Frontiers in Immunology 03
(70). As a pro-inflammatory adipokine, visfatin upregulates the

secretion of pro-inflammatory cytokines (such as IL-6, TNF-a, and
IL-1b) in human monocytes and endothelial cells (45), as well as

increasing the expression of co-stimulatory molecules (CD80, CD40,

and intercellular cell adhesion molecule-1 (ICAM-1)] in monocytes to

enhance the activation of T cells via the p38 and mitogen-activated/

extracellular response kinase kinase (MEK)-mediated pathways (46).

In the skin, visfatin stimulates the production of a series of

chemokines, including CXCL8, CXCL10, and C-C motif chemokine

ligand (CCL) 20, via the nuclear factor-kappa-gene binding (NF-kB)
and STAT3 pathways in keratinocytes under the synergistic effect of

TNF-a (47).

Upregulation of pro-inflammatory adipokines in the skin usually

causes an abnormal inflammatory state and disordered cutaneous

metabolism. However, some adipokines with pro-inflammatory

properties have been demonstrated to play important roles in skin
TABLE 1 Adipokines in the skin and their effects.

Adipokine Properties Effects Ref.

Leptin Pro-inflammatory Promotes pro-inflammatory biomolecules productionin skin constructive cells (28–31)

Changes secretion profile of immune cells (32–34)

Antibacterial Assists removal of Streptococcus pneumoniae (35)

Promotes hBD-2 production of human keratinocytes (36)

Chemerin Pro-inflammatory Acts as a chemoattractant (37–39)

Facilitates pro-inflammatory cytokines production (40–42)

Anti-inflammatory (need further confirm) Suppresses neutrophil and monocyte recruitment (43)

Antibacterial Possesses a certain degree of bactericidal capacity on E. coli and K. pneumoniae (44)

Visfatin Pro-inflammatory Activates human leukocytes and induces cytokine production (45, 46)

Stimulates chemokines production (47)

Antibacterial Promotes AMPs production of human keratinocytes (48)

ZAG Pro-inflammatory Modulates immune responses (49)

Others Promotes keratinocytes terminal differentiation (49)

Resistin Pro-inflammatory Promotes pro-inflammatory cytokines production in other diseases (27, 50)

Not fully been elucidated in skin diseases

Adiponectin Anti-inflammatory Suppresses TNF and IFN-g production (51, 52)

Promotes anti-inflammatory cytokines production (53)

Suppresses TNF and IFN-g production (53)

Others Promotes epidermal cells proliferation and migration (54)

Enhances skin lipid synthesis (55)

Enhances filaggrin expression (56)

Impedes UV-induced dermal matrix degradation (57)

Anti-fibrosis (58)

CTRP-3 Anti-inflammatory Suppresses pro-inflammatory pathways in monocytes and adipocytes (59, 60)

Suppresses chemokines secretion (60)
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barrier homeostasis, and their expression usually decreases in patients

with skin diseases. Zinc alpha (2)-glycoprotein (ZAG) is considered

an important factor for keratinocyte terminal differentiation and

immune response modulation, and its expression in the skin of

patients with AD and psoriasis is significantly lower than that in

healthy controls (49, 71). Moreover, topical treatment with ZAG

resulted in the relief of immune abnormalities and recovery of skin

barrier function (49), which further indicated the role of ZAG in skin

barrier immunity. Another pro-inflammatory adipokine, resistin was

found to promote the expression of many pro-inflammatory

cytokines (such as TNF-a and IL-6) (27, 50) and adhesion

molecules [such as ICAM-1 and vascular cell adhesion molecule 1

(VCAM-1)] (27) in many diseases, such as vascular diseases (72),

metabolic disorders (73), and cystic fibrosis (74). However, an

investigation focused on the association between resistin and AD

indicated that the serum resistin levels in patients with AD were

significantly lower than those in healthy subjects (75); the underlying

mechanisms have not yet been elucidated.
3.2 Anti-inflammatory adipokines

Although present in smaller amounts than pro-inflammatory

adipokines, certain anti-inflammatory adipokines are also found in

the skin. Their role in skin barrier immunity is being

intensively investigated.

Adiponectin, which interacts with the cellular receptors

ADIPOR1 and ADIPOR2, is the most extensively studied anti-

inflammatory adipokine. Through cellular receptors, adiponectin

activates AMPK, peroxisome PPARa, and p38 MAPK (76).

Adiponectin is also secreted by keratinocytes and sebocytes in the

skin (77). The anti-inflammatory properties of adiponectin are

reflected in the following aspects. First, adiponectin is capable of

inhibiting TNF production by suppressing the NF-kB kinase

signaling (51, 52). Second, adiponectin stimulates the production of

anti-inflammatory cytokines (such as IL-10 and IL-1 receptor

antagonist [IL-1RA]) by human macrophages, monocytes, and DCs,

and suppresses interferon-gamma (IFN-g) secretion by

lipopolysaccharide (LPS)-stimulated human macrophages (53). In

addition, the inhibitory effect of adiponectin on T-cell response and

macrophage phagocytosis was demonstrated in the same study (53).

In skin-resident cells, adiponectin receptors are present on the surface

of keratinocytes, fibroblasts, sebocytes, and melanocytes (78, 79). In

addition to immune modulation, adiponectin is responsible for other

functions. In vitro and in vivo experiments have indicated that

adiponectin promotes the proliferation and migration of epidermal

cells via the ERK signaling pathway, thereby facilitating skin wound

healing (54). Additionally, adiponectin enhances skin lipid synthesis

and filaggrin expression via silent information tegulator 1 (SIRT1)

signaling (55, 56), thereby aiding the maintenance of skin barrier

homeostasis. Moreover, studies focusing on the dermis have indicated

that adiponectin may possess anti-fibrotic potency and resistance to

UV-induced dermal matrix degradation (57, 58).
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C1q/TNF-related Protein-3 (CTRP-3) is an adipokine with a

structure homologous to adiponectin (80). CTRP-3 possesses strong

potency in suppressing common pro-inflammatory pathways in

monocytes and adipocytes, such as toll like receptor (TLR), LPS,

and fatty acid-mediated inflammation (59, 60). CTRP-3 is, therefore,

classified as an anti-inflammatory adipokine. In primary monocytes

of healthy humans, CTRP-3 was found to suppress the LPS-

stimulated secretion of macrophage migration inhibitory factor

(MIF), CCL4, MCP-1, and the lauric acid-stimulated release of TNF

and IL-6 (60). In adipocytes, CTRP-3 inhibits the secretion of MCP-1,

which is normally induced by various TLR agonists (60).
4 Skin-associated adipocytes maintain
skin barrier immunity by exerting
antimicrobial capacity

Skin-derived AMPs are small peptides secreted primarily by

keratinocytes that form the first line of defense against microbial

pathogens (11). They act as multifunctional biomolecules that

maintain the integrity and stability of the skin barrier in several

ways. The AMPs exert antibiotic-like activity that directly kills

pathogens (81) and act as effector molecules that play a vital role in

balancing immune responses and modulating cell activities (82, 83).

Recent studies have identified the role of skin-associated adipocytes in

barrier immunity as a significant source of AMPs. When the skin

suffers from inflammation, injury, and infection, the lesion site enters

a state called reactive adipogenesis, characterized by a local increase in

dermal adipocytes from which AMPs are responsively produced to

suppress infection (84, 85). Using a Staphylococcus aureus-induced

skin infection mouse model, Zhang et al. (86) indicated that newly

differentiating preadipocytes could directly contribute to host defense

by producing cathelicidin, which is one of the best characterized

AMPs. This defense effect was inhibited in Zfp423-deficient mice and

in the mice treated with inhibitors of PPAR-g, which further

confirmed the antimicrobial role of adipocytes. The mechanisms by

which adipocytes recognize and respond to bacteria were

subsequently uncovered possibly involving a TLR2-mediated

pathway (87).

In addition to classic AMPs, some adipokines secreted by skin-

associated adipocytes exert antimicrobial activities. In a study by

Mancuso et al. (35), the authors found that low levels of circulatory

leptin induced by starvation resulted in the impairment of bacterial

clearance in a Streptococcus pneumoniae infected mouse model. This

defective function was restored by administration of exogenous leptin,

indicating the antimicrobial ability of leptin. Structural homology

between chemerin and cathelicidin has been predicted (40, 88). Based

on this prediction, Kulig et al. (44) tested the antibacterial capacity of

chemerin against Escherichia coli and Klebsiella pneumoniae. The results

showed that although the antimicrobial effects of chemerin on E. coli and

K. pneumoniae were less potent than those of the classic AMP LL-37,

chemerin displayed a certain degree of bactericidal capacity, especially

the isoforms truncated by the cysteine proteases cathepsin L and K.
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Moreover, skin-associated adipocytes can induce AMP secretion

from other skin cells via adipokines. Leptin can enhance the

production of human beta-defensin-2 (hBD-2) in human

keratinocytes in vitro (36). Another in vitro experiment showed

that visfatin activated the secretion of a series of AMPs, including

cathelicidin, S100A7, hBD-2, and hBD-3, in normal human

keratinocytes (48).

5 Potential role of adipocyte-derived
lipids in maintaining skin barrier
homeostasis

Skin surface lipids are comprised of extracellular and sebaceous

lipids. Extracellular lipids, also called keratinocyte-derived lipids, are

found predominantly in the SC, and mainly consist of ceramides (45–

50%), cholesterol (25%), and free fatty acid (10–15%) (13). Lipid

precursors and lipid synthases are secreted by lamellar bodies, from

which extracellular lipids are synthesized in the extracellular spaces of

the stratum corneum. Sebaceous lipids are sebum molecules secreted

by sebaceous glands and include cholesteryl esters, triglycerides,

squalene, and wax esters. Together with sweat secreted by sweat

glands, sebaceous lipids form a hydrolipidic film on the skin surface

that plays a role in skin protection. Lipids are important components

of the physical barrier of the skin. Additionally, some skin lipids

contribute to skin barrier maintenance by acting as bioactive

mediators in cutaneous immunity and inflammation (89).

Alteration of skin lipid contents and compositions can cause skin

barrier dysfunction and skin immunity dysregulation, resulting in

various dermatoses such as psoriasis (90), AD (91), and acne

vulgaris (92).

Adipocytes, being the energy storage vault of the body, store

excess energy in the form of triglycerides. In addition, adipocytes

contain many ceramides and a number of other lipid species.

Numerous studies have investigated the role of adipocyte-derived
Frontiers in Immunology 05
lipids in the development of multiple metabolic diseases such as

diabetes, insulin resistance, cardiomyopathy, atherosclerosis, and

hepatic-steatosis (93). Whereas the effect of adipocyte-derived lipids

on the skin barrier has seldom been studied. Although most of the

studies that focused on metabolic diseases have indicated the

deleterious effects resulting from excessive accumulation of

triglycerides and ceramides in adipocytes. In view of the particular

role of lipids in the maintenance of the skin barrier, adipocyte-derived

lipids might, to some extent, possess the capacity for skin

barrier protection.
6 Conclusions and future perspectives

In this review, we attempted to summarize and highlight the

important role of skin-associated adipocytes in skin barrier immunity,

either by the production of biomolecules (cytokines, adipokines, and

AMPs) or by direct interaction with skin-resident cells (Figure 1). In

addition, the abundant storage of lipid species in skin-associated

adipocytes may indicate a potential role in skin barrier maintenance.

The pathogenesis of inflammatory skin diseases, such as AD and

psoriasis, involves complex interactions between abnormal immunity,

dysbacteriosis, and skin barrier defects, indicating therapeutic agents

with comprehensive efficacy are required. On account of the

comprehensive effects of skin-associated adipocytes on skin barrier

immunity, they might be potential therapeutic agents for this kind of

skin disease. As a matter of fact, the therapeutic effect of preadipocytes

(adipose-derived mesenchymal stem cells) has been determined by

various research teams. However, the effects of adipocytes on

immunity are two-sided. Although an increasing number of anti-

inflammatory biomolecules have been identified in adipocytes,

adipocyte-derived pro-inflammatory factors cannot be ignored.

Therefore, pretreatment of adipose tissue or adipocytes, such as by

extracting anti-inflammatory components and excluding pro-
FIGURE 1

Diagrammatic representation of the effects of skin-associated adipocytes on skin barrier immunity (Created with BioRender.com. Agreement NO.
QN24VPBCG8).
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fimmu.2023.1116548
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guan et al. 10.3389/fimmu.2023.1116548
inflammatory elements, would be needed to enhance their effect in

maintaining skin barrier homeostasis.
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