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Integration of bulk RNA
sequencing and single-cell
analysis reveals a global
landscape of DNA damage
response in the immune
environment of Alzheimer’s
disease
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Fujian Provincial Hospital, Fuzhou, Fujian, China, 2Fujian Provincial Center for Geriatrics, Fujian
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College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China, 4Department of
Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
Background: We developed a novel system for quantifying DNA damage

response (DDR) to help diagnose and predict the risk of Alzheimer’s disease (AD).

Methods: We thoroughly estimated the DDR patterns in AD patients Using 179

DDR regulators. Single-cell techniques were conducted to validate the DDR

levels and intercellular communications in cognitively impaired patients. The

consensus clustering algorithmwas utilized to group 167 AD patients into diverse

subgroups after a WGCNA approach was employed to discover DDR-related

lncRNAs. The distinctions between the categories in terms of clinical

characteristics, DDR levels, biological behaviors, and immunological

characteristics were evaluated. For the purpose of choosing distinctive

lncRNAs associated with DDR, four machine learning algorithms, including

LASSO, SVM-RFE, RF, and XGBoost, were utilized. A risk model was established

based on the characteristic lncRNAs.

Results: The progression of ADwas highly correlated with DDR levels. Single-cell

studies confirmed that DDR activity was lower in cognitively impaired patients

and was mainly enriched in T cells and B cells. DDR-related lncRNAs were

discovered based on gene expression, and two different heterogeneous

subtypes (C1 and C2) were identified. DDR C1 belonged to the non-immune

phenotype, while DDR C2 was regarded as the immune phenotype. Based on

various machine learning techniques, four distinctive lncRNAs associated with

DDR, including FBXO30-DT, TBX2-AS1, ADAMTS9-AS2, and MEG3 were

discovered. The 4-lncRNA based riskScore demonstrated acceptable efficacy

in the diagnosis of AD and offered significant clinical advantages to AD patients.

The riskScore ultimately divided AD patients into low- and high-risk categories.
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In comparison to the low-risk group, high-risk patients showed lower DDR

activity, accompanied by higher levels of immune infiltration and immunological

score. The prospectivemedications for the treatment of AD patients with low and

high risk also included arachidonyltrifluoromethane and TTNPB, respectively,

Conclusions: In conclusion, immunological microenvironment and disease

progression in AD patients were significantly predicted by DDR-associated

genes and lncRNAs. A theoretical underpinning for the individualized treatment

of AD patients was provided by the suggested genetic subtypes and risk model

based on DDR.
KEYWORDS

DNA damage response, single-cell, Alzheimer’s disease, molecular subtypes, machine
learning, immunity
Background

Alzheimer’s disease (AD) is currently considered the most well-

known form of dementia worldwide, as evidenced by the over-

accumulation of extracellular amyloid plaque and the entanglement

of neurofibrillary (1). The number of people with AD is positively

correlated with advanced age, with more than 50 million people

affected by AD (2). It is worth noting that most AD patients exhibit a

poor prognosis with a median survival time of only 5-10 years due to

a lack of early diagnose and effective treatment (3). Though some

FDA-approved pharmacological treatments such as donepezil,

rivastigmine, galanthamine, and other drugs have been used to

prevent the progression of AD in the past decades (4, 5), the

heterogeneity of AD patients limits the therapeutic efficacy of these

drugs (6). Distinct molecular characteristics have been reported to be

the main cause of AD heterogeneity, which is also closely related to

the differences in clinical outcomes (7–9). Nonetheless, the potential

molecular mechanisms underlying AD heterogeneity remain largely

unknown. Therefore, to guide the individualized treatment of AD

patients, it is necessary to clarify the heterogeneity of AD and

accurately distinguish the molecular characteristics of each patient.

Genomic instability is one of the cardinal features of AD, and the

DNA damage response (DDR) exerts an important role in

maintaining genome integrity (10). DDR contains several well-

coordinated processes, including the detection of DNA damage, the

transduction of DNA damage signals, the promotion of DNA

damage repair, the activation of cell cycle checkpoints, and the

initiation of apoptosis when damage is irreversible (11).

Intracellular DDR mechanisms enable cells to detect and repair

DNA damage, and improper repair is one of the main causes of

disease development and progression, including AD (12–14). Recent

studies have shown that the accumulation of DNA damage is a well-

recognized factor in aging and plays a vital role in the initiation of

AD. It was found that DDR deficiency caused by mutations in DDR

regulators, including BRAC1 occurs in the brain regions of AD and is

implicated in the development of pathology (13). In addition, the

breast cancer susceptibility gene 1, a DDR-associated gene, was found
02
to accumulate in neurofibrillary tangles in AD brain. Its dysregulation

is positively correlated with the pathogenesis of tauopathies (15, 16).

DDR-related genes have been extensively studied in non-neural

cancer tissues, but less is known in the nervous system. Therefore,

it is imperative to comprehensively elucidate the expression patterns

of DDR-related regulators and the potential molecular mechanisms

of DDR in AD pathogenesis.

Long non-coding RNAs (LncRNAs) are a subclass of RNA

molecules that are more than 200 nucleotides in length and are not

translated into proteins. They are thought to be closely related to

transcription, epigenetics, and post-transcriptional regulation (17).

An increasing number of lncRNAs have been demonstrated to be

participated in AD development and pathogenesis, and have been

shown to serve as novel biomarkers for early diagnosis and effective

therapeutic targets for patients with AD (18, 19). Several researchers

demonstrated that lncRNAs also exert a protective role in

promoting cell survival and preventing the development of

various diseases via sustaining genomic stability. For example, as

the upstream regulator of DDR, the lncRNA exerts a vital role in

resisting heart failure via inhibiting the ataxia telangiectasia

mutated (ATM)-DDR signaling pathway and increasing the

activation of mitochondrial bioenergetics (20). Moreover, in the

nervous system, the interaction of brain specific DNA damage-

related lncRNA1 (BS-DRL1) with the chromatin protein HMGB1

induced by DDR can improve motor function and delay the

degeneration of Purkinje cells in mice (21). In addition, another

study also demonstrated that LncRNA Meg3 can function as the

stabilizer of the DDR-related gene PTBP3 and participate in the

maintenance of endothelial function (22). However, the role of

lncRNA-mediated DDR signaling pathway in AD remains

unknown and needs further exploration.

We thoroughly assessed the DDR expressional patterns in AD

patients in our investigation. Data from single cells were used to

visualize the DDR landscape of different cell types in AD. Weighted

gene coexpression network analysis (WGCNA) was used to identify

DDR-associated lncRNAs, and 154 AD patients were then classified

into heterogeneous subtypes based on their clinical traits, biological
frontiersin.org
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behaviors, DDR levels, and immunological characteristics. The

suitable lncRNAs connected to DDR were then chosen using four

machine learning techniques, including least absolute shrinkage and

selection operator (LASSO), support vector machine-recursive

feature elimination (SVM-RFE), random forest (RF), and eXtreme

Gradient Boosting (XGBoost). For AD patients at various risk

levels, a scoring system was developed to determine their

biological traits, immunological microenvironment, and

prospective treatment medications. Overall, this research

creatively clarified the link between DDR expression patterns and

AD heterogeneity, offering novel perspectives on how to treat AD

patients on an individual basis.
Materials

Bulk transcriptome data acquisition and
pre-processing

The bulk AD transcriptome data were retrieved from the GEO

(Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/)

database. GSE48350, GSE5281, and GSE28146 with lncRNAs and

mRNAs data are based on the GPL570 platform, which included

173 normal and 80 AD brain tissue samples, 74 healthy brain tissues

and 87 brain tissues from AD patients, 8 no-AD and 22 AD brain

tissue samples, respectively (23–25). GSE122063 that mainly

contained mRNAs data is based on the GPL16699 platform and

included 44 normal and 56 AD brain tissues samples (26). In

addition, we extracted mRNAs expressional data from 157 normal

and 319 AD brain tissues samples from the GSE33000 dataset (built

on the GPL4372 platform) (27). Since GSE48350 and GSE5281

datasets were combined based on the Combat function of “sva” R

package (http://bioconductor.org/help/search/index.html?q=sva/)

and a total of 8 abnormally expressed samples were removed

(28). In addition, due to the high proportion of non-elderly

samples identified in the normal group of the GSE48350 dataset,

we chose the normal samples aged over 65 years for the further

study. Eventually, a total of 150 normal and 161 AD brain tissues

samples were obtained. While other three datasets GSE28146,

GSE122063, and GSE33000 were selected as the validation sets.

The raw data were log2-transformed and normalized according to

the Robust Multiple Array Average (RMA) function of the “affy” R

package http://www.bioconductor.org/help/search/index.html?

q=affy/). Differential analysis was performed using the “limma” R

package (http://www.bioconductor.org/help/search/index.html?

q=limma/) and adjusted p-values (FDR) for DElncRNAs were

determined. Genes with the value of |log2FC|>0.5 and FDR <0.05

between DDR subtypes or risk groups were determined as

Differential expressed gene (DEGs).
Single-cell sequencing data processing

The single-cell transcriptome data (15 mild cognitive

impairment (MCI)/AD and 44 normal CSF samples) were

obtained from the GEO database (GSE200164). The expression
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matrix was normalized by the “NormalizeData” function of the

“Seurat” package https://cran.r-project.org/web/packages/Seurat/

index.html). Integrated datasets and batch elimination were

generated with the IntegrateData function of the “Seurat”

package. Subsequently, the combined object underwent principal

component analysis (PCA) and uniform manifold approximation

and projection (UMAP) analysis. The filtering of the cells was

performed based on the following parameters: Cell count >3 cells,

200 genes <Cells with <5000 genes, and cells with fewer than 15%

mitochondrial genes. A total of 34738 filtered cells were selected for

further analysis. The top 4000 variably expressed genes were

determined by the “FindVariableFeatures” function of the

“Seurat” package. The “FindClusters” function was utilized to

classify the cells into distinct clusters. Cell type annotation was

performed based on the “Celltypist” Python package according to a

prior study (29). Additionally, DEGs for each cell cluster were

identified by utilizing the “FindAllMarkers” function with

logfc.threshold = 0.25.
Establishment of a DDR score

A total of 200 DDR regulators were extracted according to

previous studies (30, 31). Differentially expressed DDR regulators

were visualized using a heatmap, and correlations between these

DDR regulators were visualized using a gene network diagram

drawn from the igraph package. Furthermore, a DDR score were

estimated based on the differentially expressed DDR regulators via

the Single-Sample Gene Set Enrichment Analysis (ssGSEA) or

“Ucell” algorithms (32). Spearman described a correlation

analysis between DDR scores and 28 infiltrated immune cells.
Cell communication analysis

The CellChat objects were created by the “CellChat” R package

(https://www.github.com/sqjin/CellChat) (33) based on the UMI

count matrix for each group (Normal and AD). The

“CellChatDB.human” ligand-receptor interaction database was

considered preference data. Cell-to-cell communication analysis

was conducted using the default parameters set. CellChat objects

from each group were combined using the “mergeCellChat” function

to obtain a comparison of the total number of interactions and the

strength of interactions. The visualization of the differences in the

number or strength of interactions among distinct cell types between

groups was achieved using the “netVisual_diffInteraction” function.

Finally, we determined differential expression of signaling pathways

using the “rankNet” function and visualized the distribution of

s ignal ing gene expression between groups using the

“netVisual_bubble” and “netVisual_aggregate” functions.
Investigation of DDR-associated lncRNAs

The weighted gene coexpression network analysis (WGCNA)

approach was employed to examine lncRNA modules associated
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with DDR score via the “WGCNA” R package (https://

cran.rstudio.com/web/packages/WGCNA/) (34). Briefly, the

expression landscapes of lncRNAs were selected as input data and

converted into adjacency matrix to further establish unsupervised

co-expression association. According to the scale-free topology

criteria, the scale-free network was built based on the optimal soft

threshold identified, followed by the constructed weighted

adjacency matrix converted into a topological overlap matrix

(TOM). Then, we employed a dynamic tree pruning algorithm to

identify lncRNA modules of different colors in the hierarchical

clustering tree. A LncRNA module that displayed the strongest

correlation with the DDR score was finally screened and selected for

further analysis.
Consensus clustering based on
differentially expressed DDR

DDR-associated lncRNAs shared by the turquoise module,

combined datasets, and GSE5281 were identified as AD-related

lncRNAs, and DDR subtypes were developed using the k-means

method implemented in the “ConsensusClusterPlus” R package

(http://www.bioconductor.org/help/search/index.html?q=Consensus

ClusterPlus/) (35) with the following parameters: resampling rate per

iteration=80%, cluster classification = 2–8, repetitions = 1000, and

Euclidean distance. The appropriate number of DDR subtypes was

determined on the basis of the consensus score matrix, cumulative

distribution function (CDF) curve, the relative change in the area of the

CDF curve, and the consistency of the cluster score. The t-Distributed

Stochastic Neighbor Embedding (tSNE) plot was applied for

evaluating the stability of the clustering patterns.
Enrichment analysis and functional
annotation

Kyoto Encyclopedia of Genes and Genomes (KEGG) Gene

ontology (GO) enrichment analysis were performed using the

previously described “clusterProfiler” R package (http://

www.bioconductor.org/help/search/index.html?q=clusterProfiler/)

(36). Gene ontology biological function, including biological

processes (BP), molecular function (MF), and cellular component

(CC). The p-values were adjusted using the Benjamini-Hochberg

method, and the adjusted p-values below 0.05 were considered

statistically significant.

Gene Set Variation Analysis (GSVA) enrichment was

conducted to evaluate the heterogeneity of a variety of biological

processes and pathway activities using the “GSVA” R package

(http://www.bioconductor.org/help/search/index.html?q=GSVA/)

(37). Hallmark gene sets of “c2.cp.kegg.v7.4.symbols” and

“c5.go.bp.v7.5.1.symbols” obtained from the Molecular Signatures

Database (MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/

index.jsp ) were chosen as the preference gene sets of GSVA.

Different molecular features were elucidated in DDR subtypes.

Differences between biological functions and signaling pathways

were calculated using the “limma” R package, and absolute t-values
Frontiers in Immunology 04
with a GSEA score greater than 5 were considered

statistically significant.

Furthermore, we performed gene set enrichment analysis

(GSEA) based on the “clusterProfiler” R package to assess the

differences in pathway activities. Normalized enrichment score

(NES) were ranked, and adjusted p-values below 0.05 were

considered statistically significant.
Evaluation of the immune
microenvironment

The immune infiltrating levels were conducted using ssGSEA

https : / /gi thub.com/GSEA-MSigDB/ssGSEA-gpmodule) ,

MCPcounter https://github.com/ebecht/MCPcounter), xCell

https://xcell.ucsf.edu/), ABIS https://github.com/giannimonaco/

ABIS) and ESTIMATE (https://cibersortx.stanford.edu/)

algorithms according to previously described (38). Briefly, the

proportions of a variety of immune cells in each sample were

assessed using global marker genes, and the above algorithms were

applied for calculating fractional enrichment or relative abundance

for each immune cell subset. The Wilcoxon rank-sum test was

employed to evaluate the differences in immune infiltration levels

between groups. A heatmap was utilized to visualize the abundance

of immune infiltration for each AD sample under distinct

algorithms. Additionally, immune scores were calculated using

the “ESTIMATE” R package to further estimate the immune

microenvironment of patients with AD. Finally, the expression

levels of 60 immunoregulatory genes such as antigen

presentation, cell adhesion, co-inhibitor, co-stimulator, ligand,

and receptor were described to explore the differences in immune

competence between groups.
Screening of characteristic lncRNAs based
on machine learning

Four distinct machine learning algorithms, including LASSO,

SVM-RFE, RF, and the XGBoost model were conducted to predict

the DDR-associated characteristic lncRNAs on the basis of

“glmnet” (https://cran.r-project.org/web/packages/glmnet/

index.html) “e1071” (https://cran.r-project.org/web/packages/

e1071/index.html), “caret” https://cran.r-project.org/web/

packages/caret/index.html), “Boruta” https://cran.r-project.org/

web/packages/Boruta/index.html), and “xgboost” (https://

github.com/dmlc/xgboost) packages. In the LASSO model, the

final coefficients of the important variables were finally

determined based on the optimal penalty parameter l through

five cross-validations (39). The Boruta-based identification of

significant lncRNA signatures was performed using the following

parameters: (300 iterations and p-value less than 0.01). After

excluding the insignificant variables, those remaining Boruta-

based lncRNA signatures were fitted to the RF model by the

“caret” R package and ranked according to the calculated lncRNA

importance. The SHAP values were employed to interpret the

XGBoost model via the “SHAP” (https://github.com/pablo14/
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shap-values) R package. These four machine learning models were

conducted with default parameters based on 5-fold cross-validation

to avoid over-fitting. All the brain tissue samples enrolled in the

combined datasets were randomly split into a training set (70%) and

a verification set (30%). The results of the four machine learning

algorithms were then intersected to determine the final

characteristic lncRNA. The diagnostic performance was assessed

using the area under the receiver operating characteristic curve

(AUC) on the basis of the “pROC” (https://cran.r-project.org/web/

packages/pROC/) R package.
Construction of a nomogram and a risk
model based on DDR-related lncRNAs

The distinctive lncRNAs associated with DDR were then

applied for generating a predicted nomogram based on the “rms”

(https://cran.r-project.org/web/packages/rms/index.html) package.

A calibration curve was made to figure out how accurate the

nomogram was. Using the “ggDCA” (https://cran.r-project.org/

web/packages/ggDCA/index.html) R package, the results of a

decision curve analysis (DCA) were employed to measure and

evaluate the nomogram’s clinical performance.

DDR riskScore were calculated using the characteristic lncRNA

signature coefficients generated by the LASSO machine learning

model: riskScore = Si Coefficientsi × Expression level of lncRNAi (i

represents the each lncRNA symbol that was included in the risk

scoring model). All patients with AD can be classified according to

their risk score. Finally, AD samples with a risk score below or

above the median were divided into the low-risk group and the

high-risk group. Finally, based on the obtained DDR-related

lncRNAs, a risk score model was constructed to classify 154 AD

patients with high- and low-risk groups in the combined dataset.

An external dataset GSE5281 was employed to verify the

applicability of risk estimation.
Prediction of potential therapeutic drugs

Connectivity map (CMap) analysis is a widely utilized approach

to predict treatments for patients based on similar gene expression

profiles (40). In this study, the drug signature data retrieved from

the CMap database was chosen as the preference drug information,

and the top 150 up-regulated and 150 down-regulated genes in AD

patient with high-risk and low-risk, respectively, were selected as

input data. Based on the using the eXtreme Sum (XSum) algorithm,

we then compared the similarity of gene expression and drug

signatures and calculated the CMap scores to assess therapeutic

potential in distinct risk patients.
Other statistical analysis

All statistical analyses and visualizations were performed using

R 4.1.0 software. Spearman’s correlation analysis was used to clarify

the relationship between two continuous variables. The Wilcoxon
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sum-rank test or t-test was used to compare the difference of

continuous variables between two groups. Comparisons of non-

continuous variables between the two groups were made using the

chi-square test. Binary categorical variables were predicted by ROC

curve analysis. FDRs were calculated according to the Benjamin-

Hochberg method to adjust p-values, and a two-sided p-value below

0.05 was considered to be statistically significant.
Results

The role of DDR-related genes in patients
with AD

A detailed flow chart of the research process is shown in

Figure 1. After excluding aberrant brain tissues samples, we

merged the expression patterns of the normal and AD brain

tissues from the GSE48350 and GSE5281 datasets, yielding 150

normal and 161 AD brain tissues. Brain tissues from various

platforms displayed considerably diverse clustering patterns

before batch effects were removed, but they grouped together

after batch correlation (Additional file: Figures S1A, B). Normal

individuals had a mean age of 81.58 years (SD: 8.85), and 65 (43.3%)

subjects were females. Interestingly, AD patients exhibited a mean

age of 82.47 years (SD: 7.64), and 83 (49.7%) of which were females.

The differences in age and sex between the normal and AD groups

were not statistically significant (Additional file: Figures S1C, D). Of

the 200 DDR-related regulatory genes obtained in previous studies,

179 genes were expressed in the AD-related combined dataset.

Abnormal expression profiles of 51 DDR regulators were observed

in AD brain tissues when compared with those in normal group,

suggesting a marked difference in biological behavior between AD

patients and healthy subjects. The heatmap displayed the expression

landscape of 51 differentially expressed DDR-related genes between

healthy individuals and patients with AD. Among them, RECOL,

CUL4A, PARP4, HES1, FANCE, OGG1, XRCC2, UNG, PPP4R2,

POLN, PER3, HUS1, DDB2, DCLRE1C, and BLM were found to be

dramatically increased in AD brain tissue samples, while a

significant decrease in the expression levels of other 36 genes

including UBE2N, CCNH, RAD51C, XRCC5 and et al. was

observed in AD group relative to normal group (Figure 2A).

Functional annotation analysis revealed that these differentially

expressed DDR regulators were primarily enriched in DNA

damage repair-associated progresses, including nucleotide-

excision repair, double-strand break repair, DNA recombination,

transcription factor TFIIH core complex, and DNA-directed 5’-3’

RNA polymerase activity (Additional file: Figure S1E). In addition,

KEGG analysis suggested that some human disease, genetic

information processing-associated signaling pathways, cell cycle,

and cytosolic DNA-sensing pathways were closely related to these

DDR regulators (Additional file: Figure S1F). To systemically

elucidate the relationship between the 51 differentially expressed

DDR regulators, we grouped these genes into three types and

generated a regulatory network showing the interactions among

these DDR-related genes, most of which showed substantial

associations. For example, UBE2N and PARP2, also from cluster
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A, presented a significant synergistic effect (coefficient = 0.645),

whereas the same cluster B-associated DDR regulators, such as

HES1 andRAD51C, exhibited a highly antagonistic effect

(coefficient = -0.418). Additionally, Furthermore, a strongest

positive correlation was detected between PARP2 and UBE2V2

(coefficient = 0.738). Conversely, PARP2 and OGG1 possessed the

dramatic negative correlation (coefficient = -0.513) (Figure 2B).

Subsequently, to further illustrate the relationship between DDR
Frontiers in Immunology 06
and AD, we calculated the DDR score for each sample using the

ssGSEA algorithm based on the differentially expressed DDR

regulators. Interestingly, we found AD patients exhibited

significantly lower DDR score relative to non-AD individuals in

the combined dataset (Figure 2C), which was consistent with the

results from the other three external validation datasets, GSE33000,

GSE122063, and GSE28146 (Figures 2D–F). These results indicated

that the interactions among these DDR-regulated genes may play a
FIGURE 1

The study flow chart.
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major role in preserving genomic integrity, while the dysregulation

of DDR may be the vital factor leading to AD progression.

Furthermore, we further described the correlation patterns

between DDR and 28 infiltrated immune cell subsets (Figure 2G).

The lower DDR score represented a superior levels of immune cell

infiltration, suggesting the synergistic effects of low DDR scores and

highly infiltrated immune cells may promote the progression of AD.
Analysis of DDR at the level of single-cell

To investigate the differences in DDR activity of various

infiltrated immune cells in AD, we performed an in-depth

analysis of public single-cell sequencing data related to cognitive

impairment. A total of 70391 sorted cells from 15 MCI/AD and 44

normal CSF samples were grouped into 12 clusters, and seven cell

types were finally annotated, including T cells (n=55435) identified

by the expression of CD3D, B cells (n=224), marked by MS4A1, DC

(n=9749) which expressed the HLA-DRA, ILC (n=2406) marked by
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KLRD1, pDC (n=738) identified by LILRA4, macrophages (n=354)

which were positive for C1QB, monocytes (n=1485) defined by

their classical marker S100A9 (Figures 3A–C). Cell type fractions of

each group revealed a decreased percentage of all cell types in the

cognitive impairment (CI) group (Figure 3D). The heatmap

exhibited the expression patterns of top 15 marker genes for each

cell subtype (Figure 3E). We then calculated the DDR score of each

cell using the “UCell” algorithm, the results suggested that cells with

a higher DDR score were primary enriched in normal samples,

especially in the regions of T and B cells (Figures 3F–H), which was

consistent with the results of bulk transcriptomic analysis.

Since T cells accounted for the largest proportion, we next

further explored the expression of DDR in distinct T cell subsets.

The T cells were extracted and reanalyzed, and a total of 12 clusters

were identified, which were annotated as six T cell subtypes,

including 761 MAIT cells identified by SLC4A10, 1779 regulatory

T cells which were represented as FOXP3, 13904 Tcm/Naive helper

T cells marked by CCR7, 14876 Tem/Effector helper T cells defined

by TIMP1, 22822 Tem/Trm cytotoxic T cells marked by GZMK,
A

B

D

E F

G

C

FIGURE 2

Estimation of DDR regulators between AD and healthy individuals. (A) Comparison of the expression profiles of abnormal DDR regulators across AD
and non-AD brain tissues in combined dataset using a heatmap. As examples of annotations, age and sex were displayed. (B) Interactions among 51
DDR regulators. The circle size serves as a representation of how each individual variable affected AD, and the Benjamini-Hochberg method is used
to modify the p-value. Different colors indicating that DDR regulators are grouped into distinct clusters. The interactions are represented by each
line joining the DDR regulators, and the thickness of each line reflected the intensity of the link. Blue denotes a negative correlation, whereas red
denotes a positive connection. (C–F) The DDR scores of AD and non-AD brain tissues are compared in the combined datasets (C), GSE33000 (D),
GSE122063 (E), and GSE28146 (F) respectively. (G) The relationship between 28 immune cell subtypes and the DDR score in combined dataset.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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and 1132 Type 1 helper T cells marked by CXCR6 (Figures 3I, J,

Additional file, Figure S2A). All six major cell types were presented

significant difference between control and CI samples (Additional

file, Figure S2B). The UCell algorithm results revealed that DDR

scores were upregulated to varying degrees in all T subtypes except

Tcm/Naive helper T cells (Figures 3K, L).
Cell–cell interactions within the
progression of cognitive impairment

Subsequently, we conducted the CellChat analysis to explore cell-

cell interactions during the progression of cognitive impairment. The

interaction numbers and strength strengthened from normal to

cognitive impairment. In particular, macrophages, ILC, and pDC

cells exhibited stronger interaction numbers and interaction

strengths with other cell types in the CI group relative to the normal

group. While DC cells and B cells communicated frequently with
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monocytes and pDCcells in the normal group (Figures 4A, B). Specific

pathways were then identified between the control and CI groups by

comparing the interaction strengths of each pathway. Signaling

pathways such as ANNEXIN, CD70, FLT3, BTLA, and CD40 were

particularly active in cognitively impaired patients. However, the

control individuals exhibited a relative greater activity of TGFb,

VISFATIN, and RESISTIN signaling pathways. For example, the

impairment of the TGFb and ANNEXIN signaling pathway in CI

patients was primarily reflected in the reduction of monocytes

(senders) and DC cells (receivers) and ILC (receivers) interactions,

while the frequent communication between B cells (senders) and T

cells (receivers) lead to the incrementof theCD70 signalingpathway in

CI group (Figure 4C, Additional file: Figures S2C–H). In addition, the

strong communication probabilities between T cells and other cell

types, including DC, ILC, macrophages, and pDC binding CD4 and

FPR1 IL16 via ANXA1were observed in cognitively impaired CSF

samples.However, the communicationbetweenCD40LGandITGAM

+ITGB2 and ITGA5+IRGB1 was unique to CI group (Figure 4D).
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FIGURE 3

Characteristic of DDR at the single-cell level. (A, B) The UMAP projection of 70391 single cells from 15 MCI/AD patients and 44 control subjects,
showing the formation of 12 main clusters (A), which were further annotated as seven cell types, including T cells, B cells, DC, ILC, pDC,
macrophages, monocytes (B). Each dot corresponds to one single cell, colored according to cell cluster. (C) Representative UMAP plots showing the
expression levels of marker genes representing seven cell subtypes in 70391 cells from both normal and cognitively impaired CSF samples. (D) A
stacked bar chart showing the fractions of each cell type in normal and CI groups, respectively. (E) A heatmap displaying the distribution of top 15
differentially expressed genes specific to different cell subtypes. Blue colors denote down-regulation, whereas red colors denote up-regulation. (F)
Difference of DDR score based on the UCell algorithm across 70391 single cells were illustrated using UMAP plots. (G) Representative violin plots
displaying the differences in DDR score between control and CI groups. (H) Representative violin plots displaying the differences in DDR score
among seven distinct cell types. (I, J) UMAP plot showing clusters (I) and annotated subtypes (J) of CSF T cells. (K) UMAP plot exhibiting the
distribution of DDR score based on the UCell algorithm across distinct T cell subtypes. (L) Representative violin plots exhibiting the differences in
DDR score among six distinct T cell subtypes. ***p < 0.001, ****p < 0.0001.
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Investigation of DDR-associated long non-
coding RNAs

To further elucidate the regulatory patterns of DDR, we

conducted the WGCNA approach and screened DDR-associated

lncRNAs on the basis of the expression profiles of lncRNAs in the

combined dataset. Next, according to the optimal soft threshold b,
we applied a hierarchical clustering algorithm to the samples of the

clustering dendrogram, and thus obtained ten lncRNA co-

expression modules with different colors. Among them, the

magenta module exhibited the most powerful link with DDR

score (R= -0.77) (Figure 5A). Following intersection, 33 common

DDR-associated lncRNAs were finally screened (Figure 5B). The

DDR-lncRNA co-expression network generated is visualized in
Frontiers in Immunology 09
Figure 5C. The heatmap exhibited the diverse expression patterns

of 33 DDR-associated lncRNAs between controls and patients with

AD, of which 31 were found to be markedly reinforced in AD

patients, whereas the expression profiles of the other 2 DDR-

associated lncRNAs were observed to be substantially enhanced in

healthy individuals (Figure 5D).
Identification of DDR subtypes in AD
patients

On the basis of the expression landscape of 33 DDR-related

lncRNAs, a consensus clustering algorithm was used to classify AD

samples into different subtypes, each with a qualitatively different
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FIGURE 4

Intercellular communication difference between Normal and AD single cells. (A, B) Bar and circle charts showing the differences in the number of
interactions (left) or strength of interactions (right) in the network of cell-cell communication between normal and CI groups. Thicker lines
representing stronger interactions, and red or blue colors representing greater or decreased signaling in AD patients when compared with normal
group, respectively. (C) Stacked plots exhibiting the differences in intercellular signaling pathways between CI and normal groups. Orange and green
colors denote up-regulated signaling pathways in normal and CI samples, respectively. (D) Dot plot indicating the difference in signaling molecules
from T cells to other immune cells between normal and cognitively impaired CSF samples.
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DDR regulatory status. The higher the consensus matrix score, the

more likely it was to be in the same group (Figure 6A). In addition,

the smoother the center of the CDF curve, the clearer the sampling

distribution. Ultimately, combining the relative changes in the area

under the CDF curve and consistent clustering score results, a total

of 167 AD patients were grouped into two subtypes, including 74

cases of C1 and 93 cases of C2 (Additional file: Figure S3). The tSNE
Frontiers in Immunology 10
analysis revealed significant differences in the distribution of AD

patients between the C1 and C2 clusters (Figure 6B). Interestingly,

DDR C2 showed a lower DDR score relative to DDR C1

(Figure 6C), suggesting a lack of DDR regulation in patients with

DDR C2. However, the age and gender distribution were not

statistically different between DDR C1 and DDR C2 subtypes

(Figures 6D, E). A heatmap illustrated that these DDR-related
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FIGURE 5

Identification of DDR-associated lncRNAs. (A) Heatmap representing the association between 10 modules with DDR score. (B) The intersecting DDR-
associated lncRNAs shared by the magenta module and the DElncRNAs in the combined dataset were shown in a venn diagram. (C) The Sankey diagram
exhibiting the correlation between differentially expressed DDR regulators and 33 lncRNAs. (D) Comparison of the expression profiles of 33 DDR-
associated lncRNAs across AD and normal brain tissues in combined dataset using a heatmap. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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lncRNAs were notably different between distinct DDR clusters, and

most lncRNAs were upregulated in DDR C2 (Figure 6F).
Characterization of the molecular
functions and pathways between DDR
subtypes

We next attempted to illustrate the transcriptomic differences

between these DDR subtypes using the DEG analysis, and a total of

2472 DEGs between these subtypes were screened (2859 up-

regulation and 1856 down-regulation) (Additional file: Figure S4).

Functional annotations based on the GSVA algorithm revealed that

DDR C2 was mainly involved in myotube differentiation, activation

of vascular endothelial growth factor receptor, intercellular

junctions, neuron projection regeneration, cell cycle arrest, and

immune responses. In contrast, DDR C1 was closely linked with the

biological functions associated with mitochondrial and amino acid

metabolism, tRNA and lysosomal transport, and protein

localization (Figure 7A). Pathways enrichment analysis showed

that DDR C2 was primarily driven by immune regulation,

cytokine-cytokine interaction, and several classical signaling

pathways, including JAK-STAT, P53, TGFb, MAPK, and VEGF

signaling pathway. Notably, DDR C1 predominantly regulated

enriched pathways associated with metabolism, DNA replication,

lysosome, gluconeogenesis, and RNA degradation (Figure 7B).

Consistently, the results of GSEA indicated that the up-regulated
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pathways in DDR C2 were as follows: B cell receptor signaling

pathway, cytokine-cytokine receptor interaction, JAK-STAT

signaling pathway, natural killer cell mediated cytotoxicity, and

Notch signaling pathway (Figure 7C). DDR C1 was characterized by

the DNA replication, gluconeogenesis, lysosome, oxidative

phosphorylation, and RNA degradation (Figure 7D). These

results highlight the distinct molecular functions and pathways

between subtype1 and subtype2.
Identification of the immune
characteristics between DDR subtypes

To better elucidate the differences in immune microenvironment

between DDR subtypes, we first comprehensively investigated the

correlations between immune infiltrating levels. The heatmap of

immune cell subsets based on the ssGSEA, MCPcounter, xCell,

ABIS, and ESTIMATE algorithms method was illustrated in

Figure 8A, which showed that the infiltrating levels of most types

of immune cells were primarily distributed in DDR C2, such as B

cells, T cells, dendritic cells, macrophages, natural killer cells, and

neutrophils. Next, we further investigated the correlations between

DDR phenotypes and various immune modulators and immune

checkpoints. The results of the effect of DDR on the AD immune

microenvironment revealed that the expression levels of co-

stimulators, such as CD28 and CD80, in DDR C2 subtype was

significantly increased. In addition, the increasing expressions of
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FIGURE 6

Identification of DDR subtypes using a consensus clustering algorithm. (A) The consensus clustering matrix of DDR subtypes is depicted based on the
consensus clustering methodology. (B) The DDR C1 and C2 samples are differentiated using the t-SNE diagram. (C) A comparison of the DDR score in AD
patients with DDR C1 and C2. (D, E) Age (D) and gender (E) distribution differences between AD patients with DDR C1 and C2. (F) Comparison of the
expression profiles of 33 DDR-associated lncRNAs across DDR C1 and C2 subtypes in AD patients using a heatmap. *p < 0.05, **p < 0.01, ****p < 0.0001.
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antigen presentation, cell adhesion, co-inhibitor, ligand, receptor, and

other functions were also seen in DDR C2 subtype. While compared

to DDR C2, DDR C1 exhibited the higher expression of CD274 and

CX3CL1 (Figure 8B). Moreover, DDR C2 also exhibited a stronger

ImmuneScore, which suggested a more powerful responsiveness to

immunotherapy (Figure 8C). Based on the above results, we thought

of DDR C2 as a subtype of the immune system and DDR C1 as a

phenotype of metabolism.
Machine learning-based selection of
characteristic DDR-associated lncRNAs

To further identify DDR-associated lncRNAs that can accurately

diagnose AD, we utilized four well-known machine learning models,

including LASSO, RF, SVM-RFE, and XGBoost to perform signature

selection on the basis of the expression landscape of 33 DDR-

associated lncRNAs. Using the LASSO classifier, the best lambda

value of 0.0237 was fitted to the LASSO model, which proved to be

the most accurate (Additional file: Figure S5A, B), eventually

generating 15 DDR-associated lncRNAs with non-zero coefficients

(Figure 9A). ROC curve analysis revealed that the AUC of the 15-

lncRNA-based LASSO model was 0.745 in the training set and 0.743

in the test set (Figure 9B). Subsequently, we determined that the

combination of 9 lncRNAs exhibited the highest accuracy in

predicting AD initiation based on the SVM-RFE model (Additional

file: Figure S5C), with a satisfactory AUC value in the training set

(0.747) and the test set (0.759), respectively (Figure 9C). Next, we
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employed the Boruta feature selection algorithm and identified 14

tentative and important lncRNAs in total (Additional file: Figure

S5D). These 14 signatures screened by the Boruta algorithm were

incorporated into the RF model and achieved an AUC value of 1 in

the training set and 0.731 in the test set (Figure 9D). The top ten most

important lncRNAs associated with the RF model were determined

according to the feature importance ranking (MALAT1, TBX2-AS1,

MEG3, HCG18, JPX, PAXIP1-AS2, MUC20-OT1, FBXO30-DT,

DAMTS9-AS2, and MIR23AHG) (Additional file: Figure S5E).

Furthermore, for AD identification, the XGBoost classifier achieved

AUCs of 1 and 0.778 in the training set and test set, respectively

(Figure 9E). According to the weighted ranking of characteristic

DDR-associated lncRNAs in the SHAP dependent analysis of the

XGBoost model, the 10 lncRNAs that contributed the most to the

XGBoost model were as follows: MALAT1, TBX2-AS1, MEG3,

FBXO30-DT, JPX, DAPK1-IT1, MIR570HG, PAXIP1-AS2,

SEPSECS-AS1, and ADAMTS9-AS2 (Additional file: Figure S5F).

The higher the SHAP score of the DDR-associated lncRNAs, the

higher the probability of AD. For example, in the XGBoost model,

low MALAT1 feature values correspond to inferior SHAP values and

are negatively associated with AD occurrence. In contrast, high

feature values for MALAT1 resulted in positive SHAP values and

an increment in AD risk. For more details on these 10 lncRNAs

affecting XGBoost model predictions, see (Additional file: Figure

S5G). Following intersection, FBXO30-DT, ADAMTS9-AS2, TBX2-

AS1, and MEG3 shared by the LASSO, SVM-RFE, RF, and XGBoost

algorithms were determined as the common DDR-associated

lncRNAs (Figure 9F).
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FIGURE 7

Analyses of functional enrichment in DDR subtypes. (A, B) The t-value of the GSVA scores is utilized to rank the differences in abundant biological
functions (A) and characteristic signaling pathways (B) between DDR C1 and C2. (C, D) GSEA revealing the elevated (C) and downregulated (D) main
pathways in patients with DDR C2.
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FIGURE 8

The immunological characteristics of different DDR subtypes. (A) Heatmap displaying the expression profiles of infiltrating immune cells across DDR
C1 and C2 subtypes in AD patients based on the ssGSEA, MCPcounter, xCell, ABIS, and ESTIMATE algorithms. Age and gender are displayed as
patient annotations. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (B) Heatmap displaying the expression profiles of immunoregulatory
subgroup genes in DDR C1 and C2 patients with AD. Age and gender are displayed as patient annotations. *p < 0.05, **p < 0.01, ***p < 0.001, ****p
< 0.0001. (C) A comparison of the immunological score between AD patients with DDR C1 and C2 subtypes.
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FIGURE 9

Selection of characteristic lncRNAs associated with DDR based on multiple machine learning models. (A) The specific coefficient value of the 15
DDR-associated lncRNAs screened by the optimal lambda value using the LASSO algorithm. (B) The value of ROC curves for the 15-lncRNA-based
LASSO algorithm in the training set and testing sets. (C) The value of ROC curves for the 9-lncRNA-based SVM-RFE algorithm in the training set and
testing sets. (D) The value of ROC curves for the 14-lncRNA-based RF algorithm in the training set and testing sets. (E) The value of ROC curves for
the XGBoost algorithm in the training set and testing sets. (F) Venn diagram displaying the intersection results of the LASSO, SVM-RFE, RF and
XGBoost algorithms.
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Establishment of a riskScore model and
nomogram

These four distinct DDR-associated lncRNAs were used to

calculate DDR-related riskScore using their corresponding LASSO

model coefficients: riskScore = (-0.188478×FBXO30-DT)+ (0.117249

× ADAMTS9-AS2) + (0.129318 × TBX2-AS1) + (0.320641 ×MEG3).

Subsequently, the diagnostic efficacy of riskScore and clinical

characteristics (age and gender) in predicting AD progression in the

combined dataset was estimated using ROC curve analysis. The ROC

curve-based prediction model had an AUC value of 0.712, an age of

0.558, anda gender of 0.455,withADpatients exhibiting a significantly

higher riskScore (Figures 10A, B). These results suggested that the

riskScore can predict AD progression more accurately than classic

clinical indicators. A constructed nomogram consisting of gender,

riskScore, and age demonstrated the satisfactory prediction outcomes

of these features in diagnosing AD (Figure 10C), and the calculated

calibration curve proved the robustness of our nomogram

(Figure 10D). In addition, the DCA demonstrated the riskScore-

based nomogram to be clinically beneficial (Figure 10E).
Clinical values and molecular pathways in
the low- and high- risk groups

To comprehensively illustrate the DDR riskScore-related

mechanisms in AD, we developed a risk model and classified 167

AD samples in total into low- and high-risk groups based on their

median riskScore. The heatmap and violin plot exhibited the

different expression patterns of these four DDR-associated
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lncRNAs between the low- and high-risk groups, with the

reinforced expression levels of MEG3, TBX2-AS1, and

ADAMTS9-AS2 in the high-risk group. Whereas a notable higher

expression of FBXO30-DT was observed in the low-risk group

(Figure 11A). The Sankey plot comprehensively depicted details of

the different subtypes and proportions of clinical indicators in the

low- and high risk groups. Higher DDR C2 subtype rates was found

in the high-risk group, while gender and age distribution had no

obvious difference between low- and high-risk groups (Figures 11B–

D). Furthermore, by comparing DDR score levels between these two

riskScore groups, it was shown that the DDR score was higher in the

low-risk group relative to the high-risk group (Figure 11E). GSEA

revealed that the high-risk group was predominantly participated in

autoimmune disease, cytokine-cytokine receptor interaction, ECM

receptor interaction, JAK-STAT signaling pathway, natural killer

cell-mediated cytotoxicity, and neuroactive ligand receptor

interaction (Figure 11F), while low-risk group was primarily

regulated by the pathways associated with TCA cycle, DNA

replication, oxidative phosphorylation, pentose phosphate

pathway, pyrimidine and pyruvate metabolism, and RNA

degradation (Figure 11G). To evaluate individualized clinical

treatments for AD patients, we explored potential therapeutic

agents for low- and high-risk populations separately using the

CMap database. The top 5 drugs harboring individualized

therapeutic potential for the low-risk group were as follows: W-

13, XAH-6809, TTNPB, butein, and arachidonyltrifluoromethane

(Figure 11H). While vorinostat, alsterpaullone, STOCKIN-35874,

arachidonyltrifluoromethane, and TTNPB were the five most

effective therapeutic drugs for AD patients at high risk

(Figure 11I). In particular, arachidonyltrifluoromethane and
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FIGURE 10

Construction and validation the diagnostic efficacy of riskScore. (A) ROC curves displaying the diagnostic efficacy of riskScore and classic clinical
indicators in the combined dataset. (B) Comparison of riskScore across AD and normal brain tissues in the combined dataset. (C) Establishment of a
predictive nomogram consisting of riskScore, age, and gender. (D) Calibration curve displaying the predicted efficacy of a predictive nomogram. (E)
DCA showing the clinical benefits of a predictive nomogram.
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TTNPB had the lowest CMap scores in the low- and high-risk

groups, respectively, revealing the best therapeutic benefit in AD

patients at different risks.
Differences in the immune
microenvironment and therapeutic drugs
between distinct AD risk patients

The landscape of infiltrating cells in low- and high-risk groups

was also explored based on the ssGSEA, MCPcounter, xCell, ABIS,

and ESTIMATE algorithms. Higher infiltration levels of multiple

immune cell subtypes, such as B cells, T cells, macrophages, natural

killer cells, and neutrophils were observed in the high-risk group

(Figure 12A). Moreover, immune-modulators and immune

checkpoints differ significantly between patients at different risk

for AD. For example, immune genes associated with antigen

presentation (HLA-DQB2 and MICB), cell adhesion (ICAM1),

co-inhibitor (CD276 and PDCD1LG2), co-stimulator (CD28),

ligand (CD40LG, CD70, CXCL10, CXCL9, IL10, IL13, IL2, IL4,

TGFB1, VEGFA, and VEGFB), receptor (BTLA, CD27, CD40,

IL2RA, LAG3, PDCD1, TIGIT, TNFRSF14, TNFRSF18, and

TNFRSF4) and other immune-modulators (GZMA and PRF1)

were markedly higher in high-risk group. In contrast, low-risk

patients only displayed excessive expression of HMGB1 relative to

high-risk patients with AD (Figure 12B). Additionally, a significant

weakness of ImmuneScore could be observed in the low-risk group,
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suggesting a poor responsiveness to immunotherapy (Figure 12C).

Correlation analysis also demonstrated that a higher riskScore was

positively correlated with most types of immune cells and revealed a

superior infiltration levels of immune (Figure 12D).
Discussion

Currently, due to the heterogeneity of AD, patients exhibit

distinct response rates and clinical outcomes, and little progress has

been made in individualizing AD therapy. Therefore,

comprehensively elucidating the heterogeneity of AD would help

us better understand AD pathology and find out more appropriate

treatment strategies. Recent research has demonstrated that

excessive DNA damage and a defective DNA damage response

are closely related to the early phases of AD neuropathology, and

that enhanced Ab production in neural progenitor cells may be the

key pathogenic mechanism (12, 13, 41).. According to another

study, in stressful circumstances, DDR downstream factors promote

cell cycle arrest to protect neurons from death, whereas persistent

activation of DDR can lead to progressive senescence in surviving

neurons and eventually the onset of neurodegenerative disorders

(42). These studies suggest that DDR is a prime candidate for

enhancing AD prediction, despite the fact that comprehensive

multi-omics research on AD are still incredibly uncommon.

Herein, we first systematically explored the relationships

between DDR and AD heterogeneity. A total of 179 DDR
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FIGURE 11

Construction and molecular characteristic of a risk model. (A) Heatmap displaying the expression profiles of 4 characteristic lncRNAs associated with
DDR between low- and high-risk AD patients. Age, sex, and DDR subtypes were exhibited as patient annotations. (B) The sankey diagram illustrating the
association between riskScore, DDR subtypes, age, and gender. (C, D) Age (C) and gender (D) distribution differences between AD patients at low and
high risk. (E) Comparison of the DDR score in low- and high-risk AD patients. (F, G) GSEA revealing the elevated (F) and downregulated (G) main
pathways in patients at low and high risk. (H, I) CMap study displaying the top 5 prospective treatment medicines for patients at low (H) and high (I) risk.
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regulators were enrolled in our study on the basis of previously

published literatures, and 51 of which were abnormally expressed in

AD patients, demonstrating that the dysregulated DDR might play

a crucial role in promoting the initiation of AD. Previous study has

reported that phosphorylated p53-induced DDR is markedly

reduced in AD brain (41). Consistently, our transcriptomic and

single-cell analysis demonstrated a decreased DDR score in patients

with AD relative to controls. Interestingly, we innovatively found a

lower DDR score was positively associated with the activation of

most types of immune cells, including macrophages, memory B

cells, effector memory CD8+ T cells, central memory CD4+ and

CD8+ T cells, natural killer cells, and neutrophils, pointing out that

the interaction of a decreased DDR score with the activation of

immune responses may be a novel mechanism contributing to the

poor prognosis in AD. Currently, the regulatory role of lncRNAs in

DDR has attracted a growing amount of attention. Due to the

extensive relationship between lncRNAs and the canonical DDR

pathway, DDR-mediated lncRNA expression provides a regulatory

mechanism that precisely regulates the expression of DDR-related

genes spatially and temporally (43). Mechanistically, DNA damage

alters the expression of various lncRNAs, including the regulation

of transcription and post-transcription, and RNA degradation (44).

On the other hand, lncRNAs are able to alter the expression levels of

their target genes through four regulatory modes, including signal,
Frontiers in Immunology 16
decoy, guide, and scaffold, which in turn directly regulate cellular

processes associated with DDR (45, 46). In our current study, we

determined a total of 51 DDR-related lncRNAs based on the

WGCNA algorithm, all of which exhibited significant differences

between AD patients and healthy individuals, suggesting their

various roles in patients with AD.

Single-cell analysis is superior in providing insights into the

heterogeneity of molecular content and phenotypic characteristics

among complex cell populations of different diseases, and has been

widely utilized in medical research (47–49). In our transcriptional

analysis, the DDR score was shown to be significantly decreased in

cognitively impaired patients and was negatively correlated with

immune infiltration levels. Therefore, we further conducted single-

cell analysis to depict the landscape of DDR score in CI patients.

Consistent with transcriptional results, CI samples exhibited a

relative lower DDR score. In addition, T cells and B cells in

normal samples displayed markedly activated DDR levels

compared with other immune cells. Targeting the DDR damage

response through enhanced T-cell activation has been reported to

be employed in antitumor therapy (50, 51). Thus, we elucidated the

relationship between DDR and T cells at the single-cell level, which

may partly provide innovative insights for the clinical treatment of

AD. Future studies need to further explore the specific role of DDR

in different T-cell subsets. On the other hand, we estimated the
A B

D

C

FIGURE 12

The immunological characteristics in AD patients at low and high risk. (A) Heatmap displaying the expression profiles of infiltrating immune cells
between low- and high-risk AD patients based on the ssGSEA, MCPcounter, xCell, ABIS, and ESTIMATE algorithms. Age, gender, and DDR subtypes
are displayed as patient annotations. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (B) Heatmap displaying the expression profiles of
immunoregulatory subgroup genes in AD patients at low and high risk. Age, gender, and DDR subtypes are displayed as patient annotations. *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (C) Comparison of the immunological score in low- and high-risk AD patients. (D) The correlation
between 28 immune cell subtypes and the riskScore.
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interaction strength and numbers of immune cells in CI samples,

which showed that macrophages, ILC, and pDC cells exhibited

notably strong interactions with other cell types in the CI group.

Subsequently, the underlying ligand-receptor interactions were

further explored, and the stronger intercellular communications,

including IL-16-CD4, CD40LG-(ITGAM+ITGB2), CD40LG-

(ITGA5+ITGB1), and ANXA1-FPR1 were exhibited in cognitively

impaired patients. Overall, our study deeply elucidated that intricate

connections within immune cells are a vital factor in the

progression of AD.

We have defined two patterns based on 51 co-expressed

lncRNAs related to DDR, each exhibited notably different

b i o l o g i c a l f u n c t i o n s an d p a t hwa y s , a n d immune

microenvironment. DDR C2 was primarily driven by immune

response-related functions and pathways, accompanied by an

increment in the proportion of infiltrated immune cells and the

expression of immune modulators. Notably, the immune C2

subtype was often related to lower levels of DDR score. Recent

studies have demonstrated the close association between DDR and

the immune response. Ionizing radiation-induced activation of

DDR is the major cause contributing to the interference of

immune microenvironment, thus reducing the anti-tumor effect

of radioimmunotherapy (52). Moreover, DDR deficiency was

considered an important determinant in promoting tumor

immunogenicity (53), suggesting that targeting DDR could serve

as a potential therapeutic strategy to promote anti-tumor immune

responses. In addition, human adenovirus-mediated immune

escape is largely associated with the impairment of interferon

(IFN) and DDR responses, including the inhibition of the Mre11-

Rad50-Nbs1 complex and DNA ligase IV (54). However, whether

there are DDR-mediated immune alterations in AD patients is

largely unknown. In our current study, we comprehensively

estimated the immune profile of DDR C1 and C2 patients, and

found most types of immune cells were primarily distributed in

DDR C2, including B cells, T cells, dendritic cells, macrophages,

natural killer cells, and neutrophils. These innate and adaptive

immune cells play a crucial role in promoting the over-

accumulation of amyloid beta, the initiation of tau pathology, and

neuroinflammation, eventually leading to the AD progression (55–

57). Furthermore, multiple types of immune modulators, including

antigen presentation, cell adhesion, co-inhibitor, co-stimulator,

ligand, and receptor-related genes were also predominant in DDR

C2. It has been reported that human leukocyte antigen (HLA) super

families are key members involved in adaptive immunity and enable

to trigger the initiation of AD-like neuropathy through activating

antigen presentation (58, 59). Other classical immune checkpoint

inhibitors, ICAM1, CCL5, and CTLA-4, are also targets of

immunotherapy (60–62), suggesting their great therapeutic

potential in diseases. Overall, we innovatively defined DDR C2 as

an immune subtype, suggesting that immunotherapy targeting

DDR could achieve superior efficacy in AD patients with the

C1 subtype.

We identified a 4-DDR-related lncRNA signature based on the

multiple machine learning algorithms, including FBXO30-DT,

TBX2-AS1, ADAMTS9-AS2, and MEG3. As the newest member
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of the lncRNA family, the role of FBXO30-DT in disease

progression remains unknown. Bioinformatics analysis and an

external validation experiment revealed that TBX2-AS1 is a

member of the M2 tumor-associated macrophages-associated

gene family, and the dysregulated expression of TBX2-AS1 could

be observed in ovarian cancer, indicating a significant correlation

between TBX2-AS1 and the prognostic survival of patients with

ovarian cancer (63). ADAMTS9-AS2 is identified as the novel

tumor suppressor and could serve as a tumor biomarker in non-

small cell lung cancer (64). The upregulated ADAMTS9-AS2

functions as a competing endogenous RNA for miR-143-3p that

pretects ITGA6 from miRNA-mediated degradation, thereby

promoting the metastasis of salivary adenoid cystic carcinoma by

activating the PI3K/Akt and MEK/Erk signaling pathways (65). In

contrast, the deficiency of ADAMTS9-AS2 is positively correlated

with poor overall survival in patients with ovarian cancer by

elevating the proliferation and invasion of tumor cells (66).

However, it is regrettable that the relationship between these

three characteristic lncRNAs and the pathological progress of AD

has not been reported. Interestingly, MEG3 overexpression

exacerbates cerebral ischemia-reperfusion injury, but improves

cognitive impairment and alleviates pathological damage in AD

patients (67, 68). In our current study, the constructed ROC curves,

nomograms, calibration curves, and DCA demonstrated that the

riskScore based on the 4-DDR-related lncRNA signature can

predict AD progression more precisely than individual variable.

In total, these findings indicated that the upregulation of a 4-DDR-

related lncRNA signature might be closely linked to a poor

prognosis in AD patients.

We therefore divided patients with AD into low- and high-risk

groups based on the constructed riskScore. Similarly, the high-risk

group was defined as the immune phenotype, corresponding to a

higher rateofDDRC2subtypeand lower levelsofDDRscore,while the

low-riskgroupexhibited theopposite effect. Low levelsofDDRscore in

the high-risk groupmay imply aweaker capacity ofDNArepair,which

was positively correlated with the increase of the immune responses-

mediated pathway. The increment of immune score, infiltrated

immune cells, and immune modulators suggesting that high-risk

immune phenotype could benefit strongly from immunotherapy. In

addition,we further estimated thepotential therapeutic drugs targeting

AD patients with different risks using the CMap analysis and found

that arachidonyltrifluoromethane and TTNPB may exert most

effective therapeutic efficacy for AD patients in low-risk and high-

risk groups, respectively. As a retinoic acid mimetic, TTNPB has been

shown to promote neuronal differentiation via reinforcing the

activities of RARa and RARg, thus exerting neuroprotective effects

(69). Arachidonyltrifluoromethane, a cPLA2 inhibitor, plays a vital

role in attenuating lysosomal membrane permeabilization, inhibition

of autophagy, andneuron death, eventually providing neuroprotective

and anti-neuroinflammatory effects (70). In our study, the developed

riskmodel not only aids in the implementationof immunotherapy, but

also serves as a critical reference for individualized treatment and

precision medicine in Alzheimer’s disease patients.

To the best of our knowledge, we were the first to

comprehensively assess DDR expression patterns in Alzheimer’s
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disease patients. However, several limitations need to be

emphasized: 1) The current research is retrospective, and only a

limited sample size could be obtained from public databases.

Further multicenter prospective studies need to be carried out to

verify our results. 2) The expression landscape of mRNA was based

on microarray datasets, and the results were not as stable as those

from in vivo or in vitro experiments. 3) Larger AD sample sizes with

more prognostic and therapeutic information should be taken into

account to determine the clinical utility of AD patients with distinct

molecular subtypes and riskScore.
Conclusions

In conclusion, our research showed that the progression of AD

and DDR regulators are tightly related. Additionally, we discussed

the DDR levels in AD patients at the single-cell level. Furthermore,

based on the lncRNAs related with DDR, we developed a unique

molecular classification. Different DDR expression patterns,

biological traits, and immunological characteristics were exhibited

in two subtypes, and the DDR C2 subtype may respond favorably to

immunotherapy. Furthermore, we developed a DDR-related risk

model to precisely predict the clinical outcomes of AD patients

based on the 4-DDR-related lncRNA signature (FBXO30-DT,

TBX2-AS1, ADAMTS9-AS2, and MEG3) screened by the various

machine learning algorithms. Finally, it was determined that

arachidonyltrifluoromethane and TTNPB were promising

treatments for AD patients with low and high risk, respectively.

Overall, our findings facilitate to design individualized treatments

for AD patients and offer new insights into the heterogeneity of AD

based on DDR regulators.
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Glossary

AD Alzheimer’s disease

DDR DNA damage response

lncRNA Long non-coding RNAs

CI cognitive impairment

CSF Cerebrospinal fluid

WGCNA Weighted gene coexpression network analysis

DEGs Differential expressed genes

XGBoost eXtreme Gradient Boosting

RF Random Forest

LASSO least absolute shrinkage and selection operator

SVM-RFE Support vector machine-recursive feature elimination

RMA Robust Multiple Array Average

PCA Principal component analysis\

UMAP Uniform manifold approximation and projection

GEO Gene Expression Omnibus

ssGSEA single sample gene set enrichment analysis

TOM topological overlap matrix

CDF Cumulative distribution function

GO Gene ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

BP biological processes

MF molecular functions

CC cellular components

GSVA Gene set enrichment Analysis

MsigDB Molecular Signatures Database

GSEA Gene set enrichment analysis

SHAP Shapley Additive exPlanation

AUC an area under the curve

DCA decision curve analysis

CDF cumulative distribution function

Tsne t-Distributed Stochastic Neighbor Embedding

Cmap Connectivity map
F
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