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Cytokine storms are an important mechanism of sepsis. TNF-a is an important

cytokine. As a regulator of TNF superfamily receptors, RIPK1 not only serves as

the basis of the scaffold structure in complex I to promote the activation of the

NF-kB and MAPK pathways but also represents an important protein in complex

II to promote programmed cell death. Ubiquitination of RIPK1 is an important

regulatory function that determines the activation of cellular inflammatory

pathways or the activation of death pathways. In this paper, we introduce the

regulation of RIPK1, RIPK1 PANoptosome’s role in Inflammatory and sepsis,

and perspectives.
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1 Introduction

Sepsis is a life-threatening condition characterized by organ dysfunction resulting from

a dysregulated host response to infection. Cytokine storm, caused by imbalances in

cytokines such as IL-1b, IL-6, and TNF-a, disrupts the normal immune balance,

ultimately leading to organ dysfunction. TNF-a, a well-studied cytokine, is secreted by

macrophages within 30 minutes after infection (1) and activates inflammatory pathways

such as NF-kB, MAPK, and JNK signaling, or programmed cell death (2). RIPK1, a nodal

protein in the TNF pathway, binds to TNFR1 at its intracellular terminus after TNF-a
binds to TNFR1, subsequently recruiting TRAF1, cIAP1/2, LUBIC, and other E3

ubiquitinates to form proinflammatory complex I, thereby activating inflammation-

related pathways. Deubiquitination of RIPK1 by CYLD, OTULIN, and A20 leads to the

phosphorylation of RIPK1 and formation of death complex II, which mediates

programmed cell death (3). RIPK1 has been implicated in TNF-induced cell death and

proposed as a target for cancer therapy to induce cancer cell death (4, 5). Recent studies
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have elucidated the important role of TNF-mediated necroptosis in

the inflammatory response, and RIPK1 inhibition has shown

therapeutic effects on various rheumatic immune diseases as well

as infections. However, the mechanism regulating RIPK1 in sepsis

remains unclear. This manuscript centers on the impact of RIPK1

regulation induced by sepsis on the inflammatory response, and the

current state of medical research.
2 Structure and function of RIPK1

RIPK1, the first member of the receptor-interacting Ser/Thr

kinase (RIPK) family, is a crucial protein involved in the cell death

process (1, 2). Its structure (Figure 1) comprises the N-terminal

kinase domain, the C-terminal death domain that mediates death

signaling, the bridging intermediate domain, and the RIP

homotypic interaction motif (RHIM) (3–5). RIPK1 binds to the

DD domains of TRADD and TNFRSF to form a trimeric structure,

and TRADD then recruits E3 ubiquitin ligases such as cIAP1/2 and

LUBAC to form a complex I scaffold structure, exerting

proinflammatory effects (6). When the deubiquitinating enzymes

A20, CYLD, and OTULIN degrade the ubiquitin chain of RIPK1,

complex I dissociate, and the released RIPK1 forms the cytoplasmic

death-induced signaling complex (DISC), Complex IIa, or complex

IIb, inducing programmed cell death (7). RIPK1 has complex

functions in cells, including the regulation of cell death associated

with its kinase activity and regulation of pro-survival inflammatory

pathways associated with its scaffold structure independent of its

kinase activity. RIPK1 is constitutively located in the cytoplasm of

cells (8). However, nuclear translocation of RIPK1 has also been

reported (9–12), although its function in the nucleus has not

been clarified.

In recent years, the inflammatory response and necroptosis

induced by RIPK1 have been extensively studied and are involved in
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the pathogenesis of various autoimmune and chronic inflammatory

diseases, such as neurodegeneration, ischemia-reperfusion injury,

severe infections, cardiovascular disease, chronic obstructive

pulmonary disease, skin inflammation, systemic lupus

erythematosus, inflammatory bowel disease, rheumatoid arthritis,

and psoriasis (13–22). Meanwhile, inhibiting RIPK1 by necrostatin-

1 reduced TNF-a-affected model in mouse mortality, cell death, and

persistent inflammatory responses (23). But interestedly, Patients

with biallelic inactivating mutations in RIPK1, including missense,

nonsense, and frameshift mutations, exhibit symptoms of

inflammatory bowel disease and combined immunodeficiency,

develop lymphopenia, and display increased sensitivity to

TNFR1-mediated cell death (21, 22). RIPK1 knockout mice are

embryonic lethal and exhibit severe in vivo inflammatory responses

that activate apoptosis and necroptosis pathways (24). In summary,

RIPK1 both triggers cytokine release and cell death. However, the

underlying mechanism by which RIPK1 leads to changes in

cytokine release remains unclear.
3 Regulation of RIPK1

RIPK1 is subject to regulation by a variety of enzymes and

modifications, including ubiquitination and phosphorylation

(Table 1). Ubiquitination can activate multiple inflammatory

pathways and inhibits kinase activity, thereby reducing cell death.

The kinase activity of RIPK1 is responsible for inducing

programmed cell death (25). Mutations at the K45A site, which

result in a loss of kinase activity, protect cells from TNF-a-
stimulated necroptosis (26). Similarly, the D138N mutation,

which also causes a loss of kinase activity, confers resistance to

TNF-a induced necroptosis (27), and rats carrying this mutation

are resistant to TNF-a-induced shock (28), however, Newton et.al

(29). found RIPK1 D138N catalytically inactive mice were as
FIGURE 1

Structure and modification sites of RIPK1. RIPK1 comprises the N-terminal kinase domain, the C-terminal death domain that mediates death
signaling, the bridging intermediate domain, and the RIP homotypic interaction motif (RHIM). Phosphorylation sites have two opposite effects: S161
and S166 have a pro-death effect and are phosphorylated after TNF-astimulate, while S25, T189, S321, S335, and S336 have a pro-survival effect and
are phosphorylated by IKK, MK2, and TAK. Ubiquitination sites can be linked by different Ub chains: K115 can be linked by K63 and M1 chain, K376
linked by K11, K63, and M1 chain, K612 linked by M1 chain, while K584 remains unknown. Pink circle with P indicates phosphorylation sites, a yellow
circle with Ub indicates ubiquitination sites, green dots indicate K11 ub chain, brown dots indicates K63 ub chain, purple dots indicate M1 ub chain,
grey indicates unknown ub chain.
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sensitive to LPS challenge as wildtype mice, but were resistant to

body temperature loss after TNF challenge. Numerous studies have

identified S161 and S166 as important phosphorylation sites in

RIPK1, and the crystal structure of RIPK1 indicates that S161 is

located in the T-loop structure in an open conformation, suggesting

that phosphorylation at this site promotes interaction between

RIPK1 and RIPK3 and initiates the occurrence of necroptosis

(30). Autophosphorylation at S166 induces TNF-mediated

inflammatory responses in a variety of animal models (31).

Mutations at the aforementioned sites (K45, S166, S161, and

D138) all reside in the kinase domain of RIPK1, underscoring the

critical role of RIPK1 kinase activity in necroptosis, and these

mutations promote the systemic inflammatory response both in

vivo and in vitro. Therefore, RIPK1 kinase activity may contribute

to TNF-a-induced necroptosis and exacerbation of the

inflammatory response.

In addition, RIPK1 also contains inhibitory phosphorylation

sites. Phosphorylation of the S25 site inhibits RIPK1 kinase activity,

IKKs phosphorylate the S25 site in complex I and protect cells

deficient in the ubiquitinating enzyme SHARPIN from death (32),

and dephosphorylation of the S25 site by PPP1R3G promotes the

kinase activity of RIPK1, inducing necroptosis (33). T189 also

inhibits RIPK1 kinase activity through phosphorylation by IKKs

(34), while the S321 and S336 (human S335) sites are

phosphorylated by MK2 and TAK to inhibit its kinase activity

(35–37), and phosphorylation of the aforementioned inhibitory

sites requires the activation of the NF-kB or MAPK pathway.

This may be a negative feedback regulation mechanism of RIPK1-

associated inflammatory factor transcription.

RIPK1 possesses multiple ubiquitination sites, with K11, K48,

K63, and M1 ubiquitin chains being identified in this protein. K63

ubiquitin chain of RIPK1 is crucial for complex I formation and

activation of inflammatory factor transcription, such as NF-kB
signaling, whereas deubiquitinated RIPK1 leads to the formation

of complex II and cell death. K115 is located in the kinase domain of

RIPK1, compared with the wild type, the K115R mutation showed a

decrease in the synthesis of K63 and M1 ubiquitin chains, and

K115R significantly decreased the phosphorylation of RIPK1,

RIPK3, and MLKL, ultimately inhibiting the occurrence of

necroptosis (38, 39). K376 (human K377) is located in the

bridging domain, mutation of K376 promotes necroptosis and

apoptosis, reduces the ubiquitination of K11, K63, and M1,

hinders TNFR1 complex formation, and causes embryonic

lethality (38). Mutation of K376 in mice significantly enhances

TNF-a-stimulated cell death, alters TNF-induced activation of the

NF-kB and MAPK pathways, accompanied by increased

phosphorylation of RIPK1, RIPK3, and MLKL, resulting in

embryonic death, which was reversed by inhibition of RIPK1

kinase activity (38). The K377 site is a critical ubiquitylation site

for NF-kB activation and the inhibition of open reading frame 3

(ORF3) in humans (40). Mutation of K584 (human K599), located

in the DD domain of RIPK1, impedes homodimerization of RIPK1

through the DD domain, inhibiting complex II formations (41). The

K612R mutation inhibits RIPK1 phosphorylation, leading to the

inhibition of caspase-3, caspase-8, and RIPK1 cleavage, reduced

ubiquitination of complex I, attenuated NF-kB activation, and
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phosphorylation. The K612R mutation inhibited RIPK1 kinase

activity to a greater extent than NF-kB activity, resulting in an

intestinal inflammatory response and splenomegaly in K612R mice

(42). LPS stimulation of bone marrow-derived macrophages

expressing the K612R mutant showed increased necroptosis,

reflecting the inhibitory effect of the K612 site on necroptosis in

the TLR3/4 pathway (42). Recent studies show that K612 site

mutations in mice reduce the length of ubiquitin chains attached

to the M1 site, causing systemic inflammatory responses and

emergency hematopoietic myelograms. This change resulted from

damage-associated molecular patterns (DAMPs) induced by TNFR

activation. K612R mice transplanted with WT mouse bone marrow

or K612R + TNF-/- mice showed improved outcomes (43).

In conclusion, the scaffold structure of complex I that binds

initiator proteins, promotes the activation of the NF-kB, MAPK,

and JNK pathways, and inhibits the kinase activity of RIPK1.

whereas the ubiquitination at the K115, K376 (human K377),

K612 (human K627), and K584 (human K599) sites, leads to the

activation of the NF-kB pathway. Differences between these sites are

mainly due to different stimuli or ubiquitin chain lengths.

Mutations in RIPK1 ubiquitination sites, which normally enhance

the kinase activity of RIPK1, lead to the activation of programmed

cell death.
4 Regulation of RIPK1 with
Inflammatory and Rheumatic
Immune Diseases

RIPK1 has been implicated in the regulation of rheumatic

immune diseases and chronic inflammatory responses, with its

scaffold structure and kinase activity serving as key factors.

Excessive ubiquitination can lead to the overactivation of the

inflammatory response (44), while excessive deubiquitination can

trigger necroptosis and subsequently elicit an excessive

inflammatory response (45). Thus, the normal function of RIPK1

may hinge on maintaining a delicate balance between its scaffold

structure and kinase activity. Specifically, deubiquitination is

necessary for RIPK1’s kinase activity to manifest, and as such, the

activity of the ubiquitin ligase that regulates RIPK1 may represent a

crucial factor for controlling this balance (Table 2).

cIAP1/2, an E3 ubiquitin ligase, plays a critical role in regulating

NF-kB signaling and modifying the K63 andM1 ubiquitin chains of

RIPK1. As a result, it regulates not only caspases and apoptosis but

also numerous cellular processes, including inflammatory signaling

and immunity, mitogenic kinase signaling and cell proliferation, as

well as cell invasion and metastasis (46–48). Mutations in cIAP

(BIRC2/3) are linked to various diseases, including tumors,

autoimmunity, and inflammatory disorder (49–51). A clinical

study involving individuals with inflammatory bowel disease

(IBD) demonstrated nonclassical NF-kB activation with reduced

responses to infliximab and adalimumab therapy, accompanied by

increased expression of cIAP1/2 and various related enzymes (50).

In addition, gene expression analysis revealed a significant
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upregulation of BIRC2 expression in individuals with rheumatoid

arthritis, with cIAP1 being a central protein identified in protein-

protein interaction networks linked to rheumatoid arthritis (49).

The LUBAC complex comprises HOIL-1, HOIP, and

SHARPIN, with the corresponding genes being RBCK1, RNF31,

and SHARPIN, respectively. This complex encodes E3 ubiquitin

enzyme complexes that selectively elongate the M1 chain in RIPK1.

In 2019, Oda et al. (52) identified a patient with a HOIP protein

deficiency who presented with premature immunodeficiency and

autoimmune inflammation. The patient carried two mutations in

the RNF31 gene, and the analysis of PBMC lysates revealed that the

HOIP defect resulted in secondary abnormalities in SHARPIN and

HOIL-1, which prevented the formation of LUBAC complexes.

Stimulation of TNF-a in PBMCs from this patient delayed

activation of the NF-kB pathway, whereas IL-1b stimulation

excessively activated monocytes to produce high levels of IL-6

and IL-1b. In addition, LUBAC-deficient mice exhibited

enhanced sensitivity to apoptosis or necroptosis (53–56).

A20 is a deubiquitinating enzyme that targets the K63 site of

RIPK1. Genome-wide association studies (GWAS) have identified

single nucleotide polymorphisms (SNPs) at A20 sites that are

associated with various autoimmune diseases, and it has been

suggested that these SNPs may lead to reduced A20 expression

(57–59). Deletion of enhancers in the A20 gene in humanized mice

has been shown to increase autoantibody production,

inflammation, and arthritis. Heterozygous loss-of-function

mutations in A20, referred to as haploinsufficient for A20

(HA20), were first reported by Zhou et al. in 2016 (60), and

subsequently, a large number of HA20 patients have been

identified. HA20 patients present with variable clinical
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manifestations, even among family members carrying the same

variant. These patients are initially diagnosed with diseases such as

Behcet’s disease, juvenile idiopathic arthritis, rheumatoid arthritis,

periodic fever with aphthous pharyngitis and adenitis, autoimmune

thyroiditis, Crohn’s disease, SLE, or adult Still’s disease, along with

cardiovascular symptoms, nephrotic syndrome, vasculitis,

respiratory tract infections, and other diseases caused by

autoantibodies (61).

Compared to other genes, CYLD variants have thus far only

been linked to Brooke-Spiegler syndrome, familial cylindromatosis,

and multiple familial piloepitheliomas (62). Patients with Brooke-

Spiegler syndrome are predisposed to a range of skin adnexal

tumors, such as cylindroma, trichoepithelioma, and spiradenoma.

Familial cylindromatosis and multiple familial piloepitheliomas are

also part of Brooke-Spiegler syndrome, with single lesions being the

primary manifestation. However, due to the rarity of this disease, its

mechanism has not been extensively studied.

OTULIN is a deubiquitinating enzyme that specifically

hydrolyzes the M1 ubiquitin chain in RIPK1. Defects in the

OTULIN gene have been shown to cause autoinflammation,

panniculitis, and dermatological syndrome (AIPDS) (45). AIPDS

is manifested as neutrophil infiltration and recurrent nodular

panniculitis with recurrent fever, as well as increased

immunoglobulin levels and autoantibody titers in the blood.

OTULIN is the major deubiquitinating enzyme of the M1

ubiquitin chain and negatively regulates the NF-kB pathway (63).

Stimulation of fibroblasts and PBMCs from OTULIN-deficient

patients with TNF-a results in increased activation of NF-kB and

MAPK and increased ubiquitination of M1 in RIPK1, suggesting

that loss-of-function mutations in OTULIN lead to increased M1
TABLE 1 Ubiquitin and phosphoryl sites of RIPK1.

Sites Modification
type

Associated
enzyme

Action Ref.

S25 Phosphorylation Phosphorylation:
IKK
Dephosphorylation:
PPP1R3G

Inhibition of kinase activity and necroptosis (32, 33)

S161, S166 Phosphorylation Autophosphorylation Induction of necroptosis and inflammatory response (30, 31)

T189 Phosphorylation Phosphorylation:
IKK

Inhibition of kinase activity (34)

S321, S336
(Human S336)

Phosphorylation Phosphorylation:
MK2, TAK

Inhibition of kinase activity (35–37)

K45, D138 K45A mutation;
D138N mutation

– Kinase active site, promotes TNF-a-induced cell death (26, 29,
65)

K115 M1, K63 PELI1: K63, M1 Activates the NF-kB pathway, regulates RIPK1 autophosphorylation, RIPK3
phosphorylation, and MLKL phosphorylation

(13, 38)

K376 (Human
K377)

K63, K11, M1 CIAP1/2: K63, M1
MIB2: K11, K48,
K63
Parkin: K63

Activation of IKK, NF-kB, and MAPK pathways, inhibition of RIPK1 kinase
activity, inhibition of complex II assembly

(13, 38,
40, 66)

K612 (Human
K627)

K63, M1 LUBAC: M1 Activates NF-kB, assists RIPK1 autophosphorylation, and inhibits necroptosis in
the TLR3/4 pathway

(42, 43)

K584 (Human
K599)

– – Facilitates complex II formation and RIPK1 dimer formation (41)
fro
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ubiquitination, activation of TNF pathway and NF-kB-dependent
inflammation (64).
5 Roles and mechanism of RIPK1 in
the development of sepsis

Studies have shown that both the kinase activity and scaffold

structure of RIPK1 can induce inflammation, but while the

scaffold structure only induces the transcription of cytokines,

the kinase activity of RIPK1 induces cell death and a more intense

inflammatory response (Figure 2). Consequently, the role of

RIPK1 kinase activity in the systemic inflammatory response

and sepsis has garnered increased attention. Table 3 lists some

animal experiments related to RIPK1 in sepsis. Caspase-8

inhibition is a crucial factor for RIPK1-induced necroptosis
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(69), and a variety of pathogens inhibit caspase-8 activity:

Macrophages respond to infections with certain pathogens such

as Serratia marcescens, Staphylococcus aureus, Streptococcus

pneumoniae, Streptococcus monocytogenes, and uropathogenic

E. coli by inhibiting caspase-8 activity, thereby inducing

necrosome formation and necroptosis (70). Necroptosis, a

complementary programmed death pathway that is activated

when apoptosis and pyroptosis are inhibited. This process

exposes immature intracellular pathogens to the tissue

interstitial space and releases various chemokines that activate

various immune cells for defense, which is beneficial for

intracellular infections (71). However, severe infections can

result in a large number of necroptosis-induced DAMPs and

chemotaxis-induced neutrophil traps (NETs) that promote the

release of cytokines, forming a positive feedback loop of the

inflammatory response that ultimately leads to a systemic
TABLE 2 Ubiquitinases and deubiquitinases of RIPK1 and its effect.

Type of RIPK1
Regulation

Regulatory
Enzyme
(Gene
Name)

Alteration Effect Ref.

Ubiquitination:
K63, M1

cIAPs (BIRCs) Increased
expression

Inflammatory bowel disease, rheumatoid arthritis (49, 50)

Ubiquitination:
M1

HOIL-1
(RBCK-1)

Site mutation Premature immunodeficiency, autoimmune disease, inability to synthesize the LUBAC complex (52, 67)

Ubiquitination:
M1

SHARPIN
(SHARPIN)

Inactivating
mutation

TNF-dependent multiorgan inflammation, skin inflammation (53, 55)

Deubiquitination:
K63

A20 (TNFAIP) Loss of
function in
heterozygotes
(HA20)

Behcet’s disease, juvenile idiopathic arthritis or rheumatoid arthritis, periodic fever with aphthous
pharyngitis and adenitis, autoimmune thyroiditis, Crohn’s disease, SLE, and adult Stills disease
with cardiovascular symptoms, nephrotic syndrome, vasculitis, respiratory tract infection

(60, 61)

Deubiquitination:
K63, M1

CYLD (CYLD) Gene
mutation

Brooke-Spiegler syndrome, familial cylindromatosis, and multiple familial trichoepitheliomas (62)

Deubiquitination:
M1

OTULIN Functional
defects

Autoinflammation, panniculitis, and dermatologic syndrome (AIPDS) (64, 68)
fron
FIGURE 2

Regulation of RIPK1 and downstream effect. After stimulated by TNF-a, TRADD, TRAF2, RIPK1 and cIAPs would recruit to the intracellular terminus of
TNFR1, then RIPK1 is ubiquitinated to form complex I, activating NF-kB and MAPK pathway. When RIPK1 has been deubiquitinated, the cell death
pathway would be activated, triggering necroptosis, apoptosis and pyroptosis.
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inflammatory response and sepsis. Recent studies have

highlighted the role of RIPK1 kinase activity-induced

necroptosis, which has been detected in vascular endothelial

cells In recent years, the impact of RIPK1 kinase activity-

induced necroptosis has gradually emerged in research. Studies

have found that RIPK1-dependent necroptosis occurs in

pulmonary vascular endothelial cells, and inhibition of

necroptosis can alleviate the injury of ARDS induced by a large

amount of LPS in a mouse model (72–74). Furthermore, RIPK3

knockdown can also reduce the severity of LPS-induced mouse

ARDS (75).

Lipopolysaccharide (LPS) is a large molecule that is found in the outer

membrane of gram-negative bacteria. The LPS-induced inflammatory

response also contributes to the pathogenesis of sepsis. Toll-like receptor 4

(TLR4) recognizes LPS and activates downstream inflammatory response

pathways (76), such as theMAPK andNF-kB pathways, throughMyD88-

dependent and MyD88-independent pathways. The MyD88-independent

pathway requires the participation of RIPK1, which is recruited after the

intracellular segment of TLR4 interacts with TRAF and immediately

activates the inflammatory response pathway (77). The production of

cytokines and DAMPs exacerbates the inflammatory response, ultimately

inducing sepsis and organ dysfunction. Regulation of RIPK1ubiquitination

has potential value for the treatment of bacterial infections, but few studies

have examined this mechanism (Table 3). In an LPS-induced septic piglet

model, inhibition of RIPK1 attenuated intestinal epithelial injury,

accompanied by an increase in the level of MLKL phosphorylation,

suggesting that necroptosis affects intestinal epithelial cell death during

sepsis (13). A similar result was observed in an LPS-induced liver injury

model (78). In addition, necroptosis predominated inmice stimulated with

high doses of LPS compared with low doses of LPS (75), and stimulation

with various PAMPs enhanced necroptosis in macrophages expressing the

RIPK1 K45A mutation (79). Wang et al. (80) found that upregulation of

the deubiquitinating enzyme Cezanne in BV2 cells inhibited the NF-kB
pathway, and inhibition of Cezanne was accompanied by increased levels

of RIPK1 K63 ubiquitination. The importance of cell death in regulating

systemic inflammation is highlighted by the RIPK1 knockout embryonic

mice, which die during the embryonic stage due to systemic inflammation,

and by blocking the necroptosis pathway and the MyD88 pathway reduce

inflammation, but only mice with both RIPK3 and caspase-8 knockout

survive after weaning (81).

In certain cases of pathogen infection, caspase8 activation can

trigger pyroptosis by activating GSDMD (82). When caspase8

activity is inhibited, RIPK1 is phosphorylated and binds with
Frontiers in Immunology 06
RIPK3 to initiate necroptosis, providing an alternative route when

pyroptosis is inhibited (69). For many years, caspase8 has been

considered a key protein regulating cell death pathways, including

apoptosis, pyroptosis, and necroptosis (69, 83). However, recent

research has led to propose the concept of “inflammatory cell death”

which integrates these pathways into a single entity known as

“PANoptosis” (18, 84). At the core of PANoptosis is the

PANoptosome, a complex of proteins comprising RIPK1, RIPK3,

and caspase8 that form interactions through RHIM and DD

domains with other related proteins to mediate pyroptosis and

necroptosis (85). Prior research has shown that inhibition of RIPK1

can reduce inflammation, likely by disrupting PANoptosome

formation. Therefore, the PANoptosome may serve as a critical

complex in regulating inflammatory cell death (86, 87). However,

the molecular mechanisms underlying its regulation of the

inflammatory response are not yet fully understood, and further

experimentation is needed to elucidate its therapeutic potential.

Despite the growing interest in sepsis models that focus on

necroptosis or downstream regulators, the upstream pathways

that regulate RIPK1 and its modifications have received

comparatively less attention. Although several studies suggest

that the deubiquitination of RIPK1 is a critical factor in the

occurrence of necroptosis, direct evidence supporting this

hypothesis remains limited. Recently, it has been proposed that

cIAP2 downregulation and decreased ubiquitination of RIPK1 are

evident in patients with H7N9-induced ARDS; however, changes

in the ubiquitination and phosphorylation of RIPK1, or

alterations in complex I, have yet to be fully elucidated (88).
6 Inhibitors of RIPK1 and its effects
on sepsis

In clinical research, there has been relatively little investigation

into the association between RIPK1 and sepsis (Table 4). Previous

studies have suggested that serum RIPK1 does not differ

significantly in relation to the severity of sepsis (95). Therefore,

RIPK1 may not be suitable for determining the severity of sepsis.

However, this research was based on the earlier sepsis 2.0 criteria,

which differ from the currently widely used sepsis 3.0 criteria.

Additionally, it did not evaluate other differences such as the

degree of inflammatory response and organ function. Subsequent
TABLE 3 Study on RIPK1 and downstream sites in sepsis model.

Studies Inducer Species Target
Organs

Conclusion Ref.

1 LPS Mouse Lung Inhibition of necroptosis attenuates injury in subjects with ARDS (74)

2 LPS Mouse Lung RIPK3 knockdown attenuates ARDS-induced injury (75)

3 LPS Mouse Lung Necrotic apoptosis predominates upon stimulation with higher LPS doses rather than with lower
doses

(75)

4 LPS piglet Intestine The intestinal epithelial injury was attenuated by RIPK1 inhibition, and an increased level of MLKL
phosphorylation was observed

(13)

5 LPS piglet Liver Inhibition of RIPK1 with Nec-1 attenuates LPS-induced liver injury (78)
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research has focused more on differences in indicators such as

RIPK3 and MLKL (96, 97), but this does not necessarily indicate

that inhibition of RIPK1 is ineffective in treating sepsis. The

differences observed in RIPK3 and MLKL may be due to their

location downstream in the pathway, which amplifies signals and

makes them more likely to show differences. In recent years, the

COVID-19 pandemic, with its prominent inflammatory response,

has led some researchers to focus on RIPK1. In one study,

respiratory epithelial cells collected from throat smears of

symptomatic patients who had tested positive for SARS-CoV-2 by

PCR showed positive results for phosphorylated RIPK1, while no

phosphor-RIPK1-positive cells were detected in control samples

from healthy individuals (91). Another study of critically ill

COVID-19 patients found significantly higher levels of serum

RIPK1 than in healthy controls, with differences observed in

relation to disease severity (98).

Given the exploration of RIPK1 in rheumatoid immune diseases

and inflammatory reactions, there have been studies using RIPK1

inhibitors to regulate the inflammatory response in sepsis (Table 5).

The traditional RIPK1 inhibitors, necrostatin-1 (NEC-1) and

RIPA56 have been widely used in various animal inflammation

models, both of which can reduce the inflammatory response and

decrease necrotic apoptosis (23, 89, 90): in the TNF-a-induced SIRS
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model, the use of NEC-1 was found to alleviate the inflammatory

response and reduce the mortality rate of mice (23).

Subsequently, in the oleic acid-induced ARDS model, NEC-1

was also found to improve the oxygenation index of ARDS mice

(89). In the mouse model of acute on chronic liver failure, using LPS

to stimulate chronic liver failure mice, it was found that RIPK1-

mediated cell death in liver cells could be induced, and the use of

NEC-1 could alleviate the degree of acute liver failure. Furthermore,

the use of the RIPK1 inhibitor, RIIPA56, which is more selective for

RIPK1, led to a decrease in the expression of RIPK3 and the

phosphorylation of MLKL, significantly reducing necrotic

apoptosis in liver cells (90). Moreover, primidone, a drug

previously used to treat epilepsy, has been found to have an

inhibitory effect on RIPK1. By inhibiting the formation of

complex II, primidone can reduce the occurrence of necrotic

apoptosis in cells under TNF stimulation. Further animal

experiments have found that primidone can alleviate renal

ischemia-reperfusion injury, reduce necrotic apoptosis in the

renal outer medulla, protect renal function, and also reduce the

mortality rate of mice mediated by TNF-a (91). In terms of new

drug development, ZB-R-55 has improved its molecular structure,

pharmacokinetics, and other aspects, achieving a more efficient

RIPK1 inhibitory effect. In inhibiting the cytokine storm, it has
TABLE 4 clinical trial of RIPK1.

Studies Disease Conclusion Ref.

1 Sepsis No difference in RIPK1 in sepsis2.0 patients (95)

2 COVID-19 infection Compares to healthy control immunohistochemical analyses of all epithelial cell samples from the COVID-19 patients
were positive for active phosphorylated RIPK1

(91)

3 Critical COVID-19
patients

RIPK3, MLKL, HMGB1, and RIPK1 plasma concentrations of patients with severe COVID-19 were higher than those of
moderate patients

(98)

4 ventilator-induced
lung injury

Elevation of plasma RIPK3, but not RIPK1 or MLKL, in mechanically ventilated patients (99)
frontier
TABLE 5 RIPK1 inhibitors and their effect.

Studies Drug Species Model Conclusion Ref.

1 Nec-1 Mice TNF induced SIRS Nec-1 Administration Prevents Mortality, Cell Death, and Sustained Inflammation
Associated with TNF-Induced SIRS

(23)

2 Nec-1 Rat oleic acid-induced
acute respiratory
distress syndrome

Nec-1 pretreatment reduced necroptosis by inhibiting RIPK1- RIPK3-MLKL pathway in
OA-induced ARDS and decreased aggregation of inflammatory cells and TNF-a level in
BALF

(89)

3 Nec-1;
RIPA56

Rat LPS/GalN induced
acute on chronic liver
failure

NEC-1 treatment prevents the occurrence of ACLF, and RIPA56 prevents RIPK1/RIPK3
mediated necroptosis

(90)

4 primidone C57BL/
6JRj; MEF;
Cell lines

TNF induced SIRS Primidone can block the activity of RIPK1 in various cell types, preventing cell death and
reducing the release of pro-inflammatory cytokines. Improves TNFa-treated mice
hypothermia, lung injury and mortality

(91)

5 ZB-R-55 Mouse LPS/TNF-induced
sepsis

ZB-R-55, administered orally at 10 mg/kg, showed protection from hypothermia, cytokine
storm and survival rate.

(92)

6 SAR443122 Homo
Spain

COVID-19 infection No result publication (93)

7 DNL104 Homo
Spain

TNF -treated PBMC
from healthy donors

DNL104 can reduce phosphorylation of RIPK1 in TNF+zVAD treated PBMC. (94)
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shown a similar effect to dexamethasone (92). In addition, there is a

clinical trial using RIPK1 inhibitors for COVID-19 infected

patients. The trial has collected data, but the results have not yet

been published (93).

7 Discussion and perspectives

Sepsis is one of the most difficult clinical challenges. The

mechanism by which the initial infection leads to excessive

inflammatory responses remains unclear, but interventions

targeting cytokine storms may be used as one of the treatments to

reduce organ damage in individuals with sepsis, such as the use of

glucocorticoids to reduce inflammatory responses, but the benefits

are limited (100). Hemoperfusion and other approaches do not

produce the ideal therapeutic effect, suggesting that perhaps

interventions targeting cytokines at more upstream sites in the

pathway will achieve better results. The initial immune response

after pathogen invasion that causes the subsequent exacerbation of

the inflammatory response is one of the theoretical bases of the

cytokine storm, and the blockade of waterfall activation of the

cytokine storm may be an ideal target, while the regulation of

RIPK1 controls the direction of cellular outcomes after TNF-

a stimulation.

Previous clinical studies have primarily focused on measuring

the concentration of serum RIPK1, providing a reference for

predicting the occurrence and development of sepsis. However,

the advantages of RIPK1 in this direction seem to be less significant

compared to downstream proteins such as RIPK3 and MLKL. From

another perspective, it may be more suitable as an intervention

target. As a critical node in necroptosis, apoptosis, and necroptosis,

RIPK1 regulates the process of inflammatory cell death and thereby

affects the course of the inflammatory response. One clear thing is

that inhibi t ing RIPK1 can reduce RIPK3 and MLKL

phosphorylation, as well as decrease the release of inflammatory

factors such as HMGB-1, thus reducing the degree of the

inflammatory response. In fact, it even has an effect comparable

to that of dexamethasone (92). Therefore, RIPK1 inhibition may be

another means of alleviating the cytokine storm associated

with sepsis.

However, studies of RIPK1 in sepsis are still lacking. The effect

of treatments targeting RIPK1 on the development of sepsis has not

been clarified. Fortunately, there has been a growing body of
Frontiers in Immunology 08
research aimed at exploring the role of RIPK1 in regulating the

inflammatory response in sepsis. This shift towards targeting RIPK1

function has spurred the development of numerous drugs, which

are currently being evaluated in clinical trials. Thus, studies

examining the regulation of RIPK1 may hopefully provide a

better understanding of the mechanism of sepsis and directions

for the treatment of sepsis in the future.
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