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amplification correlates with
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PD-1 blockade in unresectable
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Mengli Huang2, Jinping Cai2, Shiqing Chen2, Ting Bei2,
Yuezong Bai2, Jian Lv3, Yong Fu1* and Haibin Zhang1*

1Department of Hepatic Surgery (V), The Third Affiliated Hospital of Naval Medical University,
Shanghai, China, 2The Medical Department, 3D Medicines Inc., Shanghai, China, 3Department of
Thoracic Surgery, Changzheng Hospital, Shanghai, China
Background & aims: Little is known about molecular biomarkers that predict the

response and prognosis in unresectable hepatocellular carcinoma (HCC) treated

with programmed death (PD)-1 inhibitors.

Methods: A total of 62 HCC patients who underwent next-generation

sequencing were retrospectively included in our department for this study.

Patients with unresectable disease were subjected to systemic therapy. PD-1

inhibitors intervention (PD-1Ab) group and nonPD-1Ab group included 20 and 13

patients, respectively. Primary resistance was defined as initial on-treatment

progression or progression with an initial stable disease of less than 6 months.

Results: Chromosome 11q13 amplification (Amp11q13) was the most common

copy number variation in our cohort. Fifteen (24.2%) patients harbored Amp11q13

in our dataset. Patients with Amp11q13 showed higher level of Des-g-carboxy-
prothrombin (DCP), tumor number and were more prone to be combined with

portal vein tumor thrombosis (PVTT). In the PD-1Ab group, the proportion of

progressive disease (PD) in patients with Amp11q13 was significantly higher than

that in patients with nonAmp11q13 (100% vs 33.3%, P=0.03). In the nonPD-1Ab

group, the proportion of PD in patients with Amp11q13 and nonAmp11q13 had no

significant difference (0% vs 11.1%, P>0.99). In the PD-1Ab group, the median

progression-free survival (PFS) was 1.5 months in Amp11q13 patients vs 16.2

months in non-Amp11q13 patients (HR, 0.05; 95% CI 0.01-0.45; P = 0.0003). No

significant difference was observed in the nonPD-1Ab group. Notably, we found

that hyperprogressive disease (HPD) might be associated with Amp11q13. The

increased density of Foxp3+ Treg cells in HCC patients with Amp11q13 might be

one of potential mechanisms.
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Conclusion: HCC patients with Amp11q13 are less likely to benefit from PD-1

blockade therapies. These findings may help guide the use of immunotherapy for

HCC in routine clinical practice.
KEYWORDS

hyperprogressive disease, hepatocellular carcinoma, programmed cell death protein-1,
chromosome 11q13 amplification, next-generation sequencing, multiplex
immunofluorescence
Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignancies with a poor prognosis, which ranks as the fourth

leading cause of cancer-related mortality worldwide (1). Chronic

alcohol consumption, diabetes, non-alcoholic steatohepatitis related

to obesity, and hepatitis virus infections are among the primary risk

factors associated with the development of HCC (2). Overall, the

prognosis of HCC is generally poor, with a five-year survival rate of

less than 20% (3). For patients with early-stage HCC, hepatic

resection and transplantation have become the mainstay curative

treatments (4) However, most patients with HCC are diagnosed

with advanced-stage or unresectable diseases (5). Recently, systemic

therapies, including immune checkpoint inhibitors (ICIs), tyrosine

kinase inhibitors (TKIs), and vascular endothelial growth factor/

vascular endothelial growth factor receptor (VEGF/VEGFR)

monoclonal antibodies, have challenged the treatment landscape

of unresectable HCC (uHCC) with remarkable survival benefits.

Specifically, ICIs represented by programmed cell death protein 1

(PD-1)/programmed cell death protein ligand 1 (PD-L1) blockade

were developed to reinvigorate exhausted T cells in the tumor

microenvironment (6). The objective response rate (ORR) of PD-1

antibody monotherapy was reported to be in the range of 18-20%

(7, 8). The combination of ICIs with TKIs or VEGF antibodies

further improved the treatment efficacy (9, 10). For instance, the

combinational usage of atezolizumab (a PD-L1 inhibitor) and

bevacizumab has become the standard of care with a median

overall survival (OS) of 19.2 months (11).

Compared to other treatment approaches, immunotherapies

have demonstrated the ability to generate responses that are rapid

and durable in some patients (12). Currently, there is no reliable

biomarker for predicting the efficacy of immunotherapy for HCC,

despite the widespread use of PD-L1 expression as a marker in

several tumor types (13). In HCC, there is no consistent conclusion

regarding the predictive value of PD-L1 expression. CheckMate-

459, KEYNOTE-224, and IMbrave150 studies showed higher

response rates for PD-L1 positive advanced HCC patients treated

with immunotherapy, while the CheckMate-040 study showed no

significant difference between PD-L1 positive and negative patients

treated with nivolumab (11, 14). The potential predictive value of

tumor mutational burden (TMB), microsatellite instability (MSI),

and gut microbiota in the immunotherapy of HCC needs further

investigation (15, 16).
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Although PD-1 monotherapy has significantly improved the

landscape of hepatocellular carcinoma treatment, a large proportion

of patients do not respond to treatment, or develop progression after a

variable period of benefit. Resistance to ICIs stems from both cancer

cell intrinsic and extrinsic factors, including impaired antigen

presentation, overexpression of inhibitory immune checkpoints,

abrogation of the interferon-gamma signaling pathway, and

recruitment of immunosuppressive cells (17). Somatic genetic

factors also play vital roles in the response of ICIs. In patients with

non-cutaneousmelanoma, genetic aberrations in the cyclin-dependent

kinase 4 (CDK4) pathway were shown to be associated with innate

resistance to PD-1 blockade (18). Cyclin D1 (CCND1) amplification

was also associated with a poor prognosis in patients receiving ICIs,

even those with a high TMB (19). For patients with HCC, genetic

aberrations such as Wnt/b-Catenin mutations and lower immune

scores may contribute to the resistance in immunotherapy (20, 21).

Nevertheless, the molecular profiles of HCC patients with the

resistance to PD-1 blockade have not been fully characterized.

Hyperprogressive disease (HPD), a special form of primary

resistance characterized by paradoxically accelerated progression

after immunotherapy, has been highlighted by several publications

(22, 23). It is assessed by calculating the change in tumor growth

dynamics. Depending on the criteria used to define HPD, the

incidence of HPD ranges from 4% to 29% (24). Due to the rapid

deterioration of clinical status, HPD patients often have limited

opportunities to receive other therapies. Several biomarkers have

been proposed to predict HPD following immunotherapy, but large-

scale validation is needed. However, some debates that HPD may

reflect merely the natural course of disease in a subset of patients (25).

In this study, based on genetic profiling, we sought to identify

genetic biomarkers to predict the response to PD-1 blockade. Our

data suggested that the amplification of the chromosome 11q13

locus, including CCND1, fibroblast growth factor 3 (FGF3), FGF4

and FGF19, might predict poor response and prognosis to PD-1

blockade in uHCC.
Patients and methods

Patients and samples

To explore the correlation between genetic phenotype and

response to PD-1 inhibitors, we reviewed the NGS data from
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patients with uHCC who underwent systemic therapy in our center.

The process of case inclusion is shown in Figure 1. A total of 62

patients underwent genetic testing from January 2019 toMarch 2022,

of which 46 patients received surgical resection and 16 patients were

diagnosed with uHCC. In clinical practice, the indications of NGS

testing for patients who underwent surgery are tumors with high risk

factors for recurrence, such as tumor size >5 cm, positive MVI,

multiple tumors, or tumors with portal vein tumor thrombosis

(PVTT). Of the patients who underwent surgical resection, 17

developed recurrence and were diagnosed with uHCC. Therefore, a

total of 33 patients with uHCC (17 recurred and 16 uHCC) with

available sequencing data were retrospectively reviewed.

According to the NCCN guidelines (Version 5.2022), uHCC is

defined as HCC with insufficient hepatic functional reserve (Child-

Pugh B or C); insufficient residual liver volume (<40% for patients

with Child Pugh grade A cirrhosis); complicated tumor location

which was not suitable for surgical resection; or tumors invading

large blood vessels or with distant metastases.

For genetic sequencing, next-generation sequencing (NGS) was

performed on formalin-fixed paraffin-embedded (FFPE) tumor

specimens or blood samples by 3D Medicines Inc. (Shanghai,

China), which is certified and accredited by Clinical Laboratory

Improvement Amendments (CLIA) and College of American

Pathologist (CAP). The panel covered 733 cancer-related genes.

Specifically, for patients who developed recurrence, NGS was

performed on the resected specimen, which was collected during

the initial operation; for patients with uHCC, NGS was performed

on tissue or blood samples.

The treatment strategy for each patient with uHCC was

determined by a multidisciplinary team. The options included

locoregional therapies, TKIs, anti-VEGF antibodies, and PD-1

inhibitors. According to whether or not they had received PD-1

inhibitors, patients were divided into two groups. Namely, those

who received PD-1 inhibitors as first- or second-line therapies were

classified into the PD-1Ab group, and the others into the nonPD-

1Ab group, respectively. The response to treatments was measured
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regularly, and the treatment strategy was replaced upon progressive

disease (PD). All procedures were conducted in accordance with the

Helsinki Declaration and with approval from the Ethics Committee

of the Third Affiliated Hospital of Naval Medical University (ID:

ChiECRCT20220048). Written informed consent was obtained

from all participants. Clinicopathological information was

extracted from the hospital information management system

(HIMS). Prognostic information was obtained by telephone calls.

All patients were followed for >6 months. Primary resistance was

defined as initial on-treatment progression or progression with an

initial stable disease of less than 6 months.
DNA extractions, library preparation,
targeted capture, targeted sequencing
and data processing

The assay methodology of DNA extraction and sequencing

followed the methods published in a previous paper with some

modifications (26). Namely, tumor genomic DNA in the FFPE

specimens and cell-free DNA (cfDNA) in the plasma were extracted

using QIAamp DNA FFPE Tissue kit (Qiagen GmbH, Hilden,

Germany), and normal genomic DNA was extracted from

peripheral blood mononuclear cells using QIAamp DNA Blood

Mini kit (Qiagen GmbH, Hilden, Germany), respectively, following

the manufacturer’s protocols. Libraries were prepared with the

KAPA Hyper Prep Kit (KAPA Biosystems, Japan) following the

guidelines of the manufacturer. Barcoded with unique molecular

identifiers (UMIs) for cfDNA library preparation were individually

adopted. For targeted capture, indexed libraries were subjected to

probe-based hybridization with a customized NGS panel targeting

733 cancer-related genes. NGS sequencing was performed on the

NovaSeq 6000 platform (Illumina, USA) for 100 bp paired-end

sequencing with an average coverage depth of 2000× for tumor

specimens and 35000× for cfDNA.

Raw data of paired samples were mapped to the reference

human genome hg19 using the Burrows-Wheeler Aligner

(v0.7.12) (27). PCR duplicate reads were removed and sequence

metrics were collected using Picard (v1.130) and SAMtools

(v1.1.19) for tissue-based testing, and an in-house developed

software was used to generate duplex consensus sequences based

on dual UMI integrated at the end of the DNA fragments for

ctDNA-based testing. Variant calling was performed only in the

targeted regions. Somatic single nucleotide variants (SNVs) were

detected using an in-house developed R package to execute a variant

detection model based on a binomial test. Local realignment was

performed to detect indels. Variants were then filtered by their

unique supporting read depth, strand bias, and base quality as

previously described (28). Single-nucleotide polymorphism (SNPs)

and indels were annotated by ANNOVAR against the following

databases: dbSNP (v138), 1000Genome and ESP6500 (population

frequency > 0.015). Only missense, stopgain, frameshift and non-

frameshift indel mutations were kept. Copy number variations

(CNVs) and gene rearrangements were detected as described

previously (28).
FIGURE 1

Patient flow diagram.
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Efficacy evaluation

Patients receiving locoregional therapies (LRTs) or systemic

therapies were monitored for response evaluation every 6 weeks.

If any symptoms or signs suggesting a progressive disease were

observed at any time, one extra assessment was performed. Tumor

size measurement using radiologic imaging was conducted by

radiologists from the Third Affiliated Hospital of Naval Medical

University. Assessment of objective response was confirmed by

clinicians per Response Evaluation Criteria in Solid Tumors

(RECIST) version 1.1 and the date of disease progression was

documented (29). The definition of primary resistance was initial

on-treatment progression or progression with an initial stable

disease of less than 6 months (30). Progression-free survival (PFS)

was defined as the time from the onset of treatment to disease

progression or death by any cause.
Assessment of tumor growth dynamics and
definition of HPD

Tumor growth dynamics were evaluated based on tumor

growth rate (TGR) and tumor growth kinetics (TGK), as

described before (31, 32). Briefly, TGR was calculated as the log-

scale calibrated change in the sum of the volumes of the target

lesions per month according to RECIST 1.1 criteria (33). TGK was

calculated as the change in the sum of the longest diameters of the

target lesions according to RECIST 1.1 criteria per month (32).

Changes in the tumour growth dynamics were assessed by

calculating fold changes in TGK and TGR (34).

The defined criteria for HPD in our study were as follows: (1)

time from the beginning therapy to treatment failure (TTF) < 2

months; (2) at least 50% increase in tumor burden for the first-line

treatment or 2-fold increases in both TGK and tumor TGR ratios

for the second-line treatment.
Multiplex immunofluorescence

Thirty FFPE samples were subjected to assessment of mIHC

using the Akoya OPAL Polaris 7-Color Automation IHC kit

(NEL871001KT). FFPE tissue samples were deparaffinized in a

BOND RX system (Leica Biosystems) and then incubated

sequentially with primary antibodies targeting CD68 (Abcam,

ab213363, 1:1000), PD-L1 (CST, E1L3N, 13684S, 1:400), PD-1

(CST, D4W2J, 86163S, 1:200), CD163 (Abcam, ab182422, 1:500),

CD3 (Dako, A0452), CD8 (Abcam, ab178089, 1:100), CD4 (Abcam,

ab133616, 1:100), CD20 (Dako, L26, IR604), CD56 (Abcam,

ab75813, 1:100), FOXP3 (Abcam, ab20034, 1:100) and pan-CK

(Abcam, ab7753, 1:100) (Akoya Biosciences). Next, secondary

antibodies and reactive Opal fluorophores were incubated. DAPI

was used to stain the nucleic acids. Multiplex stained slides were

scanned at 20 nm wavelength intervals from 440 nm to 780 nm with

a fixed exposure time and an absolute magnification of 200 utilizing

an Akoya Biosciences Vectra Polaris Quantitative Pathology

Imaging System. All scans for each slide were then superimposed
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to create a single image. Multilayer images were imported into

APTIME software (3D Medicines Inc.) for quantitative image

analysis. Pan-CK staining was used to distinguish the tumor

parenchyma and stroma. The numbers of stained cells per square

millimeter in all nucleated cells were used to express the amounts of

distinct cell types.
Statistical analysis

The demographic characteristics of patients were compared via

the Chi-Square (c2) test. PFS was analyzed using the Kaplan-Meier

method with the log-rank test and drawn with R (version 4.0.2, R

Development Core Team). Cox regression was implemented to

calculate the HR for PFS, in both univariable and multivariable

analyses. Interaction tests were performed to explore the interaction

effect between Amp11q13 and treatment choice (PD-1Ab vs.

nonPD-1Ab). Differences in immune cell subsets between the

Amp11q13 group and the non-Amp11q13 group were analyzed

using the Mann–Whitney U test. All statistical tests were double-

sided; p ≤0.05 was considered significant.
Results

Patient characteristics and
treatment groups

Between January 2019 and March 2022, 62 patients with HCC

were enrolled in this study, including 46 with initially resected HCC

and 16 with uHCC. Tissue samples accounted for 87.1% of all

analyzed samples and liquid biopsy specimens were the rest. During

the follow-up period, 17 patients who underwent previous resection

showed recurrence, that was not suitable for operation and were

classified into the uHCC group (Figure 1). Among all patients, the

median age was 55.5 years (range, 30–76) and 16.1% (10/62) were

women. Most patients did not have portal vein tumor thrombosis

(PVTT) (49, 79.0%) and extrahepatic metastases (58, 93.5%)

(Table 1). 33 patients with uHCC status were divided into PD-

1Ab group (n=20) and nonPD-1Ab group (n=13). The baseline

characteristics of these 33 patients for survival analysis are

summarized in Supplementary Table 2.
Genomic characteristics

The mutation profiles of all 62 patients are depicted. 54 (87.1%)

individuals had at least one pathogenic or likely pathogenic

alteration in DNA. The most frequently altered gene was TP53,

which was observed in 54.8% of the patients (34/62), followed by

TERT, CCND1, FGF19, and CTNNB1. The common gene with

copy number amplification were CCND1, FGF19, FGF3 and FGF4

(Figures 2, S1, S2). These four genes were located in the

chromosome 11q13 locus, also known as Amp11q13. In our

dataset, 15 (24.2%) patients harbored Amp11q13. The clinical

characteristics of the Amp11q13 and non-Amp11q13 groups are
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TABLE 1 Baseline characteristics of the enrolled 62 patients.

Characteristics Number of Cases(%) Number of Amp11q13
Cases(%)

Number of nonAmp11q13
Cases(%) chiq P-value

Age 0.19

<=60 41(66.1) 12(80) 29(61.7)

>60 21(33.9) 3(20) 18(38.3)

Gender 0.74

female 10(16.1) 2(13.3) 8(17)

male 52(83.9) 13(86.7) 39(83)

Cirrhosis 0.95

Non 8(12.9) 2(13.3) 6(12.8)

Yes 54(87.1) 13(86.7) 41(87.2)

AFP 0.1

<200 33(53.2) 5(33.3) 28(59.6)

>=200 27(43.5) 10(66.7) 17(36.2)

NA 2(3.2) 2(4.3)

DCP 0.02

<200 17(27.4) 2(13.3) 15(31.9)

>=200 35(56.5) 13(86.7) 22(46.8)

NA 10(16.1) 10(21.3)

BCLC.stage 0.08

A/B 44(71) 8(53.3) 36(76.6)

C 18(29) 7(46.7) 11(23.4)

Tumor.number 0.02

1 40(64.5) 6(40) 34(72.3)

multiple 22(35.5) 9(60) 13(27.7)

Size 0.58

<=5 27(43.5) 5(33.3) 22(46.8)

>5 30(48.4) 9(60) 21(44.7)

NA 5(8.1) 1(6.7) 4(8.5)

Portal.vein.tumor.thrombosis 0.0004

Non 49(79) 7(46.7) 42(89.4)

Yes 13(21) 8(53.3) 5(10.6)

Extrahepatic.metastases 0.97

YES 4(6.5) 1(6.7) 3(6.4)

non 58(93.5) 14(93.3) 44(93.6)

HBsAg 0.64

0 10(16.1) 3(20) 7(14.9)

1 52(83.9) 12(80) 40(85.1)

HBV.DNA 0.86

>0 26(41.9) 6(40) 20(42.6)

(Continued)
F
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presented in Table 1. Patients with Amp11q13 showed higher level

of Des-g-carboxy-prothrombin (DCP), tumor number and were

more prone to be combined with portal vein tumor thrombosis

(PVTT, all P < 0.05). There was no significant difference in the

molecular profiling distribution between Amp11q13 and non-

Amp11q13 patients (Figure S3).
Association of Amp11q13 with the
clinical outcome

Thirty-three patients with recurrent HCC and initially

diagnosed uHCC had a median follow-up period of 11 months

(interquartile range 5.9‐21.5). For 20 patients in the PD-1Ab group,

the median PFS was 10.5 months (95% CI 2.37–NE). The median

PFS was 16.0 months (95% CI 5.10–NE) in the nonPD-1Ab group.

All patients with nonPD-1Ab in our study received first-line

therapy (Figure S4). Tumor shrinkage was observed in 18 (54.5%)

of 33 patients with baseline and post-baseline assessments

(Figure 3A). Of the 20 patients who were evaluable for response
Frontiers in Immunology 06
in the PD-1Ab group, 6 (30%) patients had an objective response.

Response was not determined in three patients because of

withdrawal for clinical deterioration before an initial response

assessment. The Amp11q13 rate was more common in the PD-

1Ab group with PD (50%) and the nonPD-1Ab group with stable

disease (SD) (75%) (Figure 3B). In the PD-1Ab group, the

proportion of patients with PD as BOR in patients with

Amp11q13 was significantly higher than that in patients with

nonAmp11q13 (100% vs 33.3%, P=0.03, Table S4). In the

nonPD-1Ab group, the proportion of PD in patients with

Amp11q13 and nonAmp11q13 had no significant difference (0%

vs 11.1%, p>0.99, Table S4). Notably, all patients with Amp11q13

who received PD-1Ab showed primary resistance (Figure 3C).

By repeating Fisher’s exact test, the association of each gene with

the response to systemic therapy was analyzed in detail. Notably, all

the patients who harbored amplification of the either one gene

(FGF3, FGF4, FGF19, or CCND1) in the 11q13 amplicon developed

progressive disease (PD) upon ICI treatment. However, only CCND1

was significantly associated with poor response to ICI treatment

(P = 0.033). In the nonPD-1Ab group, no such correlation was found.
TABLE 1 Continued

Characteristics Number of Cases(%) Number of Amp11q13
Cases(%)

Number of nonAmp11q13
Cases(%) chiq P-value

0 36(58.1) 9(60) 27(57.4)

TB 0.19

<13 21(33.9) 3(20) 18(38.3)

>=13 41(66.1) 12(80) 29(61.7)

ALB /

<50 62(100) 15(100) 47(100)

ALT 0.67

<41 40(64.5) 9(60) 31(66)

>=41 22(35.5) 6(40) 16(34)

AST 0.08

<38 36(58.1) 5(33.3) 31(66)

>=38 24(38.7) 9(60) 15(31.9)

NA 2(3.2) 1(6.7) 1(2.1)

type 0.55

HCC 29(46.8) 6(40) 23(48.9)

uHCC 33(53.2) 9(60) 24(51.1)

Treatment.Strategies 0.89

1st Line PD1Ab 15(24.2) 4(26.7) 11(23.4)

2nd Line PD1Ab 5(8.1) 1(6.7) 4(8.5)

LRT 5(8.1) 1(6.7) 4(8.5)

NA 29(46.8) 6(40) 23(48.9)

TKIs with or without LRT 8(12.9) 3(20) 5(10.6)
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Kaplan‐Meier curves showed that Amp11q13 was associated

with inferior PFS, regardless of the treatment strategy. Notably,

patients who received immunotherapy with Amp 11q13 had

the shortest PFS compared with other groups (log rank

P < 0.001) (Figure 3D).

In the PD-1Ab group, patients with Amp11q13 presented

significantly shorter PFS than those without Amp11q13 (adjusted

hazard ratio [HR], 0.09; 95% CI, 0.02-0.38; P<0.0001), while no

such correlation was observed in the nonPD-1Ab group (adjusted

hazard ratio [HR], 0.28; 95% CI, 0.05-1.76; P=0.15). However, there

was no significant interaction in PFS between these two groups (P

for interaction =0.0794, Figure 4A). No association was found

between Amp11q13 and the prognosis in The Cancer Genome

Atlas (TCGA) database (Figure S5).
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We also analyzed the difference in the Amp11q13 effect on PFS

between patients receiving first-line PD-1Ab and patients with

nonPD-1Ab (Figure 4B). In the PD-1Ab group, the median PFS

was 1.5 months in Amp 11q13 patients vs 16.2 months in nonAmp

11q13 patients (HR, 0.05; 95% CI 0.01-0.45; P = 0.0003). In the

nonPD-1Ab group, the median PFS was 7.0months in Amp 11q13

patients vs 16.0 months in nonAmp 11q13 patients (HR, 0.28; 95%

CI 0.05-1.76; P = 0.15). The interaction between Amp 11q13 status

and treatment was significant (P for interaction = 0.0389). In the

multivariable model, Amp11q13 status was the only independent

predictor for PFS in the PD-1Ab group (HR, 17.83; 95% CI 2.93-

108.4; P = 0.002) (Table 2).

We also conducted repeated survival analyses to determine

the contribution of each gene in predicting the prognosis. We
D

A B

C

FIGURE 3

(A) Waterfall plot of the maximum reduction in target lesion diameter in 33 patients with recurrent HCC and initially diagnosed uHCC. Lesions
caused by the death were not evaluable in 3 patients. (B) Histogram analysis of the proportion of the Amp11q13 and tumor response in PD-1Ab and
nonPD-L1Ab groups. (C) The proportion of primary resistance in patients with Amp 11q13 among total patients, patients with the PD-1Ab and
patients with nonPD-1Ab. * refer to patients with Amp11q13. (D) Kaplan-Meier estimates of PFS in Amp11q13 and nonAmp11q13 patients in PD-1Ab
and Non-PD-1Ab treatment group.
FIGURE 2

Summary of frequently (Top 20) genomic characterized alterations among 62 patients with HCC.
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FIGURE 4

Kaplan‐Meier estimates of progression‐free survival. (A) Kaplan‐Meier survival curves of progression-free survival comparing PD-1Ab therapy and
nonPD-1Ab therapy. (B) Kaplan‐Meier survival curves of progression‐free survival comparing first-line PD-1Ab therapy and nonPD-1Ab therapy.
TABLE 2 Univariable and multivariable analysis of PFS in PD-1Ab group.

Characteristics
Univariate analysis Multivariate analysis

Hazard.Ratio CI95 P.Value. Hazard.Ratio CI95 P.Value

AFP 1.07 0.27-4.14 0.926

Age 1 0.26-3.85 1

ALT 0.69 0.19-2.46 0.569

AST 1.59 0.46-5.45 0.462

BCLC 1.09 0.32-3.78 0.89

Cirrhosis 0.66 0.17-2.54 0.541

Amp11q13 11.59 2.63-51.09 0.001 17.83 2.93-108.4 0.002

DCP 1.07 0.23-5.06 0.931

Extrahepatic.metastases 0.26 0.03-2.09 0.206

Gender 0.8 0.17-3.77 0.777

HBsAg 0.64 0.13-3.03 0.572

HBV.DNA 2.05 0.43-9.76 0.365

Portal.vein.tumor.thrombosis 2.65 0.76-9.26 0.127 2.09 0.52-8.37 0.297

Size 2.99 0.63-14.12 0.168 3.62 0.57-23.15 0.173

TB 2.67 0.57-12.46 0.212

Treatment.Strategies 1.04 0.27-4.04 0.955

Tumor.number 3.79 0.48-30.01 0.206
F
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discovered that the amplification of the either one gene (FGF3,

FGF4, FGF19, or CCND1) predicted inferior PFS on PD-1Ab

treatment separately (all P values < 0.05), but this association was

not observed in patients treated with nonPD-1Ab.
Tumor microenvironment characteristics in
patients with and without Amp11q13

To investigate the difference in the tumor immune

microenvironment between HCC patients with and without

Amp11q13, we assessed 30 FFPE samples that were subjected to

both NGS and mIHC. Six of these harbored Amp11q13. Compared

with samples without Amp11q13, samples with Amp11q13 were

associated with higher densities of PD-1+ cells in the tumor

(P=0.024) (Figure 5A). Similar results were also observed for

densities of FoxP3+ cells in the stroma, despite that the

significance of the difference was limited by the small sample size

(P=0.072) (Figure 5B). No remarkable differences were observed

in the density of other immune cell subsets in the tumor

microenvironment (Figure S6).

To validate the findings, data from the TCGA (283 patients with

HCC, include 24 with Amp11q13 and 259 with nonAmp11q13)

were analyzed. The results showed that the expression of PD-1 and

the infiltration of Treg cells was slightly higher in the Amp11q13

group compared to the nonAmp11q13 group, which is consistent

with the findings of our study.
Frontiers in Immunology 09
Hyper-progressive disease case series

HPD was observed in 3 of 20 patients (15.0%) (Table 3). All

three cases were 11q13 amplified, less than 75 years old, without

extra-hepatic metastases, and had a good ECOG performance status

(0-1). Most importantly, all three cases were with Amp11q13. The

proportion of HPD in patients with Amp11q13 was significantly

higher than patients with nonAmp11q13 in the PD-1Ab group

(3/5, 60% vs 0/15, 0%, P=0.0075). No HPD was found in the

nonPD-1 group.
Case 1
This 61-year-old man was first diagnosed with HCC in segment 6

and underwent local resection in 2017. He had a local recurrence of

disease in segment 7 and the left lateral lobe and underwent trans-

arterial chemoembolization (TACE) in December 2017. Apatinib (a

selective VEGFR-2 TKI, Hengrui, Jiangsu, China) was administered

subsequently. However, MR showed 6 new lesions, with a maximum

diameter of 2.8 cm in May 2020. Ablation therapy were performed

thereafter. Unfortunately, further progression led to the development

of 3 new lesions 5months later. He was referred to TACE plus the PD-

1 monoclonal antibody toripalimab in late October 2019. MR scan

performed 1.8 months after the initiation of ICI showed significant

radiological progression of disease with the occurrence of new lesions

(totally >= 15). His TGK ratio was 11.95, and the TGR fold was 11.90

(Figure 6A). CtDNA test showed amplification of 11q13. Toripalimab
A B

FIGURE 5

Relationship between immune cell subsets in tumor immune microenvironment and Amp11q13 status. Images of representative mIHC results (top,
scale: 500 mm) were showed in two patients with and without Amp11q13. PD-1+ cells and FoxP3+ cells (bottom) in patients with Amp11q13
compared with nonAmp11q13 patients were also displayed. (A) Panel 1 referred to multiple stained slides and representative merged images show
the distribution of individual markers [CD8, CD163, CD68, PD-1, PD-L1, pan-CK, DAPI for nucleic acids (blue)] and the separable vision of
immunohistochemical staining with PD-1 antibody (green). (B) Panel 2 referred to multiple stained slides and representative merged images show
the distribution of individual markers [CD3, CD20, FoxP3, CD56, CD4, pan-CK, DAPI for nucleic acids (blue)] and the separable vision of
immunohistochemical staining with FoxP3 antibody (yellow).
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was ceased thereafter and a therapy strategy containing hepatic artery

infusion chemotherapy (HAIC) and regorafenib was given. Notably,

the lesions were reduced following the cessation of ICI therapy. In

March 2022, regorafenib was suspended for acute myocardial

infarction. In June 2022, a dramatic progression of intra-hepatic

lesions was observed by MR scan. Regorafenib was then continued.

This patient was alive until the cut-off date.

Case 2
A 56-year-old woman was first diagnosed with HCC in January

2019. She underwent resection as an initial treatment. During the
Frontiers in Immunology 10
operation, a mass of 4.0 cm in diameter was found in in segment 7.

Two years after surgery (February 2021), an abdominal CT scan

showed a recurrence of HCC in the left lateral lobe, with a diameter

of 5.2 cm. TACE plus PD-1 monoclonal antibody sintilimab

(Innovent, Suzhou, China) was given. Imaging performed after

two cycles of treatment (April 2021) demonstrated significant

radiological progression of disease with an increase in the number

and size of hepatic lesions, accompanied with the occurrence of

pulmonary lesions (Figure 6B). TTF was 1.6 months. HPD was

diagnosed for a TBI of 579.5%. The NGS test based on the resected

specimen showed an amplification of 11q13. PD-1 immunotherapy
TABLE 3 HPD evaluation of 5 patients with Amp11q13 receiving immunotherapy.

Patient ID Line TTF<2 months TGK TGR Tumor Burden Increase% HPD

31 2 yes 7.91 6.2 593.667 yes

29 1 yes 579.527 yes

25 1 yes 35.1115 no

23 1 yes 9.41931 no

26 1 yes 53.4903 yes
frontier
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FIGURE 6

MR images and the timeline of therapy in three cases with HPD. (A) Case 1. Pre-baseline MR was obtained before ablation. After confirmed
progression 5 months later, the patient adopted immunotherapy. Evaluation scan after 1.8 months showed significant radiological progression of
disease with occurrence of new lesions. The TGR fold was calculated to be 11.90. (B) Case 2. After 2 cycles of immunotherapy, MR showed
significant progression of intra-hepatic lesions. TTF was 1.6 months. TBI was 579.5%. (C) Case 3. After 2 cycles of treatment, MR scan showed
significant progression of disease with increase in size of hepatic lesions. TTF was 1.3 months. TBI was 53.5%.
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was ceased, and HAIC was given subsequently. However, she

continued to deteriorate and passed away in June 2021.

Case 3
The 41-year-old man went to the local clinic for abdominal pain

in December 2021. MR scan showed a large infiltrative mass

involving almost the entire left hepatic lobe, with several nodules

of 0.6 cm to 2.8 cm in the remaining left medial lobe, the right

anterior S8 lobe and the S1-caudate lobe. Tumor thrombosis was

seen in the left and main portal vein. He was diagnosed with locally

extensive infiltrative and multifocal HCCs. Genetic sequencing of

tumor biopsy showed the amplification of CCND1, FGF3 and MYC

and somatic mutation of TP53 and TERT. Stereotactic body

radiotherapy focusing on PVTT was performed 6 times from

Month 2022, combined with oral lenvatinib and intravenous

pembrolizumab. Two doses of pembrolizumab were administered

when he was referred to our hospital. Unfortunately, as shown by

the MR scan, the tumor progressed with a significant increase in the

size of the multifocal hepatic lesions (Figure 6C). TTF was 1.3

months. HPD was diagnosed for a TBI of 53.5%. PD-1

immunotherapy was ceased and TACE was given. He passed

away 4 months later.
Discussion

In this study, we retrospectively analyzed the clinical features

and genomic profiles of 62 HCC patients in our institution. The

total prevalence rate of Amp11q13 was 24.2%, which appeared

more frequently in patients with poor clinical indicators. In patients

with the primary resistance to systemic therapy, the proportion of

Amp11q13 was 43.8%. Furthermore, three of 13 patients with

primary resistance to PD-1 blockade therapy showed HPD, as

proved by assessing tumor growth dynamics. All HPD patients

showed Amp11q13.

Immunotherapy, represented by ICIs, has entered the

therapeutic arsenal for many advanced-stage malignancies (35).

ICIs reactivate exhausted T cells by targeting their immunological

synapse. Besides, ICIs are associated with novel patterns of anti-

tumor efficacy, such as longer duration of response,

pseudoprogression (an initial disease progression followed by

objective response), and even HPD (12). However, a notable

number of individuals remain resistant to PD-1 blockade. In

phase II and randomized phase III trials, PD-1 monoclonal

antibodies showed a consistent 15−20% response rate in patients

with HCC(7, 8). Approximately 30~40% of patients showed

primary resistance to PD-1 blockade therapy.

The following pathways may contribute to PD-1 blockade

therapeutic resistance: the absence of antigenic proteins, impaired

antigen presentation, lack of T cells with tumor antigen-specific T-

cell receptors, insensitivity to T cells (mutations in the interferon

gamma pathway), overexpression of other inhibitory immune

checkpoints and immunosuppressive cell recruitment (17, 36–38).

Resistance to ICIs may also be caused by genetic T cell exclusion.

For instance, oncogenic signaling through the MAPK pathway
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results in the production of VEGF and IL-8, which have known

inhibitory effects on T cell recruitment and function (39). In a

murine model, tumors with elevated beta-catenin lacked a subset of

dendritic cells (DCs) known as CD103+ DCs, due to decreased

expression of CCL4, a chemokine that attracts CD103+ DCs (40).

Activation of the CDK4/6 pathway has also been found to be

associated with resistance to PD-1 blockade. Whole-exome

sequencing in patients with metastatic melanoma treated with

anti-PD-1 antibodies revealed CDK4 amplification in patients

with no clinical improvement. Defective TNF-alpha signaling,

inflammatory response, and IFN-gamma response were found in

tumors with CDK4 amplification (18). A bioinformatic analysis of

the TCGA and MSKCC datasets revealed that CCND1

amplification was associated with shorter overall survival and

inferior outcomes with ICIs (19). Furthermore, CCND1

amplification was associated with immune cell exclusion and a

variety of aggressive, immunosuppressive oncogenic pathways,

including KRAS and mTOR signaling (19). By using single-cell

RNA sequencing for 33 melanoma tumor specimens, Jerby-Arnon

et al. developed a cancer cell program to predict T cell exclusion and

resistance to checkpoint blockade (41). Interestingly, CDK appears

to be the master regulators that governs the expression of the genes

in the program. In our study, we sought to determine the genetic

factors that conferred responsiveness to PD-1 blockade in HCC.

Our results confirmed the role of CCND1 amplification as a pivotal

regulator of PD-1 resistance in HCC.

CCND1 is a downstream effector in the Wnt2/b-catenin
pathway and activates the cyclin-dependent kinases (CDKs)

CDK4 and CDK6 to promote cancer proliferation (42). FGF

signaling promotes cancer proliferation, migration and

angiogenesis by downstream activation of the RAS–RAF–MAPK,

PI3K–AKT, signal transducer and activator of transcription and

phospholipase Cg pathways. The locus CCND1-ORAOV1-FGF19-
FGF4-FGF3-TMEM16A-FADD-PPFIA1-CTTN was located on

chromosome 11q13. The amplifications of CCND1, FGF3, FGF4

and FGF19 were characterized as Amp11q13 (43–45). Indeed,

Amp11q13 is present in many cancers, including esophageal

cancer, head and neck tumors, sarcoma, breast cancer, bladder

tumors and hepatobiliary malignancies (43). Amp11q13 was most

prevalent in head and neck squamous cell carcinoma, with an

incidence of 30-36% (46, 47). In individuals with head and neck

squamous cell carcinoma, Amp11q13 was also associated with

decreased PFS (48). In HCC, Amp 11q13 was found in

approximately 10% of the population (49–51). In the current

study, we found that Amp11q13 was associated with a worse

prognosis in the PD-1Ab group. Especially for patients with first-

line treatment, there was a significant interaction between

Amp11q13 status and treatment. In the multivariable analysis,

Amp11q13 was an independent predictor of PFS in the PD-

1Ab group.

Several immune cell subtypes in the tumor microenvironment

have recently been found to be correlated with combination

treatment with ICIs and antiangiogenic drugs in HCC (9, 52).

Patients with a high infiltration of M1 macrophages had a

significantly longer PFS and OS, suggesting that the high

infiltration of M1 macrophages in HCC might be a potential
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positive indicator for the efficacy of immunotherapy (53). In our

study, increased densities of PD-1+ cells in the tumor and FoxP3+

cells in the stroma were observed in patients with Amp11q13

compared with patients without Amp11q13. It was reported that

effector Treg cells were activated and thus mediated suppression of

antitumor immunity in HPD patients with gastric cancer (54). HPD

might be triggered by activating Tregs in 11q13 amplified patients.

However, the mechanisms through which tumor cell with 11q13

amplification induce the infiltration of Tregs are still needed to be

elucidated. These findings showed that PD-1+ cells and FoxP3+

cells might be associated with hampered immunological response of

HCC patients.

Patients with Amp11q13 may be sensitive to therapies other

than immunotherapy. It was reported that FGF19, a biomarker of

proliferation propensity, is an important driver gene in HCC (55,

56). HCC harboring FGF19 amplification may represent a subset of

cancers that are strongly addicted to the FGFR pathway. The

interaction of FGF19 and FGFR4 has been exploited for drug

development. In FGF19-positive patients as measured by

Immunohistochemistry, the overall response rate of FGFR4

antibody fisogatinib was 17% with a median duration of response

of 5.3 months (57), while 0% in FGF19-negative patients. In

addition, FGF3/FGF4 amplification was found to predict an

increased response to sorafenib in patients with HCC (58). In

addition, CCND1 could be targeted by palbociclib (59). These

findings support future exploration of individualized combined

targeted therapy based upon genetic sequencing in clinical setting.

Defined by its signal growth kinetics, HPD has raised many

concerns regarding its incidence, mechanism, and potential

biomarkers. Some debates that HPD represents the natural

accelerating growth pace of the disease course (25). HPD after

ICIs treatment in patients with Amp11q13 has been reported in

non-small cell lung cancer, esophageal adenocarcinoma and lung

cancer with neuroendocrine features. The incidence of

hyperprogression was 43% in patients with 11q13 amplification

(60). Previously, MDM2/4 amplification, EGFR alterations, and loss

of CDKN2A/B have also been reported as potential biomarkers for

HPD (61, 62). It was revealed that 12.7% of nivolumab-treated

patients with HCC had HPD. The potential risk factors for HPD in

HCC include previous radiotherapy (63), elevated neutrophil-to-

lymphocyte ratio and hemoglobin level, PVTT and Child-Pugh

score (64–66). However, little is known about whether HPD is

associated with somatic mutations in HCC. In our study, the

incidence of HPD was 60.0% in patients receiving ICIs with

Amp11q13, supporting the role of Amp11q13 as an HPD predictor.

Currently, most investigators recommend the withdrawal of

PD-1 blockade therapy and consider other potentially effective

therapies upon HPD (23). In the first case, once ICI-related HPD

was diagnosed, we stopped immunotherapy immediately, and

HAIC and regorafenib were given subsequently. Imaging study

following the adjustment of treatment strategy showed remarkable

tumor shrinkage (the maximal shrinkage rate was 29.3%, compared

with the HPD imaging). However, in another two patients with

deteriorating liver function, salvage therapies failed to improve

the survival.
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There are several limitations to our study. First, limited number

of patients and lack of external validation may lead to bias. From

January 2019 to March 2022, only 33 cases of uHCC with complete

clinical and genotypic data met the inclusion criteria. Second, it

should be noted that due to the progressive nature of advanced stage

malignancy, it is difficult to dissociate HPD from primary resistance

to immunotherapy, even though a specific growth kinetic model

was used. Third, our findings of mIHC lacked an exploration of the

relationship between treatment efficacy and immune cell infiltration

due to the limitations of sample size. Therefore, we are unable to

conclusively demonstrate how Amp11q13 affects primary resistance

and HPD.
Conclusions

In conclusion, we found that Amp11q13 was seen more

frequently in advanced stage HCC patients, and was associated

with HPD in patients receiving anti-PD-1 immunotherapy. These

findings may help guide the use of immunotherapy for HCC in

routine clinical practice. Patients with Amp11q13 are less likely to

benefit from PD-1 blockade therapies. Other options, including

locoregional therapies, such as HAIC, and other systemic regimens,

including CDK4/6 inhibitor, FGFR4 antibody might be considered

as potential effective strategies. Further studies are urgently needed

to validate the value of NGS in the prediction of PD-1 blockade

responsiveness and interrogate the mechanism of resistance in

patients with certain genetic aberrations.
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