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humoral immune responses in
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back at T follicular helper cells
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Kingdom
T follicular helper cells comprise a specialized, heterogeneous subset of

immune-competent T helper cells capable of influencing B cell responses in

lymphoid tissues. In physiology, for example in response to microbial challenges

or vaccination, this interaction chiefly results in the production of protecting

antibodies and humoral memory. In the context of kidney transplantation,

however, immune surveillance provided by T follicular helper cells can take a

life of its own despite matching of human leukocyte antigens and employing the

latest immunosuppressive regiments. This puts kidney transplant recipients at

risk of subclinical and clinical rejection episodes with a potential risk for allograft

loss. In this review, the current understanding of immune surveillance provided

by T follicular helper cells is briefly described in physiological responses to

contrast those pathological responses observed after kidney transplantation.

Sensitization of T follicular helper cells with the subsequent emergence of

detectable donor-specific human leukocyte antigen antibodies, non-human

leukocyte antigen antibodies their implication for kidney transplantation and

lessons learnt from other transplantation “settings” with special attention to

antibody-mediated rejection will be addressed.

KEYWORDS

HLA antigens, T follicular helper cell, transplantation immunology, solid organ
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1 Introduction

T follicular helper (TFH) cells are a specialized CD4+ TH cell population critical for

driving adaptive humoral immunity (1, 2), with B-cell lymphoma 6 (Bcl6) as a repressor of

B-lymphocyte-induced maturation protein 1 (Blimp-1) driving their differentiation from

CD4+ T helper cells (3–5). TFH cells instruct germinal center (GC) formation which is

pivotal to T cell-dependent antibody responses and their affinity maturation (6, 7).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1114842/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1114842/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1114842/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1114842/full
https://orcid.org/0000-0001-9243-0558
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1114842&domain=pdf&date_stamp=2023-07-12
mailto:julien.subburayalu@tu-dresden.de
https://doi.org/10.3389/fimmu.2023.1114842
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1114842
https://www.frontiersin.org/journals/immunology


Subburayalu 10.3389/fimmu.2023.1114842
Inducible T cell co-stimulator (ICOS), C-X-C motif chemokine

receptor (CXCR)5, and programmed cell death protein 1 (PD-1) are

distinguishing markers of TFH cells, which contribute to lymphoid

tissue homing and B cell help (8–10). The expression of C-C motif

chemokine receptor (CCR)7 instructs naïve T cell migration across

high endothelial venules to locate to T cell zones. Upon activation

by dendritic cells, a population of activated CD4+ T cells

differentiates into TFH cells through the up-regulation of Bcl6 and

CXCR5 with a concomitant down-regulation of CCR7 enabling

them to advance toward the C-X-C motif ligand (CXCL)13-rich B

cell area in lymphoid organs (11, 12). Here, Interleukin (IL)-21 and

the strength of T cell antigen receptor binding determine a long-

lasting antibody response through effector antibody-secreting cells

(ASCs, plasma cells) and the emergence of memory B cell subsets

residing in the bone marrow termed long-lived plasma cells

(LLPCs) (13–18). To date, the family of TFH cell subtypes

comprises virus-specific TFH-1 cells, centrocyte-stimulating TFH-2

cells, IL-17- and IL-21-producing TFH-17 cells, and T follicular

regulatory (TFR) cells (Table 1) (27). TFH-13 cells were recently

identified which appear to be associated to IgE production to food

and airborne allergens (64, 65). Synergies between these TFH cell

subsets with B cells provide unique and necessary cues that go

beyond homeostatic B cell maturation and high-affinity antibody

production (66, 67).

The TFH-B cell interaction influences TFH cells to maintain a

lymph node migratory phenotype (68). Besides its auxiliary effects on

B cells concerning isotype switching and the formation of GCs, IL-21

appears to support TFH cells in acquiring and maintaining TFH cell

gene expression in vivo in an autocrine fashion (69–71). Under

physiological conditions, the emergence of high-affinity, class-

switched antibodies indicates a prosperous immune response aimed

at facilitating the clearance of microbial invaders or are a means to

measure successful seroconversion after vaccination (72, 73). Studies

have shown that improved humoral responses were preceded by an

enhanced ICOS expression on circulating TFH cells (74). As such,

increased ICOS+CXCR3+CXCR5+CD4+ TFH cell numbers on day 7

after antigen stimulation appear to forecast a humoral response (75).

Interestingly, serological response displays Cxcr5 and IL21 induction

as early as the day of the antigenic challenge (day 0), instructs

antigen-specific GC responses. A failing antigen-specific TFH cell

response features increased expression of IL2 and STAT5 (76).

Accordingly, spatiotemporal positioning between T and B cell

zones within GCs appears pivotal. For example, FoxP3hiCD4+

regulatory T (TREG) cells are predominantly confined to

extrafollicular areas, whereas both TFR cells and extrafollicular TREG

cells in vaccinated children are reduced following vaccination

suggesting a released break in both peripheral TH cell commitment

towards TFH cells (extrafollicular response) and favored cognate B cell

help by TFH cells within GCs (follicular response). Besides, the release

of CXCL13 into the circulation reflects the ensuing GC reactivity and

correlates between TFH cells and Ag-specific B cells in tonsils (77),

which can be considered an early surrogate biomarker for an ensuing

humoral response (77, 78).

For humoral immunity, the functionality of TFH cells is critical

and can determine successful seroconversion. For example, during
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acute viral infections, fate commitment of a TFH cell-to-be is

acquired as early as 24 to 48 hours after infection (79). If strong

interactions with antigen-presenting dendritic cells (DCs) are

maintained, TFH cell differentiation is facilitated permitting TFH

cell lineage determination over TH-1 cell commitment via a

balanced regulation of the transcription factors Bcl6, T-box

expressed in T cells (T-bet), and Blimp-1 (2, 19, 79, 80). Also, Lee

et al. have reported that the downregulation of Krüppel-like Factor

2 (KLF2) further promotes the inhibition of the TFH cell

differentiation-opposing transcription factors Blimp1, T-bet, and

GATA binding protein (GATA)3, while the inhibition of Cxcr5

transcription is withdrawn (81). IL-10 can affect the equipoise

between TH-1 cell and TFH-1 cell commitment early after antigen

challenge and can enhance the degree of CD4+ and CD8+ memory

T cell generation and Bcl6 expression (82).

Lately, circulating CCR7loPD-1hi TFH cell subsets were

suggested to serve as surrogate markers for an ensuing humoral

response (83). Moreover, a failure to down-regulate T-bet in TFH

cells was shown to maintain an IFN-stimulated gene signature,

which can propagate antigen persistence (28, 29). Hence, antigen

persistence results in TFH-1 cell differentiation, yet may result in less

meticulous B cell selection by which the origination of antigen-

unspecific and self-reactive B cells and hypergammaglobulinemia is

promoted (84). As a consequence, T cell exhaustion may occur

(85, 86).

Lastly, the strength of T cell receptor (TCR) ligation and TCR-

independent T cell activation by glycolipid recognition via CD1

contributes to determining the outcome of TFH cell-driven humoral

immunity (87, 88), where weak ligation maintains T-bet to produce

B cell oligoclonality, antigen persistence, TFH cell expansion, and a

failing GC response.

In the context of organ transplantation, seroconversion is an

undesired phenomenon since memory LLPCs residing in the bone

marrow and effector ASCs within draining lymph nodes are

responsible for threatening transplant longevity by imposing

endothelial injury (15–18, 89). To prevent the emergence of

antibodies directed against donor-specific antigenic material,

donor and recipient matching for human leukocyte antigens

(HLA) molecules and subjecting the recipient to an intense, life-

long immunosuppression post-transplant are vital. If not

adequately controlled by the immunosuppressive medication or

immunodynamic interactions, the risk to develop antibody-

mediated rejection (AMR) of the transplant looms. Predisposing

factors for AMR include acute and chronic trauma being on hand in

the transplanted setting since they disclose autoantigens, which also

permit non-HLA antibodies to be patterned.

In this review, I will look back at recent and past insights into

immune surveillance by TFH cells following kidney transplantation,

with an emphasis on clinical data. Focus will be dedicated to the

involvement of TFH cells in the emergence of autoantibodies against

non-HLA autoantigens and de novo donor-specific HLA antibodies

(dnDSA). Highlighting the current advances and paradigms in TFH

cell biology may hold the potential to stratify transplanted patients

at risk for the emergence of antibodies and may open new avenues

on how to treat episodes of AMR more successfully.
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2 Kidney transplantation, organ
donation after circulatory death, and
the detrimental impact of ischemia
reperfusion injury

Previous studies have primed our understanding of factors

influencing allograft tolerance. Whilst donor age and HLA

mismatches were demonstrated indicators for kidney allograft

survival of deceased donors, the factor age did not apply to living

donations (90). Intriguingly, the presence of dnDSA more adversely

affects allograft survival in donations after circulatory death

(DACD) (91). Since it is obvious that deceased donor transplants

are more often subject to ischemia-reperfusion injury (IRI), organ

preservation and recovery may not equally be off to a favorable start

when rejection episodes, the transfer of pro-inflammatory cells, and

ultimately allograft survival are concerned (92). Recently, various

strategies are used in animals and humans to reduce the impact of

inflammatory cells on allograft longevity. In that regard, targeting

immune cell diapedesis by targeting the CD62/CD62L-axis has

successfully demonstrated a reduction in the adherence of pro-

inflammatory immune cells to the endothelial lining (93, 94).

Similarly, a cease in T cell activation via the TIM-1-TIM-4

pathway was found to foster allograft survival after IRI in mice,

which conceptually can impact on their fate commitment towards

further differentiation trajectories (95).
2.1 Immunosuppressive drugs influence
TFH cells after kidney transplantation

Besides the transfer of pro-inflammatory cells, which is

heightened in DACDs, the relevance of immunosuppressive drugs
Frontiers in Immunology 03
on TFH cells after kidney transplantation and transplant longevity is

being increasingly appreciated, too. Although CD4+ TFH cell

subpopulations reciprocally orchestrate their preeminent

transcriptional regulation, immunosuppressive drugs can have a

profound effect in governing subset skewing (96). Thymoglobulin

induction therapy (e.g., antithymoglobulin/ATG) was reported to

deplete effector CD4+ and CD8+ T cells, whilst preserving allograft

permissive FoxP3+ TFR cells (97, 98). This warrants further studies

investigating possible therapies that draw on TFR cell-mediated

effects. This could potentially enable long-term drug-free allograft

permissiveness (96, 99). This appears to be of particular importance

since kidney transplant patients who have suffered from prior AMR

were found to display higher ratios of IL-21+ TFH cells whilst their

TFR cell population was decreased both within the graft and in the

circulation. Besides, sirolimus was also found to reduce the TFR cell

population even further (100). Permissiveness may also be

facilitated actively by B cells since B cell depletion or IL-10

deficiency were shown to skew the tolerogenic environment

towards an increased IL-21+ TFH cell population decreasing TFR

cells in follicles (Figure 1) (101). By extension, basic leucine zipper

ATF-like transcription factor (BATF) inhibition, a transcription

factor for TH-17 and TFH-17 cells alike, could be linked to enhanced

FoxP3 levels coinciding with a reduction in retinoic-acid-receptor-

related orphan nuclear receptor gamma (RORgt), IL-17A, and IL-4,

thus, generating tolerance after transplantation (102). Calcineurin

inhibitors like cyclosporine A also impact on TFH cells. Although no

effect on TFH subtypes concerning TFH-1, TFH-2, and TFH-17 cells

was observed in healthy volunteers under transient cyclosporine A

medication, a profound reduction in the pro-inflammatory markers

IFN-g, IL-17A, and IL-21, produced by TFH-1 and TFH-17 cells,

respectively, was observed (103). This poses the question how the

commonly employed permanent triple immunosuppressive therapy
TABLE 1 A snapshot on T follicular cell subtypes and some aspects of their phenotypic, transcriptional, and functional characterization.

TFH cell
subtype

Phenotypic profile Transcriptional
profile

Function

Conventional
TFH cells (19–
26)

CD4+ CD57+ CXCR5+ IL-
21R+ IL-21+ ICOS+ OX40+

IL-6Ra+ PD-1+ CD69+ IL-
2+ CXCL13+ CD40L+

CCR7low PSGL1low

Bcl-6+ c-Maf+

STAT1+ STAT3+

IRF4+ BATF+ TCF-1+

LEF-1+ TOX2+ ATF-
3+ ASCL2+ IKZF3+

Blimp-1- IRF8- Bach2-

STAT5- FOXO1-

FOXP1- KLF2-

Migration to B cell zones in lymphoid tissues; antigen-specific B cell help and GC formation;
B cell proliferation; immunoglobulin class-switching

TFH-1 cells
(23, 27–36)

CD4+ CXCR5+ CXCR3+

ICOS+ PD-1+ CD40L+

CCR6- IFN-g+ IL-21+

Bcl-6+ T-bet+ STAT1+

STAT3+ STAT4+
Support of humoral and cellular immunity; antiviral support by expansion of CD8+ memory
T cells; persistence of viral infection

TFH-2 cells
(8, 23, 27,
37–45)

CD4+ CXCR5+ CXCR3-

CCR6- IL-4+ IL-21+
Bcl-6+ c-Maf+

STAT6+ GATA3+
Class-switching to IgE; centrocyte formation, IgG4-mediated diseases; allergy; parasite/
helminth infections

TFH-17 cells
(23, 46–48)

CD4+ CXCR5+ CXCR3-

CCR6+ ICOS+ IL-17+ IL-21+
Bcl-6+ STAT3+ RORgt ELS with spontaneous GC development; class-switching to IgG2a and IgG3; autoimmunity;

wound healing

TFR cells (27,
49–63)

CD4+ CXCR5+ CD25+/-

CD127LOW FoxP3+ CTLA-
4+ GITR+ CD28+ SAP+

ICOS+ Neuritin+

Bcl-6+ ASCL2+

FoxP3+ Ezh2+

STAT5-

Control over follicular responses; lack of IL-4/IL-21/CD40L; differentiation from conventional
TREG cells or PD-1-L-dependently after immunization; modulation of extrafollicular B cell
responses; control of chemokine expression from dendritic cells; imposing a brake on CD8+ T
cell priming; surveillance of autoreactive B cell clones; suppression of autoantibodies and IgE
class switching via neuritin
The table summarizes the currently reported phenotypic, transcriptional, and functional properties of T follicular helper cell subtypes. Accordingly, this table is not exhaustive.
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comprising not only of calcineurin inhibitors, but also

corticosteroids and inosine-5’-monophosphate dehydrogenase

(IMPDH) inhibitors, all known suppressors of T cell functionality

(103–105), can lead to TFH cell dysregulation culminating in

alloantibody formation and potentially allograft loss.

Together, this argues for a better understanding of the effects of

the lifelong post-transplant immunosuppressive regimen on the

follicular and extrafollicular immune cell compartment to prevent

sensitization to donor-specific HLA molecules or autologous non-

HLA molecules with an eminent focus on the control of prevalent

TFH cell responses whilst maintaining a strong TFR surveillance to

induce allotolerance in kidney transplant recipients (KTxs).
2.2 Sequelae of persistent auto- and
alloantigen stimulation of TFH cells

Under physiological circumstances, the evolution of a humoral

memory (LLPCs) allows high-affinity antibodies to be established

within a matter of days upon re-exposure of an antigen to protect us

from microbial threats (106). However, auto- and alloantigenic

settings constantly expose TFH cells to antigens and disturb

modulating checkpoints provided by TREG cells, TFR cells, follicular

cytotoxic T (TFC) cells, or even regulatory B cells. Hence, the excessive

TFH cell stimulation may take a life of its own. Strategies to prevent

this from happening exploit cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4)-specific immunoglobulin or IL-21 receptor

(IL-21R) antagonists to prevent alloimmune responses (107, 108).

Hence, the surveillance of immune subtype compositions may

turn out as a valuable tool in identifying KTxs at risk for the
Frontiers in Immunology 04
formation of auto- and alloantibodies and subsequent

allograft rejection.

Considering the selective influence on TFH cells, studies on

autoimmune diseases have shaped our understanding of persistent

TFH cell stimulation resulting in dysregulated responses. For

example, unrestricted clonal expansion of TFH cells allows the

generation of ectopic lymphoid structures (ELS), which are

unphysiological tertiary lymphoid follicles featuring stimulation

and clonal expansion of antigen-specific B cells (109). These ELS

are being established because of an antigen response yet to be

cleared (110), and are formed by a regulated and well-orchestrated

expression of the lymphoid chemokines C-C motif ligand (CCL)19,

CCL21, and CXCL13 (111–113). Persistence of these lymphokines

(with TFH cells being a major source of CXCL13) (9) allows PSGL-

1LOWCD40L+ TFH-17 cells to maintain aggregates in an ICOS-

dependent manner with B cells in extrafollicular ELS, inevitably

preserving an immune response with a serious risk for the

formation of autoantibodies of the IgG2a/IgG2b or IgG1/IgG3

type, tissue destruction, and ultimately the development of an

autoantibody-mediated pathology (114–116). Autoimmune

conditions and others have been shown to be associated with

ELS, which are a major compartment for ample extrafollicular

TFH cell accumulation (117). To date, several studies have implied

TFH cells especially in the context of glomerulonephritis where IL-

17 drives inflammation and autoantibody-induced kidney injury

which can be considered to be key determinants for autoimmune

disease activity (118–121), whilst a disrupted TFH cell response has

been shown to reduction disease activity, respectively (122–124). It

appears intuitive that especially endothelial injury and incessant

inflammation with enhanced HLA class II up-regulation can expose

autoantigens for TFH cell sensitization (125, 126). Despite the
FIGURE 1

Considerations for prospective peri- and post-transplant immunosuppression. Peri- and post-transplant immunosuppressive regiments do confer
differential regulatory phenotypes and need to be tailored to patient-specific demands. For example, pre-transplant administration of anti-thymocyte
globulin (ATG) does deplete recipient CD4+ T helper (TH) and CD8+ cytotoxic T (TC) cells, whilst preserving the population of the recipient’s FoxP3+

regulatory T (TREG) cells. TREG cells are required to prevent the formation of de novo donor-specific human leukocyte antigen (HLA) antibodies.
However, too ample TREG cell-signatures do prevent the mounting of a successful humoral immune response during microbial challenge. To
understand these intricacies better, future studies are needed to elucidate the mechanisms underlying the refinement and control of TREG, TH,
follicular TC, and T follicular helper (TFH) cells. To date, sirolimus and interleukin (IL)-10 deficiency were found to impair TREG cell activity. Likewise, B
cell depletion (for example using rituximab) also disables TREG cell responses. Moreover, B cell depletion restores IL-21-producing TFH cell responses
indirectly by alleviating the control imposed by follicular TFR cells. In contrast to sirolimus and rituximab, inhibition of basic zipper ATF-like
transcription factor (BATF) does promote TREG cell responses by reducing the expression of IL-4, IL-17A, and RORgt.
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predominance of literature, particularly from human studies, on the

importance of ELS for chronic inflammation caused by infections,

autoimmune diseases, cancer, or transplantation (127), the

contribution of derailed TFH cell activity in the induction of

autoimmunity within secondary lymphoid tissues (SLOs)

including the spleen, lymph nodes, and mucosal-associated

lymphoid tissue (MALT) (128), may be equally important. For

example, a murine study investigating the importance of TFH cells

in the induction of rheumatoid arthritis found TFH cell frequencies

to be significantly increased in the spleen and joint-draining lymph

nodes following disease induction. Here, CXCR5-/- mice were

protected from autoimmune arthritis by abrogating TFH-B cell

interactions within SLOs stressing its importance in the induction

of autoimmune inflammation (129). In fact, not only murine

models show that immune responses in SLOs may not only

precede the formation of ELS and tertiary lymphoid organs

(TLOs) (130), but also maintain an active role during

autoimmune conditions as is observed in patients suffering from

rheumatoid arthritis, who feature follicular hyperplasia and active

GC responses in SLOs (131–133).

Together, a skewed TFH cell response featuring lack of TFH-17

cell control can lead to the establishment of ELS enhancing the

likelihood of TFH-17-B cell aggregates within these extrafollicular

spaces for alloantibodies and alloreactive LLPCs to occur.

Understanding how the disrupted TFH cell subset equipoise can

be restored may hold therapeutic potential to circumvent the need

for immunosuppressive therapies with its inherent adverse effects

and risk for infections (134).
2.3 Donor-specific HLA antibodies and TFH
cells: the feared couple to answer for
antibody-mediated rejection

Although more and more details are being understood regarding

characteristics of HLA epitopes to perform appropriate epitope

matching in clinical settings, there remains much to be learned. To

date, HLA-matching in kidney transplantation is only performed for

HLA-A, -B, -C, -Bw4, -Bw6, -DR, -DR51/52/53, -DQA1, - DQB1, and

-DPB1 antigens (135). Nevertheless, mismatches are mostly inevitable

and enhance the risk of dnDSA formation (136). However, it appears

that not every epitope is equally immunogenic. Aubert et al. have found

that low-level donor-specific HLA antibodies remain controversial in

terms of predicting the risk of graft failure (136, 137). Indeed, studies

have proposed dnDSA directed at HLA-DQ to be a risk factor for late

allograft failure that feature histological alterations in accordance with

chronic AMR (138–140).

Although dnDSA appear to form at relatively low frequencies

(~15%) and often only several years after transplantation, they

commonly facilitate detrimental consequences (141, 142).

Independent risk factors were reported to be HLA-DR

mismatches and non-adherence to immunosuppressive therapy.

Upon emergence, dnDSA could progress and show antibody-

mediated graft injury without impaired graft function (142).
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Evidence suggesting AMR to be a consequence of the presence

of dnDSA effectively challenged the dogma of calcineurin inhibitor

toxicity and chronic allograft nephropathy (141). In fact, capillaritis

was found to forecast allograft dysfunction culminating in AMR

(143–145). Not much later, Lefaucheur et al. identified four distinct

patterns of kidney rejection with capillaritis in association with

AMR illustrating the poorest outcomes (146). Not all dnDSA could

be paired with ensuing AMR (147, 148). In that regard, dnDSA

properties would matter with respect to MFI, complement-binding

capacity, and IgG subclass composition (147, 149). Conversely, the

clinical phenotype of AMR cannot be linked with the presence of

circulating dnDSA in all cases challenging the criteria for diagnosis.

In that regard, evidence comprised histological acute tissue injury,

current antibody interaction with endothelium as in C4d

deposition, and serological evidence of dnDSA detection or non-

HLA donor-specific antibodies (150, 151). The identification of

intragraft dnDSA has been proposed to enable clinicians to

correctly diagnose AMR, which would not meet these criteria

(151, 152). However, if serologically detectable, dnDSA presence

has been attributed to a poor graft outcome imposed by AMR (139,

149, 153–155).

A clear link between AMR and TFH cells, particularly regarding

IL-21 production, has been established (156). KTxs suffering from

chronic allograft rejection were found to display distinctive

increases in circulating TFH cells with impaired controllability

given a reduced PD-1 expression (157). Accordingly, PD-1

expression fine-tunes TFH cell responses by suppressing follicular

T cell recruitment, confining TFH cell localization within GCs, and

increasing the stringency of GC affinity selection via suppressed

phosphoinositide 3-kinase activity upon PD-L1 ligation (158).

Another study found stable circulating TFH cell numbers with

decreased IL-21 production. However, their ability to stimulate

alloantigen-specific B cells to produce IgG was maintained (159).

Stable numbers of TFH cells have also been found by Chen et al.,

however, indicating a skewing toward IL-21-producing TFH-17 and

TFH-2 cell subpopulations in AMR (100). To control this

dysregulation of TFH cells, Rodriguez-Barbosa et al. have found

that whilst the CD40/L pathway could be used, the B and T

lymphocyte attenuator (BTLA) pathway was dispensable (160).

Exploiting the CD40/L axis revealed reduced clonal B cell

expansion associated with curtailed GC-TFH cell numbers and a

blunted IL-21 secretion (161). It appears that challenging cellular

receptor-ligand interactions between TFH-B cells may alleviate the

burden of AMR, which studies estimate to be responsible for 30-

50% of allografts to fail (156). Likewise, protection from AMR could

be mediated by strengthening the control of TFH cells and Ag-

specific B cells by TFR cells (96, 100, 101, 155).

Therefore, TFH cells are not only capable of inducing dnDSA

formation but can also further augment preexisting DSA levels

following alloantigen recall (162). Conversely, TFR cells curtail TFH

cell-directed B cell help by preventing dnDSA formation. Whilst

lack of TFH cells control drives severe AMR, TFR cells are less

involved in this process (162). These observations appear to

translate to the human setting. Here, KTxs with immunogenic
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1114842
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Subburayalu 10.3389/fimmu.2023.1114842
tolerance towards their allograft have disrupted TFH cell

functionality characterized by lack of IL-21 production, although

in humans TFR cells control AMR (100, 163). In a similar notion, IL-

21+ TFH cells and activated B cell responses (ASCs, CD86+CD38+)

together with serum IL-21 levels were proposed as biomarkers for

AMR in KTxs (164, 165). A more profound understanding if certain

TFH cell-related pathways predisposed to the formation of

complement-fixing or non-complement fixing dnDSA, would

help to develop non-invasive biomarker-guided risk stratification

and molecular refinement tools to prevent the emergence of dnDSA

altogether. In fact, Louis et al. recently demonstrated that TFR cells

and transitional B cells were selectively reduced in KTxs with AMR

(166). Characteristically, both populations comprising of CXCR5+

TFR cells and CD21
- transitional B cells that had vanished expressed

T-bet. Their loss coincided with enhanced inflammatory antibody

responses, microvascular inflammation, and allograft failure (166).

Previous studies have highlighted the importance of T-bet to act as a

repressor of PD-1 and other inhibitory receptors such as LAG-3,

CD160, and BTLA in adaptive immune cells (167), possibly

identifying T-bet expression as a canonical immune checkpoint to

drive alloreactivity in T cells (Figure 2) (168). However, it must be

recognized that noncanonical pathways in the absence of TFH-B cell

interactions need to be considered that may also contribute to the

production of alloantibodies or certain subtypes of allospecific

immunoglobulins such as IgG2c where TFH cells may be

dispensable (169, 170).

Subclinical rejection episodes, a sequelae of aberrant

allosensitization possibly causing loss of TFR cells, are considered

prognostic indicators for chronic AMR (171, 172). Adjusting

signaling pathways culminating in the absence of IL-21 production

in TFH cells prevents dnDSA formation due to lack of cognate B cell

help and thus fosters allotolerance (163). Hence, defying

allosensitization of TFH cells, e.g., via engagement of the co-

stimulatory blockade receptor CTLA-4 (100, 173), enhanced

mTOR immunosuppression (174, 175), blockade of the CD40/L

axis (67, 160, 161), or antagonizing antibodies against the IL-21R

(108, 156, 159), may allow to further refine or counteract chronic

AMR in kidney allografts. This strategy may promote longevity of

kidney transplants and the quality of life in transplanted patients.

Mechanisms underlying this deleterious allosensitization of naïve T

cells to becoming alloreactive TFH cells are conceivable. Comparing

immunosuppression with tacrolimus against co-stimulation blockade

of CD80 and CD86 using the CTLA-4-Ig belatacept conferred

diminished seroconversion rates to influenza vaccination (176).

Hence, understanding how to prevent the selection of alloreactive

TFH cell effector and memory clones will be an important area of

future investigations. For example, a recent cohort study in patients

with a positive dnDSA status showed an enhanced alloreactive TFH

cell pool in response to donor-specific HLA antigens. Despite

continuous immunosuppression compared with healthy controls,

an augmented IL-21 production and proliferative response in these

TFH cells upon stimulation in vitro was reported suggesting either

incessantly activated or more easily recruited signaling domains even

years after kidney transplantation (103). Further studies are needed to

better define how to circumvent unwanted allograft-directed immune
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responses, whilst maintaining T cell-mediated antigen-specific B cell

help in the context of the host’s immune protection and response to

vaccination. GC responses emerge as prominent areas to be more

meticulously studied. For example, KTxs were shown to lack GC

responses to mRNA vaccination against severe acute respiratory

syndrome coronavirus type 2 (SARS-CoV-2), a feature well

characterized to be associated with neutralizing antibodies against

SARS-CoV-2 (177). A prominent feature of this missing GC response

in this study was a blunted TFH cell signature, which is considered

instrumental in orchestrating architecture and functionality of GCs

(6–10). One may speculate that allograft-draining lymph nodes’ GCs

may present a unique architecture in patients having developed

dnDSA compared to other allograft-unassociated draining lymph

nodes. Recent studies have shown that the trauma of the surgical

intervention requires lymphatic vessels to heal, which in murine

kidney transplantation showed lymphatic endothelial cells to

abundantly release CCL21 by which stromal lymph node

remodeling was fostered. Accordingly, dendritic cell enrichment

was observed thus increasing the chance for successful alloreactive

T cell priming. The causative role of the lymphatic system pertaining

to the kidney allograft could be established in retrospective analyses

in humans (178). Furthermore, the formation of TLOs within the

allograft itself were observed in human kidneys undergoing chronic

rejection (179, 180). Besides the formation of de novo lymphatic

angiogenesis, the contribution of increased lymphatic flow may be

another factor by which cellular trafficking, alloimmunity, and

vasculopathy are being propagated, which in the context of heart

transplantation found donor cell-trafficking to allograft-draining

lymph nodes, increased lymphatic vessel are, and allograft

infiltration of CD4+ and CD8+ T cells as well as CD68+

macrophages (181). In fact, draining lymph nodes and TLOs after

small-bowel transplant rejection were enriched in CXCR3+ host T

cells stimulated by donor-derived type 1 helper T cell-related

chemokines (IP-10) suggesting their possible contribution also in

other solid organ transplantation contexts such as the kidney (182).

Since alloreactive T cells are susceptible toward inhibition by

standard immunosuppressive drugs such as corticosteroids or

calcineurin inhibitors, an advanced understanding of potentially

derailed signaling pathways downstream of calcineurin in cases

where patients are suspected of allograft rejection despite

appropriate drug levels is needed (183).

Recent studies highlight the importance to better understand

cytotoxic T cell responses in GCs. Some cytotoxic T cells can

acquire CXCR5 expression (28), thus enabling them to enter GCs.

Compared with STAT5+CXCR5+CD8+ TFC cel ls , PD-

1+CXCR5+CD8+ TFC cells were found to be a biomarker for

AMR. In this study, PD-1+CXCR5+CD8+ T cells were associated

with chronic allograft dysfunction following kidney transplantation

(184). Indeed, CXCR5+ CD8+ T cells with IFN-g-producing abilities
can be sampled from the peripheral blood in higher quantities in

KTxs who remain DSA-free (185). Studies in a murine system of

AMR using adoptive cell transfers in CCR5 KO mice equally show

reduced frequencies of CXCR5+CD8+ TFC cells following AMR of

the kidney transplant (186), which confer cytotoxicity towards

alloprimed IgG+ B cells. This could be a means by which
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incessant adaptive immune cell activation in allograft-draining

lymph nodes may be held in check in transplanted patients who

remain dnDSA-free.

Together, these studies implicate both TFH cell and TFR cell

subsets as relevant entities to risk-stratify patients concerning

potential dnDSA formation (89). Further studies are needed to

better define lineage-commitment trajectories of TFC cells to

comprehend how to therapeutically intervene in cases of ongoing

AMR. This may hold the potential to maintain allograft longevity

even in cases of severe AMR.
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2.4 Non-HLA antibodies: the
underestimated reason for transplant
morbidity caused by exuberant
sensitization of TFH cells?

Having discussed the relevance of TFH cells and their cellular

modulators for the formation of HLA-specific dnDSA and the

importance of TFH cell subsets for the disclosure of autoantigens

and autoimmune conditions to emerge, the relevance of non-HLA

antibodies remains to be outlined.
FIGURE 2

Alloimmunity following solid organ transplantation predispose for acquiring de novo donor-specific human leukocyte antigen antibodies and
antibody-mediated allograft failure. Solid organ transplants (e.g., liver or lung) are matched for human leukocyte antigens (HLA)-A, -B, and -DR
before the transplantation is undertaken. After transplantation, the constant exposure to non-HLA antigens, small antigens, or (unmatched) HLA
antigens predispose for the acquisition of de novo Donor-specific HLA antibodies (dnDSA), which can be detected in ~ 15% of transplanted patients
years after the transplantation was performed. Risk factors for the establishment of dnDSA are mismatches for HLA-DR (HLA-DR ##) or non-
adherence to taking the life-long immunosuppressive treatment. The dnDSA can be classified into non-fixing or complement-fixing antibodies.
Complement fixation is associated with a pro-inflammatory response, which is the cause for transplant vasculopathy. To date, it is unclear how
complement-fixing abilities of dnDSA are determined (? in box), however, HLA-DQ dnDSA were found to be a risk factor. It is speculated that T
follicular helper (TFH) cell-related pathways either on the level of fate commitment upon acquisition of antigen-specificity via T cell receptor
engagement or during TFH cell – B cell interactions would imprint on complement-fixing abilities of dnDSA. Irrespective of whether dnDSA can be
detected in a patient, which often only attach to the transplanted vascular tissue structures of the allograft and thus evade detection by conventional
blood taking methods, transplant vasculopathy drives (sub)clinical rejection episodes, which confer the risk to acquire late allograft failure. During
antibody-mediated rejection (AMR) T-bet expression is lost from transitional B cells (CD21- Btrans cell) and follicular regulatory T (TFR) cells. T-bet
confers instructional cues for PD-1 acquisition, thus lack of immune checkpoint modulation (ICM) can be deduced that preserves an interferon-
stimulated gene signature (ISGS) upon TFH cell – B cell encounters. Perpetuation of ISGS maintains inflammation and fosters the establishment of
dnDSA if immune suppressive measurements are not engaged.
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Just over a decade ago, Dragun et al. reported refractory

vascular rejection in KTxs caused by non-HLA autoantibodies

against the angiotensin II type 1 receptor (AT1R) (187). Similarly,

transplant glomerulopathy (TG) a consequence of autoantibody

formation against perlecan and agrin, both compounds of the

glomerular basement membrane, was described (188). It appeared

that the risk for TG was even enhanced if both dnDSA and non-

HLA antibodies were coincidentally present (189). To address these

descriptions, a study conducted by Amico et al. found around 2.3%

of patients of their cohort, who experienced early AMR, to be due to

non-HLA antibodies (190). Progressive loss of self-tolerance to the

autoantigens k-a-1 tubulin, collagen type V, and the collagen I was

linked to increased risk of primary graft dysfunction in lung

transplantation, which in turn would augment alloimmune

responses inclining towards bronchiolitis obliterans syndrome

(BOS) (191, 192). The importance of activating antibodies against

AT1R is by far the most thoroughly studied. AT1R and the C-

terminal fragment of perlecan (LG3) were studied in pregnant

transplanted women and appeared to trigger allograft rejection.

The mechanism of formation did not require allosensitization and a

lack of correlation suggested different mechanisms of generation

(193). It was suggested that renal ischemia, alterations to the

intragraft microenvironment, and alloimmunity may be some of

the various factors predisposing for AT1R antibodies, which

augment the ischemic condition by further contraction of the

renal vasculature (187, 194, 195). The exposure of other cryptic

antigens culminates in the emergence of non-HLA antibodies,

which was described for the antigens LG3, vimentin, the

endothelin type A receptor (ETAR), and other extracellular

proteins and intermediate filaments. But also, more recently, their

ability to bind to antigens present on apoptotic cells activating

complement was appreciated (Figure 3) (195–198).

Evidence also suggests FC-independent effects of non-HLA

antibodies like augmented neointima formation with an

accumulation of smooth muscle cells, mesenchymal stem cells

advocating for their regulatory function via ERK1/2 signaling and

interactions with a2b1 integrins in obliterative vascular remodeling

during rejection (199, 200). But also other conditions have seen the

discovery of non-HLA autoantibodies including systemic sclerosis with

or without associated pulmonary arterial hypertension (201, 202).

It was shown that apoptotic cells release exosome-like vesicles,

which, mediated by the 20S proteasome, incite non-HLA antibody

formation. This coincided with enhanced TFH and GC B cells (203).

The conceptual framework of apoptosis taking place constantly may

allow us to explain why some non-HLA autoantibodies may be

present pre-transplant. In fact, a study by Nagele et al. reported

ample naturally occurring immunoglobulin (Ig) G autoantibodies,

which were influenced by age, gender, and disease (204).

Together, copious amounts of studies highlight the importance

of auto- and allosensitization of TFH cells in generating a permissive

environment to stimulate cognate Ag-specific B cells toward the

production of both non-HLA autoantibodies and dnDSA.

Therefore, clinicians need to carefully monitor patients to identify

derailed homeostatic interactions even in the absence of measurable

auto- or allosensitization (205). It is noteworthy that compartments

reflecting dysbalanced interactions (ELS, allograft draining lymph
Frontiers in Immunology 08
nodes) are not part of the regular clinical routine suggesting that

further research is needed to define appropriate biomarkers that

may reflect the current state of health of these compartments.

Moreover, a more fundamental understanding about how these

antibodies evolve from a TFH cell perspective may identify

interventions potent to either decrease the intensity of the

antibodies detected or even reverse their presence after all.

3 Lessons learnt on TFH cells
from other solid organ
transplantation settings

Besides kidney transplantation, TFH cell biology has also been

studied in the context of other solid organ transplantations

(Table 2). Although organ-specific biology considering epigenetic,

molecular, cellular, and environmental effects cannot be ruled out in

T cell biology, these findings can instruct experimental nephrologist

to consider similar trends in kidney transplantation (215–217).

Towards the turn of the millennium, MHC class I, mainly HLA-

A, antibodies had been described to forecast the development of BOS

(210, 218). Other reports reliably confirmed their detrimental impact

on lung allograft longevity as they caused persistent-recurrent lung

rejections and chronic allograft dysfunctions (219, 220). Moreover,

dnDSA were found to occur more frequently as is the case in other

solid organ transplantation settings (148). Despite their frequency,

their full impact remains yet to be fully elucidated with intragraft

dnDSA noticed to carry a higher risk for lung allograft loss (148).

Formation of dnDSA after lung transplantation corresponds to a high

risk of refractory acute cellular rejection, lymphocytic bronchiolitis

(with an increased influx of lymphocytes and neutrophils in

bronchoalveolar lavages) (221), and BOS (222). Lately, Krupnick

et al. have described the importance of CD8+CD44hiCD62LhiCCR7+

TREG cells in a mouse lung transplant model, which patrolled the lung

successfully to endorse allotolerance (223). Furthermore, Li et al. have

recently demonstrated that depletion of CD4+CD45.2+FoxP3+ TREG

cells induced the emergence of dnDSA resulting in AMR (155).

According to the authors, TREG cell depletion allowed CXCL13-

mediated graft infiltration of CD4+Bcl6+CXCR5+PD-1+ TFH cells and

IgM dnDSA to be patterned. Ultimately, complement would deposit

and destroy the airway epithelium, a process which could be reversed

by CXCL13 blockade or utilization of CD40/L and ICOS/L pathway

inhibition (Figure 4) (155). This suggests that even severe endothelial

cell injury could be reversed if the right immunological setscrew was

identified. These findings warrant similar research in the context of

kidney transplantation. Bypassing both TFH cell or TREG cell influence

on lung allograft longevity, a study has also successfully described B

cell-targeted inhibition impeding follicle formation and eventually

preventing BOS after lung transplantation (224).

In heart transplantation (HTx), the importance of alloreactive

memory TFH cells has been delineated previously. In that regard,

memory TFH cells were shown to be the barrier to long-term

allograft survival as they support antibody isotype switching and

alloreactive effector TFH cell damage (206). Moreover, inhibiting

memory CD4 TH cell trafficking was assessed by Zhang et al. and

effectively described to prolong HTx survival in sensitized patients
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FIGURE 3

Transplant glomerulopathy in the context of non-human leukocyte antigen antibodies. Constant cellular turnover as occurs through programmed-cell death
or damage to the transplanted organ predisposes for the disclosure of autoantigens. To date, the C-terminal fragment of perlecan (LG3), agrin, vimentin, the
angiotensin II type 1 receptor (AT1R), the endothelin type A receptor (ETAR), k-a-1 tubulin, collagen type V, and collagen type I have been identified as serving
as autoantigens with risk for progressive loss of self-tolerance. This loss of self-tolerance can result in their presentation by tissue-resident phagocytes and
serological acquisition of non-human leukocyte antigen (non-HLA) antibodies without prior allosensitization. Interestingly, LG3 and agrin are composite
material of the glomerular basement membrane (GBM) and can thus drive transplant glomerulopathy (TG) via renal vascular constriction, which was studies
in pregnant kidney transplanted women. In this study by Hönger et al. AT1R was also identified to mediate TG. TG can cause early antibody-mediated
rejection (AMR) and it was found that ~ 2.3% of these cases are due to non-HLA antibodies. Risk factors that mediate this process comprise ischemia-
reperfusion injury (IRI), intragraft microenvironment alterations, or alloimmunity, which drives the up-regulation of major histocompatibility complex (MHC)
class II (MHCII) on antigen-presenting cells, thereby upping the odds of successful cross-presentation to T helper cells. Studies have found that non-HLA
antibodes can activate complement. Moreover, their pathology also entails FC-receptor-independent effects. For example, they can induce neointima
formation, enhance the accumulation of smooth muscle cells, and promote vascular remodeling.
TABLE 2 A summary on the reported impact of T follicular cell subtypes in the context of solid organ transplantation settings.

Solid organ
transplant

Reported TFH cell subtype function

Kidney • Increased PD-1low cTFH cells in chronic kidney allograft rejection (157)
• Stable cTFH cell numbers following transplantation (99, 158) with decreased IL-21 production (158) but enriched TFH-2 and TFH-17 cell subsets
(99)
• TFH cell control by TFR cells protects from AMR (96, 100, 101, 155)
• Allotolerance inversely correlates with IL-21 production by TFH cells (164, 165)
• Allotolerance can be supported by CTLA-4 inhibition (100, 173), mTOR immunosuppression (174, 175), CD40/L (67, 160, 161) or IL-21R
antagonism (108, 156, 159)
• CXCR5+ TFR cells and CD21- transitional B cells are reduced in AMR (166)
• PD-1+CXCR5+CD8+ TFC cells correlate with AMR (184)

Heart • mTFH cells support isotype switching and alloreactivity (206)
• inhibition of mTFH cell trafficking prolongs allograft survival in allosensitized patients (206, 207)
• IFN-g-driven TFH-1 signature drives CD40-independent dnDSA formation (208), which is supported by TFH-17 cells (208, 209)

Lung • CD8+CD44hiCD62LhiCCR7+ TREG cells and CD4+CD45.2+FoxP3+ TREG cells endorse allotolerance (53, 210)
• TREG depletion results in graft infiltration of CD4+Bcl6+CXCR5+PD-1+ TFH cells, dnDSA formation, and complement activation, a phenomenon
reversable by CXCL13, CD40/L, and ICOS/L inhibition (210)

Liver • TFH-1- (IFN-g) and TFH-17 cell signatures (IL-17) risk stratify patients for allograft rejection (211, 212)
• Stable TFH cell numbers before and one-month post transplantation, with IL-21low TFH cells post transplantation, however, unaltered Ig
stimulation ex vivo (211, 212)

Pancreas • Alloreactive TFH cells precede insulinitis, b-cell loss, and antibody formation (213, 214)
F
rontiers in Immunolog
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with alloreactive memory TFH cells, a cohort that is particularly

prone to insufficient co-stimulation blockade (206, 207). By

employing lymphoid sequestration, TREG cell differentiation was

advocated (225). More recently, Gorbacheva et al. have found that

CD40-independent alloantibody responses were facilitated by IFN-g
producing TH cells and may be the cause for deleterious

alloantibody responses despite co-stimulation blockade (208).

Especially TH-1 and TH-17 cells promoted dnDSA responses

(208, 209), while also displaying CD40-independent help to

alloreactive effector CD8+ T cells (209). Together, this suggests

that follicular and extrafollicular alloreactive B cell responses need

to be screened in experimental models to identify pathways by

which this extrafollicular CD40-independent B cell help can be

curtailed and rather host protective and allograft-permissive T cell

biology can be regained.

In liver transplantation (LTx), cytokines related to TFH-1 and

TFH-17 cells, IFN-g and IL-17, have been identified to risk stratify

patients regarding their risk of rejection (211, 212). More recently,

TFH cell dynamics were studied by Zhang et al. one day before up to

one-month post-transplant. In their study, the authors have shown

an unchanged TFH cell frequency in the circulation, however, a
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reduced production of IL-21 one month after LTx was noticed.

Despite the lack in IL-21 production, these TFH cell could provide

cognate B cell help with unaltered production of immunoglobulins

in ex vivo cultures (213).

Lastly, pancreas transplantation utilizes similar draining lymph

nodes of the paracaval and paraaortic affiliation. There are

essentially three forms of pancreas transplantations (PTx)

currently in practice: simultaneous pancreas-kidney (SPK),

isolated pancreas (IP), and islet cell transplantation. As with other

forms of organ transplantation, the deleterious impact of

alloreactive TFH cells was also investigated regarding tissue

reactivity and alloantibody production. In a study conducted by

Vendrame et al., tissue-reactive TH cells were described to precede

insulinitis, b-cell loss, and hyperglycemia due to C-peptide loss

mediated by the emergence of autoantibodies (214). These negative

consequences could be attenuated by non-specific T cell depletion

(214). The challenge that alloreactive TH cell pose to transplantation

was delineated by another group (226). They described the serious

adverse effects imposed on PTx survival by the emergence of

dnDSA where, on average, 14.7% developed dnDSA, which was

more frequent in IP (~ 19%) and showed an inferior outcome
FIGURE 4

Strategies to foster transplant longevity for donations after circulatory death. Donations after circulatory death (DACD) comprise the largest fraction
of organs available for transplantation. However, due to reduced circulation ischemia-reperfusion injury (IRI) has often occurred, which may be even
exacerbated depending on factors including age, sex, or mismatches in the human leukocyte antigen (HLA) system. This disadvantages the length of
organ preservation possible and potential chances for recovery upon transplantation. Moreover, the IRI does confer migratory effects to donor pro-
inflammatory cells like polymorphonuclear neutrophils (PMNs) or IL-17A-producing T helper (TH17) cells, which are being transplanted jointly with
the organ. However, to prevent incessant recipient pro-inflammatory immune cell recruitment towards the inflamed organ, several strategies are
being explored evolving around the issue of disabling immune cell diapedesis. For example, the CD62-CD62L axis or the TIM-1-TIM-4 pathway can
be targeted since CD8+CD44hiCD62LhiCCR7+ TREG cells patrol the lung to endorse alloimmunity after lung transplantation. Pending successful
implementation, transplant longevity may also conceptually be fostered by employing co-stimulation inhibitory approaches for the CD40/CD40L-
axis, the ICOS/ICOSL-pathway, or by CXCL13 blockade to deplete donor-specific memory T cells. Following an infection that drives interferon (IFN)-
g expression, donor-specific memory T cell populations can expand and contribute to an IgM alloantibody response in a CD40-independent
manner. As above, these IgM alloantibodies activate compliment and drive microvasculature inflammation that up the odds for late allograft failure.
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compared to non-donor HLA. This renders the detection of dnDSA

as a strong independent predictor of pancreas allograft failure (226).

Another independent study also reported in ~ 15.6% the

appearance of dnDSA, predominantly class II-specific, whereas

non-DSA were mostly of class I-specific nature (227). More

recently, it was described that dnDSA would occur equally likely

in PTx and islet cell transplantation, also being mostly class II-

specific (228). Finally, more frequent, and severe rejection episodes

were linked to the presence of dnDSA rather than non-DSA or

antibody-negative patients (227).
4 Conclusions

TFH cells play a crucial role in the host’s immune response and

allow humoral memory to be established and maintained. However,

when sensitized, particularly in a setting of persistent antigen

presentation, TFH cell responses are not well studied and may be

surprising. Here, their responses may stretch from inabilities to mount

an appropriate antibody response thus resulting in an inability to clear

microbial threats or even overwhelming immune responses despite

immunosuppression. The latter carries the risk of seroconversion of

alloantibodies that can cause AMR. We have a lot to learn about TFH

cells, their interaction with B cells, TREG cells, TFR cells, regulatory B

cells, or tissue-resident (or recruited) myeloid cells including

macrophages, dendritic cells, and neutrophils. Advances in drug

availability may cause a skewing of subpopulations, which may

constitute an advantage or disadvantage given the respective

immunological context. Taken together, progress in TFH cells’

biology and unveiling their relation to CXCR5+CD8+ TFC cell subsets

or TFR cells may hold the potential not only to risk stratify transplanted

patients but moreover to regain control in cases of severe allograft

injury and to reinforce allotolerance. This may bring about significant

changes how we detect and treat AMR in KTxs. It is conceivable that

based on an enhanced immunological understanding, AMR treatment

by intensifying the immunosuppressive regimen to become a matter of

the past. We should be confident that further studies can significantly

improve transplant longevity, and ultimately the quality of life of

transplanted patients.
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Antibody-mediated
rejection (AMR)

Refers to the consequences of a humoral immune
response with the formation of donor-specific HLA
antibodies (dnDSA), antibodies against blood group
antigens or autoantigens expressed by endothelial cells
upon ischemia reperfusion injury (IRI).

Bronchiolitis
obliterans syndrome
(BOS)

Refers to an inflamed condition resulting in an
obstruction of the smallest airways that is a feared
complication after lung and hematopoietic stem cell
transplantation. Patients suffering from BOS experience
shortness of breath, wheezing, and coughing as their
lung function progressively declines.

Calcineurin
inhibitors

Include drugs such as cyclosporine, tacrolimus or
voclosporin. They are used as mainstay drugs after solid
organ transplantation to prevent allograft injury as a
consequence of the host’s overt immune activation
(alloreactivity). Mechanistically, they inhibit the
phosphatase calcineurin to reduce gene transcription
associated with T cell activation.

Donation after
circulatory death
(DACD)

The most common source for organ donations, refers to
the inadvertent cease in circulatory and respiratory
function, by which an individual’s death (clinical death)
is pronounced by physicians. At that stage, prior
individual’s or family consent provided, organs and
tissues can be recovered and used for organ donation.

Extrafollicular
response

Refers to the growth of the lymph nodes’ paracortices or
the red pulp of the spleen where naïve and memory B
cells can be recruited, undergo class switching, and, to
some degree, low-lever somatic hypermutation.

Follicular response Refers to the humoral immune response mounted in
germinal centers of secondary lymphoid organs (SLOs),
which features clonal B cell expansion, class switching,
high-affinity somatic hypermutation, B cell memory
induction, and plasma cell formation.

Germinal centers Formed structures in the B cell zone of SLOs where the
follicular response is initiated.

The human
leukocyte antigen
(HLA) or major
histocompatibility
complex (MHC)

Comprises a class of type I and type II antigens which
are more or less polymorphic and that encode for the
cellular affiliation to one individual person.

Humoral immunity The consequence of a successful follicular or
extrafollicular response, which can be measured by
antibodies produced and their seroconversion (i.e., the
switch of IgM to commonly IgG molecules).

Immunosuppression In the context of transplantation, it refers to the
mainstay drugs used to prevent the rejection of the
donated organ. These drugs consist of calcineurin
inhibitors, corticosteroids, and others such as inosine-5’-
monophosphate dehydrogenase (IMPDH) inhibitors or
inhibitors of the mechanistic target of rapamycin
(mTOR).

Ischemia-
reperfusion injury
(IRI)

Defines the worsening of cellular function and
subsequent cell death because of a restored organ
perfusion of previously ischemic organs (e.g., after
DACD).

Islet cell
transplantation

Refers to the selective transplantation of the islets of
Langerhans, the parts with endocrine, i.e., insulin-
producing, functionality in the definitive treatment of
type I diabetes mellitus.

(Continued)
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Isolated pancreas
(IP) transplantation

Refers to the isolated transplantation of the pancreas
without combined kidney transplantation in the
treatment of type I diabetes mellitus.

Simultaneous
pancreas-kidney
(SPK)
transplantation

A procedure by which both the pancreas and a kidney
are simultaneously transplanted to treat kidney failure
related to type I diabetes mellitus.

Transplant
glomerulopathy
(TG)

The histological alteration in the absence of immune
depositions of the glomerular basement membrane
within the Bowman's capsule of the kidney, which is
most often observed in AMR.

Thymoglobulin or
antithymoglobulin
(ATG)

An immunosuppressive immunoglobulin used for
example as a prophylactic and acute treatment of a
rejection of solid organ transplants.
Ag Antigen

AMR Antibody-mediated rejection

ASC Antibody-secreting cell

AT1R Angiotensin II type 1 receptor

BAL Bronchoalveolar lavage

BATF Basic leucine zipper ATF-like transcription factor

BCL6 B-cell lymphoma 6

Blimp-1 B-lymphocyte-induced maturation protein 1

BOS Bronchiolitis obliterans syndrome

BTLA B and T lymphocyte attenuator

CCL C-C motif ligand

CCR C-C motif chemokine receptor

CD Cluster of differentiation molecule

CTLA-4 Cytotoxic T-lymphocyte-associated protein 4

CXCL C-X-C motif ligand

CXCR C-X-C motif chemokine receptor

DACD Donation after circulatory death

DC Dendritic cell

dnDSA De novo donor-specific HLA antibody

ELS Ectopic lymphoid structures

ETAR Endothelin type A receptor

GATA GATA binding protein

GC Germinal center

HLA Human leukocyte antigen

HTx Heart transplant

ICOS Inducible T-cell co-stimulator

IFN Interferon

(Continued)
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Ig Immunoglobulin

IL Interleukin

IP Isolated pancreas

IRI Ischemia-reperfusion injury

KLF2 Krüppel-like Factor 2

KTx Kidney transplant recipient

LCMV Lymphocytic choriomeningitis virus

LG3 C-terminal fragment of perlecan

LLPC Long-lived plasma cell

LTx Liver transplant

MALT Mucosal-associated lymphoid tissue

MFI Mean fluorescence intensity

MHC Major histocompatibility complex

mRNA Messenger ribonucleic acid

PD-1 Programmed cell death protein 1

PTx Pancreas transplant

RORgt Retinoic-acid-receptor-related orphan nuclear receptor gamma

SARS-CoV-2 Severe acute respiratory syndrome coronavirus type 2

SLOs Secondary lymphoid organs

SPK Simultaneous pancreas-kidney

STAT Signal Transducer and Activator of Transcription

T-bet T-box expressed in T cells

TCR T cell receptor

TFC Follicular cytotoxic T

TFH Conventional T follicular helper

TFH1 Type 1-like TFH

TFH2 Type 2-like TFH

TFH17 Type 17-like TFH

TFR Follicular regulatory T helper

TG Transplant glomerulopathy

TH T helper

TLOs Tertiary lymphoid organs
F
rontiers in Immu
nology frontiersin.org18

https://doi.org/10.3389/fimmu.2023.1114842
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Immune surveillance and humoral immune responses in kidney transplantation – A look back at T follicular helper cells
	1 Introduction
	2 Kidney transplantation, organ donation after circulatory death, and the detrimental impact of ischemia reperfusion injury
	2.1 Immunosuppressive drugs influence TFH cells after kidney transplantation
	2.2 Sequelae of persistent auto- and alloantigen stimulation of TFH cells
	2.3 Donor-specific HLA antibodies and TFH cells: the feared couple to answer for antibody-mediated rejection
	2.4 Non-HLA antibodies: the underestimated reason for transplant morbidity caused by exuberant sensitization of TFH cells?

	3 Lessons learnt on TFH cells from other solid organ transplantation settings
	4 Conclusions
	Author contributions
	Funding
	Acknowledgments
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


