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COVID-19 patients exhibit
increased peripheral circulation
of CD62L+ and perforin+ T cells
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Introduction: The emergence of SARS-CoV-2, which causes COVID-19, has led to

over 400 million reported cases worldwide. COVID-19 disease ranges from

asymptomatic infection to severe disease and may be impacted by individual

immune differences.

Methods:We used multiparameter flow cytometry to compare CD4+ and CD8+ T

cell responses in severe (ICU admitted) and non-severe (admitted to observational

unit) hospitalized COVID-19 patients.

Results:We found that patients with severe COVID- 19 had greater frequencies of

CD4+ T cells expressing CD62L compared to non-severe patients and greater

frequencies of perforin+ CD8+ T cells compared to recovered patients.

Furthermore, greater frequencies of CD62L+ CD4+ and CD8+ T cells were seen

in severely ill diabetic patients compared to non-severe and non-diabetic patients,

and increased CD62L+ CD4+ T cells were also seen in severely ill patients with

hypertension.

Discussion: This is the first report to show that CD62L+ T cells and perforin+ T

cells are associated with severe COVID-19 illness and are significantly increased in

patients with high-risk pre-existing conditions including older age and diabetes.

These data provide a potential biological marker for severe COVID-19.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), began

in late 2019 and has caused more than 400 million reported infections

worldwide (1, 2). COVID-19 disease spans a broad clinical spectrum,

ranging from asymptomatic infection to severe disease requiring

intensive care, mechanical ventilation, and prolonged medical support

for survival. Common symptoms include fever, cough, shortness of

breath, myalgia, and fatigue (3–5), and severe disease occurs in roughly

20%ofpatients (6).Advancedageand several chronic illnesses, including

diabetes, cardiac disease, and lung disease, have been found to confer

increased susceptibility to severe COVID-19 (7–9). Individuals who are

immunocompromised, including thosewhohave undergone solid organ

transplantation or stem cell transplantation, are also at greater risk of

severe disease (6, 10–12).

The broad clinical spectrum of COVID-19 suggests that differences

in the immune systems of individual patientsmay be at play (13). Several

studies have confirmed the presence of SARS-CoV-2 reactive CD4+ and

CD8+ T cells in hospitalized patients (14–16). However, it is unclear if

specific T-cell subsets are responsible for differences in disease severity,

especially in high-risk individuals. T cells are crucial for eliminating viral

infections, including respiratory infections due to SARS-CoV-2 and

other coronaviruses (17–19). CD4+ T cells provide critical help to other

immune cells, includingnecessary signals for B cell antibodyproduction,

and perform effector functions including cytokine secretion (20, 21).

Cytotoxic CD8+ T cells mediate viral clearance by secreting the pore-

forming protein perforin and apoptosis-inducing granzymes, which

facilitate the death of infected cells (22, 23). Multiple studies have

shown that SARS-CoV-2 infection leads to the activation of CD4+ T

helper (Th) cells and cytotoxic CD8+ andCD4+T cells, which tend to be

of higher frequency in patients withmore severe disease (13, 15, 24–29).

While T cells are necessary for viral clearance, infiltration of adaptive

immune cells into the lungs also results in increased inflammation and

pulmonary edema, which may lead to lung injury (30). The immune

system employs several mechanisms to avoid hyperactivation of the T

cell response and therefore subsequent tissue damage, including the

formation of regulatoryCD4+ andCD8+T cells (Tregs) and the binding

of immune checkpoint and inhibitory receptors onT cells, such as PD-1,

CTLA-4, and Tim-3, with their ligands (31–34). Although Tregs have

been shown to limit acute lung injury and virus-mediated lung

pathology, their role in COVID-19 pathology remains unclear (35–37).

However, studies have demonstrated that COVID-19 patients have

virus-specific T cells expressing PD-1 and Tim-3 that tend to increase

with disease progression and severity (27, 38–42).

While recent studies have provided evidence of T cell subsets that

may be associated with severe COVID-19, the mechanism by which T

cells enter the lungs during SARS-CoV-2 infection is unclear. CD62L is a

homing ligand which plays multiple roles in T cell trafficking, the most

well characterized of which is its role in T cell trafficking to the lymph

nodes (43). However, more recent evidence shows that CD62L also

mediates the entry of T cells into non-lymphoid tissues (44), including

lung tissue during influenza infection inmice (45), suggesting that itmay

be an important mediator of T cell trafficking to the lungs during

respiratory infections. Additionally, despite the known association

between COVID-19 severity and several underlying conditions, it is

unclear whether or how chronic illness impacts the presence of T cell
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subsets during severe COVID-19. Therefore, we used multiparameter

flow cytometry to examine the expression of T cell subsets, including

CD62L+ T cells expressing markers of activation, Tregs, and immune

checkpointmarkers, aswell as cytotoxic CD8+T cells in severe and non-

severe hospitalized COVID-19 patients, including patients with chronic

illnesses such as diabetes and hypertension.
Results

Patient demographics

To examine the association between T cell subsets and severe

COVID-19, blood samples were obtained from 30 patients enrolled

into a prospective COVID-19 convalescent plasma (CCP) clinical trial

after hospitalization with COVID-19 (46). Blood was drawn pre-CCP

infusion from30 randomly selected subjects out of 542 enrolled patients.

All samples were obtained in April and May of 2020, before the

availability of COVID-19 vaccines and emergence of SARS-CoV-2

variants of concern. In this study, patients were categorized as having

non-severe disease if they were admitted for observation but not

admitted into the intensive care unit (ICU) (N=14), and patients

admitted into the ICU were categorized as having severe disease

(N=16). The majority of severe patients required mechanical

ventilation (43.8%, p=0.01) or extracorporeal membrane oxygenation

(ECMO, 31.3%, p=0.04), while most non-severe patients only required

oxygen via nasal canula (78.6%, p<0.00). Patient demographics, clinical

characteristics, and treatments given for COVID-19 are listed in Table 1.

The severe and non-severe groups were similar in terms of age (p=0.55)

and sex (p>0.99)—the non-severe group had an average age of 54 (range

25-87) and64.3%male sex, and the severe grouphad an average age of 58

(range 26-91) and 68.8% male sex. The two groups were also similar in

terms of race (p=0.38 formultiracial, p>0.99 for all other categories) and

ethnicity (p>0.99 Hispanic), as well as in the frequency of pre-existing

conditions including diabetes (p=0.72), hypertension (p=0.71),

immunosuppression (p>0.99), and malignancy (p>0.99). Additionally,

many patients in both the severe and non-severe groups had body mass

indexes (BMI) >30 (p=0.18) and as high as 57.6, indicative of obesity. As

expected, the severe group was hospitalized significantly longer, with an

average stayof 25.8 (range of 5-46)days compared to10.4 (rangeof 4-42)

days for the non-severe group (p<0.01).More severe patients were given

prophylactic anticoagulants (87.5% severe, 50.0% non-severe, p=0.05)

and corticosteroids (31.3% severe, 0% non-severe, p=0.04) compared to

the non-severe group, whereas non-severe patients were treated more

oftenwith remdesivir (35.7%non-severe, 0% severe, p=0.01).One severe

patient was treated with Tocilizumab (p>0.99). Lastly, no mortality was

seen in the non-severe group, whereas the severe group had a mortality

rate of 31.3% (p=0.04).
Seroconversion in non-severe and severe
COVID-19 patients

To determine whether the patients had mounted an immune

response to COVID-19, we performed 2 separate ELISAs—one which

measures anti-SARS-CoV-2 spike receptor binding domain (RBD) IgG

antibodies (47) and another which measures anti-SARS-CoV-2
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TABLE 1 Patient demographics and COVID-19 treatments.

Non-Severe
COVID-19

Severe COVID-19 p value

N 14 16

Age
(Median, range)

54 (25-87) 58 (26-91) 0.55

Sex
(%, N)

64.3% (9) M
35.7% (5) F

68.8% (11) M
31.3% (5) F

>0.99

Race
(%, N)

White 35.7% (5) 37.5% (6) >0.99

African American 7.1% (1) 12.5% (2) >0.99

Asian 0% (0) 6.3% (1) >0.99

Native American 0% (0) 6.3% (1) >0.99

Multiple 28.6% (4) 12.5% (2) 0.38

Unknown 28.6% (4) 25.0% (4) >0.99

Ethnicity
(%, N)

Hispanic 57.1% (8) 62.5% (10) >0.99

Comorbidities
(%, N)

BMI
(Median, range, N)

35.3 (30-57.6)
(n=7)

30.2 (21-42.8)
(n=15)

0.18

Diabetes 64.3% (9) 56.3% (9) 0.72

Hypertension 28.3% (4) 37.5% (6) 0.71

Malignancy 14.3% (2) 12.5% (2) >0.99

Immune Suppressed 0% (0) 6.3% (1) >0.99

Lung Disease 0% (0) 18.8% (3) 0.23

HIV+ 7.1% (1) 0% (0) 0.47

Pregnancy 7.1% (1) 0% (0) 0.47

# Of Comorbidities (Median, range) 1.3 (0-4) 1.5 (0-5) 0.64

Supplemental Oxygen Support (%, N)

Nasal Canula 78.6% (11) 0% (0) <0.01

Face Mask 7.1% (1) 0% (0) 0.47

Humidified High Flow Nasal Canula 14.3% (2) 18.8% (3) >0.99

Non-rebreather Mask 0% (0) 6.3% (1) >0.99

Mechanical Ventilation 0% (0) 43.8% (7) 0.01

ECMO 0% (0) 31.3% (5) 0.04

Length of Hospitalization (Median, range) 10.4 (4-42) 25.8 (5-46) <0.01

ICU Admission
(%, N)

0% (0) 100% (16) <0.01

COVID19 Treatment
(%, N)

Anticoagulation 50.0% (7)
Enoxaparin (6)
Heparin (1)

87.5% (14)
Lovenox (3)
Heparin (7)
Warfarin (1)
Enoxaparin (1)
Angiomax (1)

0.05

(Continued)
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nucleocapsid (N) IgG (48). 100%of severely ill patients exhibitedpositive

IgG antibody to RBD, and all but 2 patients exhibited positive IgG

antibody forN (84.6% reactive). In the non-severe group, themajority of

patients exhibitedpositive IgGantibody toRBDandN, althoughat lower

percentages than the severe group (78.6% RBD reactive and 64.3% N

reactive, Table 2). Four patients, including 2 severe and 2 non-severe

patients, were positive for RBD antibody but not N antibody. Patients

who were negative for both RBD and N antibodies (3 non-severe

patients) were immunocompromised, including 1 patient with

lymphoma and one with HIV. Additionally, one pregnant patient was

negative for both RBD and N (Table S1). Of the 4 patients in this cohort

with malignancies, 2 were positive for both RBD and N antibodies, 1

patient was positive for RBD but not N, and one patient was negative for

both antibody responses. These results are consistent with previous

observations that patients with certain underlying conditions which

suppress the immune response may be at risk for non-seroconversion

after SARS-CoV-2 infection (49, 50). As expected, 100% of the healthy

controls were negative for antibodies to both SARS-CoV 2 N and RBD,

while 4/5 (80%)of the recoveredpatientswerepositive for both (1patient

was negative for both RBD andN). Overall, these results suggest that the

majority of our patient population mounted an adaptive immune

response to SARS-CoV-2.
Severe COVID-19 patients have greater
frequencies of CD4+ T cells expressing CD62L

CD62L, also called L-selectin, mediates the migration of

lymphocytes to lymph nodes, the spleen, and virus-infected tissues
Frontiers in Immunology 04
(43, 51). Therefore, we measured the frequencies of CD62L+ CD4+

and CD8+ T cells in our patient cohort via flow cytometry. A detailed

gating strategy for all flow cytometry analysis can be found in Figure

S1 Overall, the number of total T cells available for analysis from non-

severe patients was often lower than that from severe patients. This is

because non-severe patients tended to have a normal overall white

blood cell count, whereas the severely ill patients tended to have a

peripheral leukocytosis (data not shown). However, the percentages

of total CD4+ (p=0.42) and CD8+ (p=0.48) T cells within the CD3+

population did not differ between the patient groups (Figure S2A, B).

We found that severe COVID-19 patients had greater frequencies of

CD4+ T cells expressing CD62L compared to non-severe COVID-19

patients (p=0.01), and recovered patients had greater frequencies of

these cells compared to non-severe patients (p=0.02) and healthy

controls (p=0.04) (Figure 1A). As these cells may home to lymph

nodes or infected tissue, and severe COVID-19 is thought to be driven

in part by an increase in activated T cells (28, 52–54), we examined

the expression of the activation markers CD27 and CD25 on the

CD62L+ T cells. The percentages of cells expressing CD27 (p=0.36)

and CD25 (p=0.48) in the CD4+ CD62L+ population itself did not

differ between the patient groups (Figure S3A, B). However, we also

measured the frequencies of CD62L+ T cells co-expressing either

CD27 or CD25 within the total CD4+ T cell population, as we wanted

to understand whether the increase in CD62L+ cells was also driving

an overall increase in activated cells. No significant differences were

seen in the percentages of CD62L+ CD25+ cells (p=0.07, Figure S4A).

However, severe COVID-19 patients had greater frequencies of CD27

+ CD62L+ cells (Figure 1B, p=0.02) within the total CD4+ T cell

population. Recovered patients also had greater CD4+ CD27+ CD62L
TABLE 1 Continued

Non-Severe
COVID-19

Severe COVID-19 p value

Corticosteroids 0% (0) 31.3% (5)
Dexamethasone (4)
Hydrocortisone (1)

0.04

Remdesivir 35.7% (5) 0% (0) 0.01

Monoclonal Antibody 0% (0) 6.25% (1)
Tocilizumab (1)

>0.99

Convalescent Plasma 100% (14) 100% (16) >0.99

Inpatient Mortality
(%, N)

0% (0) 31.3% (5) 0.04

Hospital Day of Blood Draw (Median, range) 5 (2-16) 10 (1-31) 0.78
fron
p values were generated through T test or Fisher exact test comparing non-severe vs. severe patients.
p values less than 0.05 are highlighted in bold font.
TABLE 2 SARS-CoV-2 RBD and N ELISA reactivity.

Non-Severe COVID-19
(n=14)

Severe COVID-19 (n=13) COVID Recovered (n=5) Healthy controls (n=4)

RBD Reactive 78.6% (11) 100% (13) 80.0% (4) 0% (0)

N Reactive 64.3% (9) 84.6% (11) 80.0% (4) 0% (0)

RBD and N Reactive 64.3% (9/14) 84.6% (11/13) 80.0% (4/5) 0% (0/4)

Only RBD Reactive 14.3% (2/14) 15.4% (2/13) 0% (0/5) 0% (0/4)

RBD and N Non-reactive 21.4% (3/14) 0% (0/13) 20% (1/5) 100% (4/4)
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+ cells compared to non-severe patients (p=0.01) and healthy controls

(p=0.04) (Figure 1B).

Several studies have also confirmed the presence of immune

checkpoint receptors, including CTLA-4, PD-1, and Tim-3 on the

T cells of COVID-19 patients, often increasing as symptoms and

disease severity progress (38–40, 42). Therefore, we measured the

percentages of cells expressing CTLA-4, PD-1, or Tim-3 within the

CD62L+ T cell populations (Figure S3C-E) and the percentages of

CD62L+ cells also positive for each marker within the total CD4+ and

CD8+ populations (Figures 1C, D, Figure S4B). CTLA-4 (p=0.72),

Tim-3 (p=0.38), and PD-1 (p=0.32) percentages within the CD62L+

population did not differ between the patient groups (Figure S3C-E).
Frontiers in Immunology 05
However, severe COVID-19 patients had more CTLA-4+ CD62L+

cells (Figure 1C, p=0.01) and PD-1+ CD62L+ cells (Figure 1D,

p=0.049) in the total CD4+ population compared to non-severe

patients. Severe patients also had greater CTLA-4+ CD62L+ CD4+

T cells compared to healthy controls (p=0.04, Figure 1C). While a

one-way ANOVA of Tim-3+ CD62L+ was significant (p=0.04), none

of the multiple comparisons reached significance (Figure S4B).

Similar to the CD4+ T cells, recovered patients had greater

CD62L+ CD8+ T cells compared to non-severe patients (p<0.01)

and healthy controls (p=0.04). However, there was no statistically

significant difference in CD62L+ CD8+ T cells between the severe and

non-severe patients (p=0.06) despite a trend toward greater CD62L
A

B D

E

F

C

FIGURE 1

Severe and recovered COVID-19 patients have greater frequencies of CD62L+ T cells. The frequencies of CD4+ and CD8+ T cells (viable, CD14-, CD56-
, CD19-, CD3+, CD4+ or CD8+ cells) expressing CD62L in non-severe and severe COVID-19 patients, recovered COVID-19 patients, and healthy
controls were assessed by flow cytometry. (A) CD62L+ CD4+ T cells and representative flow cytometry plots. Each plot represents a different patient;
percentages of CD4+ CD62L+ CD27+ cells (B), CD4+ CD62L+ CTLA-4+ cells (C), CD4+ CD62L+ PD-1+ cells (D), CD8+ CD62L+ cells and
representative flow plots (E), and CD8+ CD62L+ CD27+ cells (F) within the total CD4+ T cell (A-D) and CD8+ T cell (E, F) populations; *p<0.05,
**p<0.01 one-way ANOVA with multiple comparisons correction. Data are graphed as percentages of the total CD4+ or CD8+ T cell population.
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positivity in the severe patients (Figure 1E). There were no significant

differences in the percentages of cells expressing CD27 (p=0.06),

CD25 (p=0.77), CTLA-4 (p=0.21), Tim-3 (p=0.46), or PD-1 (p=0.20)

in the CD8+ CD62L+ population (Figure S3F-J). However, within the

total CD8+T cell population, recovered patients had greater percentages

of CD27+ CD62L+ cells compared to non-severe (p<0.01) and healthy

controls (p=0.02). However, there was no significant difference between

the non-severe and severe patients (p=0.10) (Figure 1F). There were no

significant differences inCD25+CD62L+ (p=0.07, Figure S4C),CTLA-4

+CD62L+ (p=0.07, Figure S4D), Tim-3+CD62L+ (p=0.10, Figure S4E),

or PD-1+ CD62L+ (p=0.02 one-way ANOVA, but no significant

multiple comparisons, Figure S4F) CD8+ T cells. We next evaluated

CD57 expression as amarker of cytotoxic potential in CD8+T cells (55).

While a one-way ANOVA analysis indicated a significant difference

(p=0.02), none of the subsequentmultiple comparisonswere statistically

significant (Figure S4G). These results suggest that severe COVID-19

patients havemore CD62L+ T cells compared to non-severe COVID-19

patients. Although the expression of activation and immune checkpoint

markers in the CD62L+ T cells is similar in the non-severe and severe

patients (Figure S3), the increase in CD62L+ T cells seen in the severe

group is also driving an increase in T cells positive for both CD62L and

certain immune checkpoint or activation markers (Figure 1, Figure S4).
Frontiers in Immunology 06
Severe COVID-19 patients have greater
frequencies of CD62L+ Tregs

Given the increase in CD62L+ T cells in severe COVID-19 patients,

we wanted to further understand whether these cells may be acting in a

pro-inflammatory manner or may be acting to inhibit the immune

response. Therefore, next examined the frequency CD62L+ Tregs, as

Tregs are important immunomodulatory cells that may help limit lung

pathology. Tregs were identified by low expression of CD127 and co-

expression of CD25 and FoxP3 (CD127lo CD25+ FoxP3+) (Figure 2A).

We found that severe patients had greater frequencies of CD62L+ CD4+

Tregs compared to non-severe (p=0.02) and healthy patients (p=0.04)

(Figure 2B). No significant differences were seen in the CD8+ CD25+

FoxP3+ Tregs (p=0.07, Figure 2C). These results indicate that severe

COVID-19 patients exhibit increased expression of CD4+ and CD8+

CD62L+ Tregs, which may form as a result of more severe pathology in

this group. To determine whether the increase in CD62L+ Tregs was

driving an overall increase in Tregs, we also measured the total

frequencies of Tregs (regardless of CD62L expression) in the CD4+

and CD8+ populations. The frequencies of overall CD4+ (p=0.47) and

CD8+ Tregs (p=0.13) did not differ significantly between the patient

groups (Figure S2C, D).
A

B C

FIGURE 2

Severe COVID-19 patients have more CD4+ CD62L+ Tregs. The frequencies of CD4+ and CD8+ Tregs (viable, CD14- CD56-, CD19-, CD3+, CD4+ or
CD8+, CD127lo, CD25+ FoxP3+) in non-severe and severe COVID-19 patients, recovered COVID-19 patients, and healthy controls were assessed by
flow cytometry. (A) Example flow cytometry staining showing CD4+ CD62L+ T cells being gated on CD127lo, followed by gating for CD25+ FoxP3+ to
identify Tregs. (B) CD4+ CD62L+ Tregs; (C) CD8+ CD62L+ Tregs. *p<0.05 one way ANOVA with multiple comparisons correction.
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Recovered COVID-19 patients have
increased frequencies of CD62L+ effector T
cells

As CD62L expression differs on T cell subsets (56), we used the

markers CCR7 andCD45RA tomeasure the frequencies of naïve (CCR7+

CD45RA+), effector (CCR7- CD45RA+), effector memory (CCR7-

CD45RA-), and central memory (CCR7+ CD45RA-) T cells in the CD4

+ CD62L+ and CD8+ CD62L+ populations (Figure 3A). Perhaps

surprisingly, we found that the overall frequencies of naïve, central

memory, effector, and effector memory CD4 and CD8 T cells did not

differ significantly betweenour patient groups (Figure S5).However,when

looking at the CD62L+ CD4+ T cell population, we found that recovered

COVID-19 patients had greater frequencies of effector cells compared to

non-severe patients (p<0.01), severe patients (p<0.01), and healthy

controls (p<0.01). Additionally, severe COVID-19 patients had greater

frequencies of central memory cells within the CD62L+ CD4+ T cells

compared to recovered patients (p=0.03). No differences were seen in the

frequencies of CD4+ CD62L+ effector memory (p=0.38) or naïve cells

(p=0.50) (Figure S6A-D). In the CD8+ CD62L+ population, healthy

controls had greater frequencies of central memory cells compared to

non-severe COVID-19 patients (p=0.03), but no differences were seen in

the naïve (p=0.32), effector (p=0.66), or effector memory cells (p=0.46)

(Figure S6E-H). We next looked at the frequencies of naïve, central
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memory, effector, and effector memory cells expressing CD62L within

the total CD4+ and CD8+ T cell populations. We found that severe

patients had greater frequencies of centralmemoryCD62L+CD4+T cells

compared to non-severe patients (p=0.02), and recovered patients had

more effector CD62L+ CD4+ T cells compared to non-severe patients

(p<0.00), severe patients (p<0.01), and healthy controls (p<0.01)

(Figures 3A, B). Additionally, recovered COVID-19 patients had higher

frequencies of CD4+ CD62L+ effector memory cells compared to non-

severe COVID-19 patients (p=0.04) (Figure 3B). No differences were seen

in the CD4+ CD62L+ naïve cells (p=0.06, Figure 3B). In the CD8+ T cell

population, recovered patients also had greater effector cell frequencies

compared to non-severe patients (p<0.01), severe patients (p=0.01), and

healthycontrols (p<0.01) (Figure3C).Nodifferenceswere seen in thenaïve

(p=0.06) or centralmemory (p=0.13)CD8+CD62L+cells, and the effector

memory cells were significant by one-way ANOVA (p=0.04), but the

multiple comparisonswere not significant (Figure 3C). These results show

that recovery fromCOVID-19 results in increasedCD62L+ effectorCD4+

and CD8+ T cells.

Severe COVID-19 patients have greater
frequencies of perforin+ CD8+ T cells

Cytotoxic CD8+ T cells secrete perforin and granzymes to kill

virus-infected target cells and are crucial mediators of the anti-viral
A

B

C

FIGURE 3

Immunological memory phenotyping of CD62L+ T cells. Expression of CCR7 and CD45RA on CD62L+ CD4+ and CD8+ T cells (viable, CD14-, CD56-,
CD19-, CD3+, CD4+ or CD8+ cells) in non-severe and severe COVID-19 patients, recovered COVID-19 patients, and healthy controls was assessed by
flow cytometry. (A) Representative diagram and flow cytometry plots showing naïve CD4+ CD62L+ T cells (CCR7+ CD45RA+), central memory CD4+
CD62L+ T cells (CCR7+ CD45RA-), effector memory CD4+ CD62L+ T cells (CCR7- CD45RA-), and effector CD4+ CD62L+ T cells (CCR7- CD45RA+);
(B) percentages of CD62L+ naïve, effector, central memory, and effector memory cells within the CD4+ T cell population; (C) percentages of CD62L+
naïve, effector, central memory, and effector memory cells within the CD8+ T cell population. *p<0.05, **p<0.01, ***p<0.001 one-way ANOVA with
multiple comparisons correction.
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adaptive immune response (19, 22). Therefore, we measured the

frequencies of CD8+ T cells expressing perforin and granzyme B as

well as CD57, a marker of terminally differentiated cytotoxic T cells

(55). Severe COVID-19 patients had greater percentages of perforin+

CD8+ T cells compared to recovered patients (Figure 4A, p=0.03).

However, frequencies of granzyme B+ cells (Figure S7A, p=0.24) and

CD57+ cells (Figure S7B, p=0.49) did not differ between the groups.

Effector and cytotoxic T cell frequencies during viral infection tend to

increase with age, and age is a known risk factor for COVID-19

severity (57, 58). Therefore, we examined whether perforin or

granzyme B positivity correlated with age in our COVID-19

patients. We found that the frequency of perforin+ CD8+ T cells

(Figure 4B, p=0.04, r=0.63), but not granzyme B+ CD8+ T cells

(Figure S7C, p=0.25, r=0.38), was positively correlated with age. These

results suggest that increased CD8+ T cell cytotoxicity associated with

age may contribute to an increased risk of COVID-19 severity.

However, we were unable to obtain this data in non-severe patients

due to limited PBMCs in these samples.
Severe COVID-19 patients with diabetes and
hypertension have greater frequencies of T
cells expressing CD62L

Several co-morbidities, including diabetes and hypertension,

confer greater risk of COVID-19 severity (7). Therefore, we

compared severely ill and non-severely ill COVID-19 patients with

or without diabetes or hypertension to determine whether the

immune responses to COVID-19 differ in these patients. We found

that patients with severe COVID-19 and diabetes had greater

frequencies of CD62L+ CD4+ T cells compared to diabetics with

non-severe COVID-19 (p<0.01) and non-diabetics with non-severe

(p=0.02) or severe disease (p=0.04) (Figure 5A). Diabetic severely ill

patients also had greater frequencies of CD8+ CD62L+ cells

compared to diabetic non-severely ill patients (p=0.01) and non-

severe patients without diabetes (p=0.04) (Figure 5B). Next, we made

similar comparisons in patients with hypertension. Severely ill

patients with hypertension had greater frequencies of CD4+ CD62L

+ T cells compared to non-severely ill patients with hypertension

(p=0.04) and non-severe patients without hypertension (p<0.01)

(Figure 6A). However, no significant differences were seen in the

CD62L+ CD8+ T cells in hypertensive patients (p=0.08) (Figure 6B).
Frontiers in Immunology 08
These results raise the possibility that increased CD62L+ T cell

frequencies in patients with certain chronic illnesses may play a

role in increased susceptibility to viral disease and highlight the

need for further studies in these patient groups.
Discussion

Several risk factors for severe COVID-19 disease have been

identified, including advanced age, male sex, and multiple chronic

illnesses including diabetes, hypertension, cardiovascular disease,

lung disease, and immunodeficiencies (59, 60). However, the

biological mechanisms underlying these susceptibilities are unclear.

Here, we show for the first time that CD62L+ CD4+ T cells are

increased in ICU patients with severe COVID-19 compared to non-

severe hospitalized COVID-19 patients. Additionally, both CD4+

CD62L+ and CD8+ CD62L+ T cells were increased in severe

COVID-19 patients with diabetes in our cohort, and CD4+ CD62L

+ T cells were increased in severely ill COVID-19 patients with

hypertension. While it is possible that the increase in CD62L+ T cells

is a consequence of certain pre-existing illnesses, such as diabetes,

further studies in these patients and in animal models are needed to

determine a causative link. It is likewise possible that the increase in

CD62L+ T cells in diabetic and hypertensive patients is driven by

severe COVID-19 illness itself rather than any pre-existing

conditions. There is also a possibility that the increase in CD62L+

T cells could be due to an increased average day of blood draw in the

severe COVID-19 group. We think this is unlikely, as blood draws

were obtained during a wide range of hospital days in both groups.

Statistical analysis also indicated that there was no significant

difference in blood draw date between the non-severe and severe

groups (Table 1). Additionally, the increased average blood draw day

in the severe COVID-19 group is impacted by both the increased

length of hospital admission and the time it takes for severe COVID-

19 symptoms to develop. It is also possible that age may impact the

expression of CD62L, as has been previously shown (61). However,

both our non-severe and severe COVID-19 groups had similar

average ages and ranges of age. Additionally, much of our patient

cohort had BMI >30, which classifies them as obese, and many studies

have reported an increased risk of severe COVID-19 in obese

individuals (62–64). While obesity has been shown to modify T cell

phenotypes and expansion during viral infection (65, 66), it is difficult
A B

FIGURE 4

Severe COVID-19 patients have greater frequencies of perforin+ CD8+ T cells. (A) The frequencies of CD8+ T cells (viable, CD14-, CD56-, CD19-, CD3+,
CD8+ cells) expressing perforin in non-severe and severe COVID-19 patients, recovered COVID-19 patients, and healthy controls were assessed by flow
cytometry. (B) Correlation between age and perforin+ CD8+ T cells. *p<0.05 one-way ANOVA with multiple comparisons correction.
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to tease out the difference between the effects of obesity and common

co-morbidities, such as heart disease and diabetes, in humans.

Type 2 diabetes and hypertension are estimated to affect 462

million and 1.39 billion individuals worldwide, respectively (67, 68).

The mechanisms underlying the increased susceptibility to COVID-

19 in these patients are unclear but may include increased viral

replication due to uncontrolled glucose levels, increased levels of

inflammatory cytokines and reactive oxygen species, failure of

insulin-responsive organs including the liver, and dysregulation of

T and NK cell responses in diabetic patients (69). Patients with type 2

diabetes are also susceptible to severe disease outcomes with other

viral infections, including West Nile virus, influenza, and other lower

respiratory tract infections (70–73). Therefore, understanding the

immune response to viral infections in diabetic patients is critical to

protect this vulnerable patient population. Multiple studies in mice

support a role for CD62L in the development of diabetes. For

example, antibody-mediated blockade of CD62L in non-obese

diabetic (NOD) mice protects against insulitis and diabetes (74, 75),

particularly in neonatal mice. However, follow-up studies with

CD62L-/- NOD mice did not reveal any difference in diabetes

induction between CD62L+/+ and CD62L-/- mice (76), suggesting

that other mechanisms may be able to compensate for the lack of

CD62L during diabetes development. Further studies examining the

role of CD62L in diabetes, and studies examining the immune
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response to COVID-19 in diabetic mouse models will likely provide

important insight.

CD62L is expressed on naïve and central memory T cells,

enabling their trafficking into peripheral lymph nodes (77, 78).

CD62L has not traditionally been considered important for effector

T cell homing, since it is downregulated following T cell priming (79).

However, other studies have shown that CD62L is re-expressed on

CD8+ T cells re-entering the bloodstream after activation in the

lymph node and that it is necessary for the recruitment of CD8+ T

cells to virus-infected tissues, including lung tissue following

influenza infection (45). Future studies should examine whether

CD62L+ T cells are similarly capable of homing to lung tissue

during COVID-19 infection and whether they contribute to

pulmonary disease pathology. Other studies have identified CXCR3,

CXCR6, and CCR5 as other potential mediators of immune cell

trafficking to the lungs during COVID-19 infection (80, 81), and one

of these studies also demonstrated that T and NK cells that expressed

these receptors in COVID-19 patients showed greater signs of

activation (80). Further studies examining the contribution of these

and other homing receptors in severe COVID-19 should provide

critical information regarding the pathogenesis of COVID-19 and

could perhaps explain differences in disease severity among

individuals. While our study focused on human T cells in

circulation, future studies examining the T cell phenotypes present
A B

FIGURE 5

Diabetic severe COVID-19 patients have greater frequencies of CD62L+ T cells. The frequencies of CD4+ (A) and CD8+ T cells (viable, CD14-, CD56-,
CD19-, CD3+, CD4+ or CD8+ cells) (B) expressing CD62L in severe and non-severe COVID-19 patients with or without diabetes were assessed by flow
cytometry. *p<0.05, **p<0.01 one-way ANOVA with multiple comparisons correction.
A B

FIGURE 6

Severe COVID-19 patients with hypertension have greater frequencies of CD62L+ CD4+ T cells. The frequencies of CD4+ (A) and CD8+ T cells (viable,
CD14-, CD56-, CD19-, CD3+, CD4+ or CD8+ cells) (B) expressing CD62L in severe and non-severe COVID-19 patients with or without hypertension
were assessed by flow cytometry. *p<0.05, **p<0.01 one-way ANOVA with multiple comparisons correction.
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in the lungs, as well as secondary lymphoid tissues, during COVID-19

in animal models are important and should also provide important

insight into tissue-specific functions of T cells during viral infections.

In our study, severely ill COVID-19 patients had greater

frequencies of CD4+ T cells co-expressing CD62L and immune

checkpoint markers, specifically PD-1 and CTLA-4. T cells are

critically important for mediating clearance of viral infections,

including several respiratory infections. However, this process can

also lead to organ damage and progression of other disease pathology

if these responses are left unchecked. Immune checkpoint molecules

and inhibitory receptors, such as PD-1, CTLA-4, and Tim-3, act as

brakes for the immune response (31–33, 82). PD-1 is expressed on T

cells in acute viral infections, including HBV and HCV, where it may

play a role in dampening the T cell response during the later stages of

infection to prevent organ damage (83, 84). In COVID-19 patients,

one study demonstrated that PD-1 and Tim-3 were increased in

expression as COVID-19 symptoms progressed while another found

increased PD-1 expression in patients with active disease compared to

patients who had recovered from mild disease (27, 39). Although PD-

1 and other immune checkpoint receptors are often considered

markers of exhausted cells, multiple lines of evidence suggest that

PD-1+ T cells maintain at least some effector functions. In COVID-19

patients, PD-1+ CD8+ T cells have been found to express perforin

and granzyme, proliferate upon re-stimulation, and express interferon

gamma (38, 41, 85). Therefore, it cannot be assumed that T cells

expressing immune checkpoint receptors in COVID patients are non-

functional. The exact contribution of PD-1 in either promoting or

preventing COVID-19 pathology needs further study. We also found

higher frequencies of CD62L+ CD4+ and CD62L+ CD8+ Tregs in our

severe COVID-19 patients. Previous studies have reported that

CD62L+ Tregs have superior suppressive functions and

proliferative capacity compared to CD62L- T cells (86, 87).

However, the exact role of Tregs in COVID-19 has not yet been

elucidated. It has been reported that patients with prolonged SARS-

CoV-2 positivity have greater frequencies of Tregs (88), which could

suggest that the persistence of Tregs in COVID-19 may prevent viral

clearance. Future studies should focus on defining the roles of Tregs

and immune checkpoints in COVID-19, especially focusing on T cells

with potential tissue homing capabilities and defining the suppressive

capabilities of CD62L+ Tregs in COVID-19.

We also found that severely ill COVID-19 patients have greater

frequencies of perforin+ CD8+ T cells compared to recovered

patients, indicating greater cytotoxic potential in these patients. In

particular, the frequency of perforin+ CD8+ T cells in severe COVID-

19 patients positively correlated with age. Advanced age is known to

confer a greater risk of severe COVID-19, as well as susceptibility to

other viral infections (89, 90). Aging results in numerous changes to

the immune system, a process termed immunosenescence. A major

feature of immunosenescence is a shift towards highly differentiated T

cells and memory T cells as the generation of naïve T cells in the

thymus declines (91–93). Overall, immunosenescence results in an

increase in susceptibility to infections, decreased vaccine effectiveness,

and increased susceptibility to autoimmunity and inflammation (94).

In COVID-19 patients, one study demonstrated that COVID-19

infection amplified age-associated immune changes (58). Another

study found that young COVID-19 patients had greater percentages

of CD8+ T cells expressing perforin, granzyme A, and granzyme B
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compared to healthy controls of the same age, but the same difference

was not seen in elderly COVID-19 patients (41). This suggests that

either cytotoxic T cell responses to SARS-CoV-2 are either inhibited

in patients of advanced age or that older patients already have a

higher baseline level of cytotoxic CD8+ T cells pre-infection, the latter

explanation being the most consistent with previous studies.

Additionally, several studies have demonstrated the increased

presence of cytotoxic T cells in severe COVID-19, and recent

studies suggest that the cytotoxic T cell response may be associated

with the persistence of COVID-19 symptoms after the acute phase of

infection (95–97). Given the important role of cytotoxic T cells in

killing virus-infected cells and their potential to cause endothelial

damage (97), further studies examining the functions of cytotoxic T

cells in severe COVID-19 patients of all ages are prudent.

It has been suggested that increased T cell activation and

inflammation are major drivers of severe COVID-19. However, our

results suggest that homing ligands, specifically CD62L, may also be

important indicators of severe COVID-19 requiring ICU admission.

However, our study is limited in scope due to having a relatively small

cohort and blood samples at only one timepoint per patient.

Additionally, we have very limited information regarding the course

of COVID-19 illness or medical history in our recovered and healthy

cohorts, as these samples were obtained from a blood bank rather

than through the hospital. Mechanistic studies are needed to confirm

the tissue homing potential of CD62L+ T cells in COVID-19 and are

especially necessary to determine whether pre-existing chronic

conditions affect the expression of CD62L or other immune

mediators. In addition, monitoring changes in CD62L expression at

multiple timepoints during acute illness and recovery is critical to

understand the function of CD62L during COVID-19. Such studies

are critically important and may identify targets for future SARS-

CoV-2 diagnostics and therapeutics.
Methods

Study design

Severe (admitted to ICU) and non-severe (admitted to the

hospital for observation but not admitted into the ICU) COVID-19

patients were recruited as part of a prospective clinical trial of

COVID-19 convalescent plasma therapy (CCP) (46). Standard ICU

admission criteria for COVID included oxygen requirement >6L/min,

hemodynamic instability, and/or need for higher level monitoring

and nursing care in the opinion of the treating physician. Blood

samples taken pre-CCP infusion were obtained from 30 randomly

selected patients admitted to the University of Colorado Hospital

(Aurora, CO) in April and May 2020, before the availability of

COVID-19 vaccines and emergence of variants of concern. Patients

admitted to this study met the following inclusion criteria: age 18

years or older, laboratory-confirmed diagnosis of SARS-CoV-2 by

PCR, were admitted to the hospital for COVID-19, and informed

consent was obtained. Patients were excluded if they had a history of

transfusion reaction, received pooled immunoglobulin in the 30 days

prior to enrollment, or if the clinician determined that the risk of CCP

administration outweighed the potential benefits. All demographic

and treatment data were obtained directly from the patients’ medical
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records. Pre-existing diagnoses of hypertension and diabetes were

recorded in the patient database based on ICD-10 diagnosis codes

present from the individual patient charts.
PBMC and plasma collection

Blood from severe and non-severe COVID-19 patients was

collected in 10 mL vacutainer tubes containing sodium heparin

(BD) and processed for plasma and PBMCs no more than 8 hours

post-collection. Blood from healthy controls (in LRS chambers) and

recovered COVID-19 patients was obtained from a local blood bank

(Vitalant, Denver, CO) in April-May 2020. Blood from recovered

COVID-19 patients was obtained after their symptoms resolved and

up to 2 months post illness. To collect plasma, the blood was

centrifuged at 500 x g for 10 minutes. After removal of the plasma

layer, PBMCs were isolated from the remaining blood by density

gradient centrifugation using Ficoll (GE Healthcare). Viability and

cell counts were determined using trypan blue (Corning). If cell

viability was greater than 90%, PBMCs were cryopreserved for future

experiments and thawed later for flow cytometry analysis. For

cryopreservation, PBMCs were resuspended in freezing media (90%

fetal bovine serum (FBS, Hyclone, Thermo Fisher) + 10% DMSO

(Sigma)) at a concentration of 1-10x10^6 cells per mL, aliquoted into

cryogenic vials (Corning), and placed into a Mr. Frosty container

(Nalgene) at -80°C. The PBMCs were then moved into liquid nitrogen

within 12 hours.
RBD protein production and purification for
ELISA

SARS-CoV-2 RBD protein was produced and purified based on

previously published methods (47). Briefly, E. coli were transfected

with pCAGGS plasmid containing the RBD of SARS-CoV-2 isolate

Wuhan-Hu-1 (BEI Resources #NR-52309) and grown overnight in

Luria-Bertani (LB) broth (GrowCells.com) containing carbenicillin

(Research Products International) at 37°C. Plasmid was isolated using

a Midiprep kit (Qiagen) and submitted to the University of Colorado

Cancer Center Cell Technologies Shared Resource for transient

transfection in Expi293 cells and purification.
N and RBD IgG ELISAs

RBD IgG ELISAs were performed using a previously published

protocol (47), except that plasma was diluted to a final concentration

of 1:20. Human AB serum (Innovative Research) purchased before

the COVID-19 pandemic was used as a negative control, and a

commercially available rabbit anti-SARS-CoV-2 spike monoclonal

antibody (catalog number 40150-R0907, Sino Biological) and donkey

anti-rabbit IgG secondary antibody (Jackson ImmunoResearch) were

used as a positive control. The plates were read in a VersaMax tunable

microplate reader (Molecular Devices). The average of the negative

control readings plus 3 times the standard deviation was used as a cut-

off for positivity.
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N IgG ELISAs were performed using the Elecsys Anti-SARS-

CoV-2 immunoassay (Roche) on a Cobas e411 analyzer (Roche) per

the manufacturer’s instructions (48). A COI value >1 was

considered positive.
Flow cytometry

Previously frozen PBMCs were thawed and rested overnight at

37°C in complete R10 media (RPMI with L-glutamine (Corning) +

10% FBS + 1% Penicillin/Streptomycin (Corning), 1% sodium

pyruvate (Gibco), 1% MEM-Non-essential amino acids (Gibco),

and 1% HEPES (Gibco)), and cell counts were determined using

trypan blue. 0.5-1x10^6 PBMCs were aliquoted into FACS tubes

(Genesee Scientific), washed with 2 mL FACS buffer (PBS (Corning) +

2% FBS), and centrifuged at 500 xg for 5 minutes. Next, Live/Dead

Blue viability dye was added to the cells for 10 minutes at room

temperature, followed by 50 uL of extracellular staining antibodies for

20 minutes at 4°C. The cells were then washed again in FACS buffer,

and fixed and permeabilized using the Human FoxP3 Buffer Set (BD

Biosciences) according to the manufacturer’s instructions. After

washing in flow cytometry perm buffer (Tonbo Biosciences), the

cells were incubated with 50 uL of intracellular antibodies prepared in

perm buffer for 45 minutes at 4°C. After a final wash in perm buffer,

the cells were fixed with 4% paraformaldehyde (PFA, Electron

Microscopy Services). All antibodies used for flow cytometry are

listed in Table S2. The samples were run on a Cytek Aurora flow

cytometer. Single-color compensation controls were created by

incubating antibodies with UltraComp eBeads (eBioscience) or dyes

with ArC Amine Reactive Beads (Invitrogen). The data were analyzed

using FlowJo software (version 10.8.0) by an investigator who was

blinded to the patients’ clinical demographics. In FlowJo, cells were

gated to eliminate doublets and debris, gated on lymphocytes, viable

cells, CD14- CD56- CD19- cells, and CD3+ cells. CD4 and CD8 T

cells were then gated, and each subset was gated on CD62L. Finally,

CD62L+ T cells were subgated to measure T cell memory (CCR7 and

CD45RA), Tregs (CD25+ FoxP3+ and CD25+ CD127lo), activated

cells (CD25+, CD27+), CD57+ cells, and cells expressing immune

checkpoint receptors (PD-1, Tim-3, CTLA-4). Fluorescence minus

one (FMO) controls were used to set all flow cytometry gates, and

gates were verified using multiple samples from both healthy and

COVID-19 patients. FSC and SSC gates were validated by backgating

on viable CD14- CD3+ cells.
Statistical analysis

Parametric distribution testing was completed on the parent

population of patients and the randomly obtained serum sample

population based on white blood cell count as described previously

(46). All statistical analysis was performed in GraphPad Prism version

9.2.0. One-Way ANOVA with Tukey’s multiple comparisons test was

used to compare results between 4 groups, and a t test was used to

compare results between 2 groups. Categorical data were compared

using Fisher’s exact test. A p value <0.05 was considered statistically

significant. When outliers were present, the ROUT method (Q value
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of 1%) was used to remove them. The data are represented as mean ±

standard deviation, and each symbol on a graph represents

one patient.
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