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Sepsis is frequently associated with hemostasis activation and thrombus formation,

and systematic hemostatic changes are associated with a higher risk of mortality.

The key events underlying hemostasis activation during sepsis are the strong

activation of innate immune pathways and the excessive inflammatory response

triggered by invading pathogens. Pyroptosis is a proinflammatory form of

programmed cell death, that defends against pathogens during sepsis. However,

excessive pyroptosis can lead to a dysregulation of host immune responses

and organ dysfunction. Recently, pyroptosis has been demonstrated to play a

prominent role in hemostasis activation in sepsis. Several studies have demonstrated

that pyroptosis participates in the release and coagulation activity of tissue factors.

In addition, pyroptosis activates leukocytes, endothelial cells, platelets, which

cooperate with the coagulation cascade, leading to hemostasis activation in

sepsis. This review article attempts to interpret the molecular and cellular

mechanisms of the hemostatic imbalance induced by pyroptosis during sepsis and

discusses potential therapeutic strategies.
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1 Introduction

Sepsis is defined as a life-threatening condition caused by a dysregulated host response to

infection (1). It has been recognized as a global health priority by the World Health

Organization and is the most common cause of death in hospitals, causing 11 million

deaths worldwide per year (2). During sepsis, the invading pathogen encounters the host

innate immune system triggering a sustained systemic inflammatory response and

coagulation cascade. The co‐dependency of innate immune pathways and the hemostasis

process is termed “ immunothrombosis” or “ immunocoagulation” (3). The

“immunothrombosis” process serves as the non-specific first line of host defense against

pathogens. However, the over-activation of the hemostatic system leads to excessive

thrombin formation and hyperfibrinolysis, resulting in disseminated intravascular

coagulation (DIC) and ultimately to multiple organ dysfunction and septic death (4).

Pyroptosis, a recently discovered programmed mode of cell death, participates in the

innate immune response, inhibiting the replication of intracellular pathogens, and activating
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immune cells to phagocytose and kill pathogens (5, 6). However,

overactivated pyroptosis leads to dysregulated host immune response

and organ dysfunction (7, 8). Pyroptosis occurs in many cell types and

participates in the pathophysiological processes of sepsis (9). More

recently, pyroptosis has been shown to play a prominent role in the

prothrombotic response in sepsis (10, 11). This review article

attempts to interpret the molecular and cellular mechanisms of the

hemostatic imbalance induced by pyroptosis in sepsis and discusses

potential therapeutic strategies.
2 Process of hemostasis
and thrombosis

Hemostasis is an important physiological process that prevents

bleeding after a blood vessel injury and involves two main

mechanisms: blood coagulation and platelet activation. Thrombosis

is generally considered to be the pathological progression of

hemostasis, and refers to thrombus formation inside blood vessels,

resulting in the occlusion of arteries, veins, and microvessels (12). It is

a critical event in many diseases, including myocardial infarction,

stroke, venous thromboembolism, and DIC. Hemostasis and

thrombosis share the core pathways of platelet activation and the

coagulation cascade, and the processes will be briefly described to

better understand the underlying mechanisms of hemostasis

imbalance in sepsis (Figure 1).

When blood vessels are disrupted, collagen in the subendothelial

matrix and tissue factor (TF) are exposed to the blood, which initiates

thrombus formation (12–14). Platelets are recruited to the injury sites

through the efficient interaction of cell-surface receptors with the
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exposed collagen and released von Willebrand factor (vWF) in the

subendothelial matrix (15), then the platelets become activated. In

addition, exposed TF also initiates platelet activation by generating

thrombin through the coagulation cascade (16). Thrombin cleaves

protease-activated receptor 4 in platelets and activates the platelets

(17). After the recruitment and activation stages, platelets firmly

adhere to the vessel wall and promote continued platelet activation

and aggregation, resulting in rapid thrombus growth (12).

In parallel with platelet recruitment, the coagulation cascade is

initiated to stabilize and reinforce the platelet thrombus (12). The

coagulation cascade, first described in 1964, involves the sequential

activation of a series of plasma serine proteases in the generation of

activated thrombin (18, 19). The classical view of the “cascade”model

distinguishes two initiation pathways: the extrinsic pathway and the

intrinsic pathway. The extrinsic pathway is initiated by TF (also

known as factor III), which is expressed by vessel-wall cells that are

not exposed to blood and by tissue cells (20). With TF exposure to

blood, it binds to factor VIIa and triggers the coagulation cascade

(13). The TF-initiated pathway is activated by trauma, infection, or

the disruption of the vessel wall under normal hemostasis (13, 21).

The intrinsic pathway of coagulation, also known as the contact

pathway, begins upon exposure of the “contact” factor (factor XII) in

plasma to a negatively charged surface (18). The exposed endothelial

cells, platelets, collagen, and foreign surfaces, as acting surfaces,

initiate factor XII activation and trigger a chain reaction of

coagulation factors (18). However, this pathway is not linked to

normal hemostasis, and instead contributes predominantly to

pathological thrombosis (22). When coagulation factor X is

activated through the intrinsic or extrinsic pathways, it converts

prothrombin to thrombin (19). Thrombin further cleaves
FIGURE 1

Process of hemostasis and thrombosis. Hemostasis and thrombosis share the core pathways of platelet activation and the coagulation cascade, which
act together to generate a hemostatic clot or thrombus. Platelets are recruited to a site of vessel injury where collagen is exposed through the
interaction of cell-surface receptors (such as glycoprotein VI [GP VI], glycoprotein Ib-V-IX [GP Ib-V-IX], and some integrins [not shown]) with the
collagen and released von Willebrand factor (vWF). Then platelets are activated and adhere to the vessel wall, releasing agonists (such as adenosine
diphosphate [ADP]), which promote continued platelet activation and aggregation. The extrinsic pathway is initiated by exposed tissue factor (TF, also
known as factor III). TF forms a complex with circulating factor VIIa, thereby triggering the coagulation cascade. The intrinsic pathway begins with the
contact of factor XII with the negatively charged surface. Factor XII is activated and triggers a chain reaction of coagulation factors. When coagulation
factor X is activated through the intrinsic or extrinsic pathways, it converts prothrombin (factor II) to thrombin (factor IIa). Thrombin further cleaves
fibrinogen (factor I) into fibrin (factor Ia), forming a mesh that binds to and strengthens the platelet clot and stops bleeding.
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fibrinogen into fibrin, forming a mesh that binds to and strengthens

the platelet clot and stops bleeding. This is known as the common

pathway (18, 19, 22).

During hemostasis and thrombosis, platelet thrombus formation

and fibrin deposition occur concomitantly and are connected with

each other (3). Under normal conditions, regulatory mechanisms of

anticoagulation (such as tissue factor pathway inhibitor [TFPI],

protein C system, antithrombin [AT]) and fibrinolysis systems

restrict blood clot formation in a temporary and localized manner

(23). However, when pathological processes overwhelm the

regulatory mechanisms of hemostasis, thrombosis is initiated (12),

occurring as arterial and venous thrombosis or DIC.
3 Hemostasis activation in sepsis

During sepsis, pathogens trigger an impaired host response, leading

to innate immune response, systemic inflammation, and eventually

activation of the coagulation response (24, 25). Clinically, almost all

patients with sepsis have hemostasis abnormalities, ranging from slight

coagulation marker changes to stronger coagulation activation with a

decrease in platelet counts and prolongation of coagulation time, to

fulminant coagulation activation with widespread micro-thrombosis

and profuse bleeding, known as DIC (26).
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In general, blood cells, that is, monocytes, neutrophils, platelets,

and vascular endothelial cells, together with coagulation factors, play

significant roles in hemostatic changes in sepsis (24, 27). Moreover, in

addition to increased coagulation, the hemostatic change also involves

the downregulation of anticoagulant mechanisms and an impaired

fibrinolytic response (24). Importantly, the key events underlying the

hemostasis activation in sepsis are the strong activation of innate

immune cells and an excessive inflammatory response (23).

“Immunothrombosis” has been therefore introduced to emphasize

the pivotal role of the innate immune response in hemostasis

activation and thrombosis, which can protect against pathogens in

the vascular system and are also involved in pathological thrombosis

(3). Multiple immune-related molecular and cellular factors

contribute to hemostasis activation in sepsis, which is generally

supported by distinct cells and molecules that are irrelevant to

physiological hemostasis. The roles of innate immune cells and

immune-related factors in hemostasis activation in sepsis are

summarized below (Figure 2).
3.1 Tissue factor

The most principal initiator of coagulation activation in sepsis is TF

(24). TF is a transmembrane protein constitutively expressed by vessel
FIGURE 2

Immune-related factors in hemostasis activation during sepsis. Activation of the coagulation pathway, platelet activation and aggregation, and impaired
anticoagulant and fibrinolytic pathways act cumulatively to a procoagulant state in sepsis. These are mediated by multiple immune-related molecular
and cellular factors. Monocytes and endothelial cells play important roles in thrombus formation during sepsis. They express and release tissue factor (TF)
when recognizing pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) through pattern recognition
receptors (PRRs). The activated endothelial cells serve as a bridge between the coagulation response and immune factors. Endothelial cells expressed
adhesion molecules (such as E-selectin and intercellular adhesion molecule 1) mediating the adhesion and interactions of immune cells. The injured
endothelial barrier loses antithrombotic function and induces exposure of TF; the damaged endothelial cells release prothrombotic molecules, such as
von Willebrand factor (vWF) and TF. Platelets are activated and interact with circulating leukocytes and endothelial cells, and trigger factor XII initiating
the intrinsic coagulation pathway. Neutrophil extracellular traps (NETs), released by neutrophils, support immunothrombosis in several ways: activate and
damage endothelial cells; NETs and histones in NETs promote the recruitment and activation of platelets; bind to TF and activate factor XII; neutrophil
elastase and myeloperoxidase (MPO) in NETs inhibit the anticoagulants. Activated complements activate endothelial cells and platelets and increase the
level of plasminogen activator inhibitor-1 (PAI-1). Proinflammatory cytokines increase the expression of TF in monocytes and endothelial cells; activate
leukocytes, platelets, and endothelial cells; downregulate anticoagulants and fibrinolysis pathways. TFPI, tissue factor pathway inhibitor.
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wall cells and can also be expressed in circulating blood cells induced by

stimulus (21, 28). During sepsis, invading pathogens encounter the

innate immune system, and immune cells recognize pathogen-

associated molecular patterns (PAMPs) or damage-associated

molecular patterns (DAMPs) through pattern recognition receptors

(PRRs) (29). In response to this, activated monocytes and endothelial

cells, as well as their microparticles, express and release activated TF at

pathogen exposure sites (30, 31). Moreover, the endothelial barrier

injury during sepsis leads to TF exposure to coagulation factors in the

blood (32). Cumulatively, TF initiates the extrinsic coagulation pathway

and mediates the coagulation response in sepsis (24).
3.2 Neutrophil extracellular traps

Neutrophil extracellular traps (NETs) are DNA- and histone-

based, web-like structures released by neutrophils to help capture

pathogens (33). NETs promote inflammation and tissue damage

during sepsis and support immunothrombosis in several ways (34).

First, NETs can damage and activate endothelial cells (35). Due to

their inherent ability to kill pathogens, the structures of NETs are

extremely cytotoxic to host cells, damaging and killing endothelial

cells, and leading to coagulation activation (36). NETs activate

endothelial cells by inducing them to release adhering molecules

and TF, and subsequently recruiting inflammatory cells and

promoting inflammation and coagulation (35). Second, NETs

and histones in NETs bind to vWF and promote the recruitment

and activation of platelets (37–39). Third, NETs can promote the

extrinsic pathway of coagulation by binding to TF, and the polyanionic

surface of NETs activates the contact activation protein, factor XII,

thereby activating the intrinsic pathway (40). Finally, neutrophil

elastase and myeloperoxidase in NETs upregulate the procoagulant

response through proteolytic cleavage and the oxidation of

anticoagulants, such as thrombomodulin and TFPI (41, 42).
3.3 Platelets

Platelets are regarded as major actors in physiological hemostasis

and are front-runners during sepsis (43). Currently, platelets are

regarded as immune cells. During sepsis, platelets can be recruited

and activated in a process closely resembling physiological hemostasis

(44). Furthermore, when stimulated by PAMPs, DAMPs, and

immune cells, platelets are activated by different platelet receptors

such as glycoprotein Ib-V-IX, integrin aIIbb3 (GPIIb/IIIa), and toll-

like receptors (TLRs) (45). Once activated, platelets express adhesion

receptors (for example, P-selection and CD 40 ligand) and release

chemokines that recruit and interact with circulating leukocytes (43),

amplifying “immunothrombosis”. In addition, platelet-derived

polyphosphates activate factor XII, thereby initiating the intrinsic

coagulation pathway (46).
3.4 Endothelial cells

The integrity of the endothelial barrier structure and function allows

for antithrombotic function. The barrier function is maintained by the
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endothelial cytoskeleton, glycocalyx, intercellular adhesion molecules,

and other proteins (47). During sepsis, endothelial activation and

dysfunction are key events, that act as a bridge between the immune

response and the coagulation cascade (47). Circulating PAMPs, DAMPs,

and proinflammatory cytokines activate endothelial cells, which leads to

the increased expression and release of adhesion molecules, mediating

the adhesion and interactions of activated leukocytes and platelets (27,

48). Furthermore, injured or activated endothelial cells assume

hypercoagulability with the release or expression of prothrombotic

components, such as vWF and TF, and impairment of the membrane

anticoagulant components, such as TFPI, thrombomodulin, and

endothelial glycocalyx (27, 32).
3.5 Complements and cytokines

The complement system consists of numerous plasma and

membrane-bound proteins, and functions as an intravascular

surveillance system by killing pathogens (49). It is an essential

component of the innate and adaptive immune systems (49).

Complement activation, including C3a and C5a, also promotes

coagulation and mediates the activation of endothelial cells and

platelets (50, 51), and impairs the fibrinolytic system by increasing

plasminogen activator inhibitor-1 (PAI-1) (52). Inflammation is

triggered by the activation of innate immune cells, releasing

proinflammatory cytokines such as tumor necrosis factor (TNF),

interleukin‐1b (IL‐1b), IL-6, IL‐12, and IL‐18 (53). Cytokines are

the most important mediators of hemostasis activation during sepsis,

which are mainly mediated by increased expression of TF (24). In

addition, cytokines can further activate leukocytes, platelets, and

endothelial cells, thereby promoting hemostasis activation (54).

Notably, these cytokines not only activate procoagulant pathways

and platelets but also downregulate the anticoagulant pathways of

TFPI, protein C system, and AT, along with impairing fibrinolysis

pathways through a sustained increase in PAI-1 (23, 24, 55, 56).

Collectively, these immune mechanisms result in a procoagulant

state in the hemostatic balance during sepsis. More importantly, the

activation of hemostasis also feeds back to the immune response (3).

For example, coagulation proteases bind to protease-activated

receptors expressed in innate immune cells, which can induce

additional proinflammatory responses by releasing cytokines (23,

57). In this section, we focus on immune-related factors that induce

hemostatic changes in sepsis; a more comprehensive discussion of

these changes is not included in this review.
4 Pyroptosis-induced hemostasis
activation in sepsis

In the early stages of sepsis, the host defense reaction induces

pyroptosis, which participates in the innate immune response, and

eliminates intracellular pathogens. However, excessive pyroptosis

results in a dysregulated host immune response, systemic

inflammatory reactions, and even organ failure (7). In addition,

recent studies have revealed that the activation of pyroptosis and

inflammasome are widely involved in hemostasis activation and

immunothrombosis in sepsis.
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4.1 Mechanisms of pyroptosis

The phenomenon of pyroptosis was discovered in 1992 (58),

which reported that the death of macrophages infected with Shigella

flexneri was caspase-1 dependent. In 2001, the concept of “pyroptosis”

was first coined by Cookson and Brennan (59), who described the

proinflammatory and lytic mode of programmed cell death.

Pyroptosis is stimulated by PAMPs, such as LPS, flagellin, and type

3 secretion system (T3SS) structural proteins, and DAMPs, such as

ATP, uric acid crystals, and high-mobility group box 1 (HMGB1)

(60). Pyroptosis mechanisms include the canonical (caspase-1

dependent) and non-canonical pathways (caspase-4/5/11

dependent) (60–62).

In the canonical pyroptosis pathway, an inflammasome complex

is formed. Five intracellular PRRs have been confirmed to form

inflammasomes: the nucleotide-binding oligomerization domain

(NOD) and leucine-rich repeat-containing receptor (NLR) proteins,

NLRP3 (NLR family pyrin domain containing 3), NLRP1, NLRC4

(NLR family caspase activation and recruitment domain [CARD]

containing 4), as well as AIM2 (absent in melanoma 2) and pyrin (60,

63). Intracellular PRRs recognize pathogenic stimuli and bind to pro-

caspase-1 through the adaptor protein apoptosis-associated speck-

like protein containing a CARD (ASC), and assemble into

inflammasome complexes that activate caspase-1 and then cleave

pro-IL-1b and pro-IL-18 (60). In these inflammasome complexes,

NLRP1 and NLRC4 contain CARD domains, resulting in the ability

to recruit pro-caspase 1 with or without ASC (64, 65). Significantly,

the NLRP3 inflammasome is the most extensively studied

inflammasome, and the assembly of the NLRP3 inflammasome

requires two signals (60). The first is the priming signal, which

entails the transcription of nuclear factor-kB (NF-kB)-mediated

upregulation of pro-IL-1 along with NLRP3 (66). Stimulants for

priming include ligands for TLRs, NLRs, and cytokine receptors

(66). The second signal activates the NLRP3 inflammasome and is

provided by ATP, potassium (K+) efflux, calcium signaling, cytosolic

release of lysosomal cathepsins and reactive oxygen species (ROS),

and certain bacterial toxins (60, 67).

The non-canonical pyroptosis is initiated after intracellular LPS

directly binds and activates caspase-4/5 (in humans) or caspase-11 (in

mice) (61, 62). Furthermore, intracellular LPS stimulation activates

NLRP3 inflammasomes through the cleavage of the pannexin-1

channel and the release of ATP which causes P2X7 receptor

activation and subsequent K+ efflux (68–70). Hence, the NLRP3

inflammasome is a pivotal connection between the canonical and

non-canonical pathways of pyroptosis.

Subsequently, the activated caspases 1/4/5/11 cleave gasdermin D

(GSDMD) into the C-terminal (22kDa) and N-terminal (31kDa) (71).

The N-terminal of GSDMD then migrates and inserts itself into the

cell membrane, oligomerizes, and forms pores (71). IL-1b and IL-18

are cleaved into mature forms by caspase-1 and then released through

the pores, which is additionally mediated by electrostatic filtering (71,

72). Pyroptotic cell death occurs through osmotic lysis, followed by

the release of cell contents and a cascade of downstream responses

(71, 73).

In addition to the canonical and non-canonical pathways of

pyroptosis, new mechanisms triggering pyroptosis have been

discovered. Caspase-3, a key marker of apoptosis activated by TNF-
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a or chemotherapy drugs, can mediate pyroptosis by cleaving

gasdermin E (GSDME) and forming pores on the cell membrane

(74). Moreover, Caspase-8 cleaves GSDMD and GSDME, which are

also involved in pyroptosis (75, 76).
4.2 Pyroptosis mediates the hemostasis
activation in sepsis

Pyroptosis has displayed a prominent role in hemostasis

imbalance and “immunothrombosis” in sepsis: it participates in

regulating the release and activity of TF in macrophages and

endothelial cells; GSDMD mediates NETs formation; pyroptosis in

endothelial cells and platelets affects hemostasis; the release of

proinflammatory cytokines promotes hemostasis activation.

4.2.1 Control of TF by pyroptosis
TF, the initiator of the extrinsic coagulation pathway, is a

molecule prominently involved in the activation of pyroptosis-

mediated coagulation in sepsis (10, 11, 77). Pyroptosis upregulates

the release and activity of TF in sepsis, and the mechanisms are

summarized in Figure 3.

Release of TF: Wu et al. showed that macrophage-derived

microparticles containing TF are released after inflammasome

activation and pyroptosis (11). They found that the activation of

caspase-1 by T3SS rod proteins from Escherichia coli (E. coli) or

activation of caspase-11 by intracellular LPS lead to GSDMD cleavage

and pore formation, and subsequently triggered pyroptotic death and

osmotic cell rupture. The TF then released in macrophages-derived

microparticles results in the systemic activation of coagulation and

subsequent death in mice (11). The caspase-1/11 activated mice

showed increased coagulation time and thrombin-antithrombin

complex level, and decreased fibrinogen and platelet counts,

consistent with DIC in sepsis (11). Additionally, Rothmeier et al.

reported that activated caspase-1 induced TF release. They found that

in ATP-triggered macrophages, inflammasomes induced the

activation of intracellular caspase-1 and calpain cysteine protease

cascade, degrading filamin in macrophages and thereby severing

bonds between the cytoskeleton and tissue factor (78). Furthermore,

a recent study showed that in a bacterial infection mouse model (cecal

ligation and puncture, CLP), activation of transmembrane protein

173 (TMEM173, also known as stimulator of interferon response

cGAMP interactor, [STING]) triggered TF release and mediated

coagulation activation, which relied on calcium release from the

endoplasmic reticulum (77). Mechanistically, TMEM173 binding to

inositol 1,4,5-trisphosphate receptor type 1 (ITPR1, also known as

IP3R, the primary calcium release channel of the endoplasmic

reticulum) in macrophages and monocytes stimulated with E. coli

and Streptococcus pneumoniae, regulated the calcium influx, activated

GSDMD by caspase-1/11 or caspase-8, culminating in TF release via

pyroptosis (77). Collectively, these findings highlight that pyroptosis-

involved caspase-1/8/11 and the GSDMD system play central roles in

TF release.

Decryption of TF: Under physiological conditions, TF has low

procoagulant activity, especially when expressed by blood cells and

microparticles (79, 80). The decryption of TF is a post-translational

process, increasing the procoagulant activity of TF by up to 100-fold
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(79, 81). This procoagulant phenotype characterizes TF-triggered

“immunocoagulation”. One theory suggests that decryption is

related to alterations of negatively charged phospholipids, such as

phosphatidylserine, in the cell membrane (79). Recently, the

decryption of TF has been shown to be related to inflammasome

activation and pyroptosis. Yang et al. found that LPS activated

caspase-11 and enhanced the decryption of TF by triggering the

formation of GSDMD pores and subsequent phosphatidylserine (PS)

exposure. Mechanistically, GSDMD pores triggered calcium influx

into the cytosol and promoted the exposure of PS to the outer cell

membrane through TMEM16F, a calcium-dependent phospholipid

scramblase (10). Of note, the authors further utilized glycine and

mannitol to prevent cell membrane rupture and cell lysis, and found

that these did not affect TF’s procoagulant activity, suggesting that

GSDMD-mediated TF decryption was independent of cell rupture in

pyroptosis (10). In another study, high mobility group box 1

(HMGB1) from hepatocytes delivered extracellular LPS into the

cytosol of macrophages and endothelial cells, where LPS induced

caspase-11-dependent pyroptosis (82). Additionally, HMGB1
Frontiers in Immunology 06
induced TF activation by promoting PS exposure through LPS-

induced caspase-11 activation (83).

4.2.2 GSGMD in NETs formation
As we mentioned above, NETs contribute to immunothrombosis

in sepsis in multiple ways. Previous studies demonstrated that NETs

release involved two ways: NETosis, a novel neutrophil cell death

pathway (84), and DNA extrusion mechanism from live cells (85).

Recently, new research indicated that GSDMD pore also promoted

NETs formation and release. Chen et al. found that pyroptosis

induction in neutrophils and the non-canonical pyroptosis pathway

activated NETs formation (86). Caspase-11 and GSDMD mediated

NETs release which was dependent on neutrophil plasma membrane

rupture and did not require factors usually associated with NETs

release. Caspase-11 and GSDMD also participated in early features of

NETosis, which was mediated by the nuclear membrane

permeabilization and histone degradation driven by caspase-11 and

GSDMD (86). Interestingly, a different mechanism of GSDMD-

mediated NETs was found by Sollberger et al (87). The researchers
FIGURE 3

Control of tissue factor by pyroptosis in sepsis. Pyroptosis is stimulated by microbial infections and non-infectious stimuli, including host factors in sepsis.
Canonical and non-canonical pyroptosis are both involved in tissue factor (TF) control. In canonical pyroptosis, pattern recognition receptors (PRRs)
recognize pathogenic stimuli, and inflammasome complexes are assembled, which activate caspase-1 and then cleave pro-IL-1b and pro-IL-18.
Intracellular LPS directly binds and activates caspase-11. Subsequently, the activated caspases-1/11 cleave the gasdermin D (GSDMD) into the N-terminal
of GSDMD (N-GSDMD), forming pores in the cell membrane. IL-1b and IL-18 are then released through the pores and pyroptotic cell death occurs
through osmotic lysis. TF is released in microparticles by the osmotic cell rupture in pyroptotic macrophages. In addition, caspase-1 may mediate TF
release in another mechanism: activation of caspase-1 facilitates activation of calpain, degrading filamin in macrophages and thereby severing bonds
between the cytoskeleton and TF. Furthermore, activation of transmembrane protein 173 (TMEM173) by infection-induced DNA damage mediates TF
release. TMEM173 binds to inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) in macrophages and monocytes, regulated the calcium influx, and
activated GSDMD by caspase-1/11 or caspase-8.The GSDMD cleavage then triggers TF release through pyroptosis. Decryption of TF, a process increasing
the procoagulant activity of TF, is triggered by GSDMD pores and subsequent phosphatidylserine (PS) exposure. GSDMD pores triggered calcium influx
into the cytosol and promoted the exposure of PS to the outer cell membrane through TMEM16F, a calcium-dependent phospholipid scramblase.
PAMPs, Pathogen-associated molecular patterns; DAMPs, damage-associated molecular patterns; TLR, toll-like receptors; NF-kB, nuclear factor-kB;
RAGE, receptor for advanced glycation end products; ATP2A2, ATPase sarcoplasmic/ER Ca2+ transporting 2.
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discovered that GSDMD was proteolytically activated by neutrophil

proteases and, in turn, affected protease activation and nuclear

expansion, which suggested that NETosis promoted by GSDMD

was independent of inflammasome and caspase activation.

4.2.3 Pyroptosis in endothelial cell activation
and dysfunction

Pyroptosis can occur in many cell types during sepsis, including

endothelial cells, the major targets of inflammatory mediators, and

innate immune cells. LPS induces non-canonical pyroptotic death of

endothelial cells through caspase-11, resulting in endothelial injury

associated with vascular leakage, increased leukocyte accumulation, and

cytokine release in the lungs (88). Moreover, pyroptotic endothelial

cells release microparticles in a caspase-11-dependent manner (88).

Circulating histones, as DAMPs in sepsis, have been reported to induce

pyroptosis through the NLRP3 inflammasome in human umbilical vein

endothelial cells, which further results in the expression of endothelial

adhesion molecules and an inflammatory response (89). Circulatory

exosomes from COVID-19 patients trigger the NLRP3 inflammasome

in cultured endothelial cells (90). Furthermore, Wang et al. found that

monocytic microparticles activate endothelial cells via NLRP3

inflammasome, which induces phosphorylation of ERK1/2, activation

of the NF-kB pathway, and expression of the following cell adhesion

molecules: intercellular adhesion molecule-1, vascular cell adhesion

molecule-1, and E-selectin (91). These studies suggest that

inflammasome activation and pyroptosis of endothelial cells induce

endothelial activation and dysfunction, subsequently leading to

inflammation and hemostasis activation.

4.2.4 Inflammasome activation in platelets
Although anucleate, platelets have a functional spliceosome and

essential spliceosome factors, that are associated with constitutively

present mRNA transcripts, including IL-1b (92). Inflammasome

activation in platelets shows “immunothrombosis” activities, which

are mediated by IL-1b production (93). Hottz et al. demonstrated that

dengue virus infection leads to the activation of NLRP3

inflammasomes in platelets, triggering platelet shedding of IL-1b-
rich microparticles and increased expression of IL-1b, which

contributes to increased endothelial permeability (94). The platelet

NLRP3 inflammasome is upregulated during platelet activation and

thrombus formation in vitro (95); NLRP3 deficient platelets impaired

hemostasis and thrombosis in mice (96). NLRP3 affected platelet

aIIbb3 outside-in signal transduction, an essential process for

hemostasis and thrombosis, which might be mediated by IL-1b, as
significantly reduced IL-1b release was found in NLRP3-deficient

platelets (96). Furthermore, in thrombin activated-platelets, the

caspase-3/GSDME pathway was upregulated, further regulating

platelet integrin aIIbb3 activation (97).

4.2.5 Pyroptosis-released cytokines in
hemostasis activation

During pyroptosis, IL-1b and IL-18, both important

inflammatory cytokines in sepsis, are released (98). These cytokines,

together with the downstream inflammatory mediators, such as IL-6

and TNF-a, further result in coagulation upregulation, leukocyte

activation, endothelial activation and dysfunction, and platelets
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activation and aggregation (23, 54, 99–101). All these responses

cumulatively lead to hemostasis activation and thrombus formation,

accelerating the development of DIC in sepsis.
4.3 Potential therapeutic strategies
targeting pyroptosis

Although excessive hemostasis activation in sepsis is associated

with organ dysfunction and death, there have been long-standing

debates over the efficacy of anticoagulant therapy in managing sepsis

(102, 103), regarding the timing and the hemorrhagic complications.

Theoretically, the most logical timing for anticoagulant treatment is

the prothrombotic stage of the hemostasis change in sepsis.

Inappropriate hemostasis intervention during “immunocoagulation”

in host defense against pathogens, or during fibrinolytic DIC, will lead

to the aggravation of sepsis, which should also be taken into

consideration in the intervention of pyroptosis-induced hemostasis

imbalance. Based on the mechanism of pyroptosis-induced

hemostasis activation described earlier, potential inhibitors that

may prevent extensive hemostasis activation in sepsis are listed below

4.3.1 Inhibition of inflammasome activation
Previous studies have shown that inhibition of NLRP3

inflammasome activation results in protective effects against sepsis

(104). In particular, MCC950, which inhibits NLRP3 by directly

targeting the NLRP3 ATP-hydrolysis motif (105), attenuates multi-

organ injuries in CLP rats (106), highlighting the potential of NLRP3

inhibitors in treating sepsis. Oridonin (107), tranilast (108), CY-09

(109), itaconate (110), etc. are further compounds that target NLRP3.

4.3.2 Caspase-related inhibitors
Broad-spectrum caspase inhibitors Z-VAD-FMK and VX-166

can reduce IL-1b and IL-18 release and show significant therapeutic

effects against sepsis in human patients and rodent models (111, 112).

Ac-FLTD-CMK inhibits GSDMD cleavage by caspases-1/4/5/11,

thereby suppressing canonical and non-canonical pyroptosis (113).

Z-IETD-FMK blocks caspase-8-mediated GSDMD cleavage and

prevents TF release in bone-marrow-derived macrophages

(BMDMs) (77). oxPAPC, a caspase-4/11-targeting inhibitor,

competes with LPS binding and consequently inhibits LPS-induced

pyroptosis and septic shock (114). Ac-YVAD-CMK blocks caspase-1

activity, inhibiting IL-1b release and the generation of thrombo-

inflammatory microparticles in BMDMs (78).

4.3.3 Inhibition of GSDMD
Disulfiram, a drug used to treat alcohol addiction, as an inhibitor of

pore formation by GSDMD, blocks pyroptosis and cytokine release in

cells and prevents LPS-induced death in mice (115). LDC7559, a small

molecule based on the pyrazolo-oxazepine scaffold, specifically binds

GSDMD and blocks the activity of the GSDMD N-terminal (87).

In addition, blockers of other molecules or events regulating

upstream and downstream inflammasome activation or pyroptosis

also exhibit potential roles for the control of coagulation in sepsis

(116–118). These include preventing pyroptosis-induced membrane

rupture, inhibiting calcium influx, and preventing cytosolic delivery
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of LPS with heparin or by antagonizing HMGB1 (116–118). Although

may be potential treatments for sepsis, unfortunately, they have not

been translated into clinical sepsis, and more research is needed to

convert promising experimental results into effective clinical drugs.
5 Conclusion

Sepsis is characterized by excessive hemostasis activation, multiple

organ dysfunction, and high mortality, and remains a major challenge for

basic and clinical research. Understanding themechanisms of pyroptosis-

induced hemostatic imbalance in sepsis increases our understanding of

the characteristics and consequences of the host defense response to

pathogens and brings new insights into sepsis-induced coagulopathy.

The regulation of TF release and decryption in pyroptosis is a key

discovery in “immunocoagulation,” as it links the key effectors of

inflammation and coagulation. In addition, pyroptosis and

inflammasome activation pathways contribute to NETs formation and

activation of endothelial cells and platelet, which are related to hemostasis

activation in sepsis. Elucidation of pyroptosis-induced hemostatic

activation pathways and their implications in thrombosis might reveal

new therapeutic approaches for septic DIC and lethal sepsis.

However, concerns and questions remain unaddressed. The

pyroptosis pathways in hemostatic change are interconnected with

other events in the development of sepsis, which means that

intervention during hemostasis will affect the host response and

could aggravate the disease. Hence, the focus should be on further

in-depth comprehension of intermediate connections to achieve

precise coagulation therapy. Moreover, proper therapies tailored to

the prothrombotic stage of DIC should be established in the future.
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