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Huge progress has been made in understanding the biology of innate lymphoid

cells (ILC) by adopting several well-known concepts in T cell biology. As such,

flow cytometry gating strategies and markers, such as CD90, have been applied

to indentify ILC. Here, we report that most non-NK intestinal ILC have a high

expression of CD90 as expected, but surprisingly a sub-population of cells

exhibit low or even no expression of this marker. CD90-negative and CD90-

low CD127+ ILC were present amongst all ILC subsets in the gut. The frequency

of CD90-negative and CD90-low CD127+ ILC was dependent on stimulatory

cues in vitro and enhanced by dysbiosis in vivo. CD90-negative and CD90-low

CD127+ ILC were a potential source of IL-13, IFNg and IL-17A at steady state and

upon dysbiosis- and dextran sulphate sodium-elicited colitis. Hence, this study

reveals that, contrary to expectations, CD90 is not constitutively expressed by

functional ILC in the gut.
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Introduction

Resident leukocytes play an important role in maintaining mucosal surfaces at steady

state and early during an infection (1, 2). Since the discovery of innate lymphoid cells (ILC)

about a decade ago, it has become increasingly apparent that these cells play a significant

role in mucosal homeostasis. However, the role for ILC is far from being fully characterized,

and much of the current knowledge has been gained from testing concepts that had

previously been established for T and NK cell biology. As such, group 1, 2 and 3 ILC (ILC1,

ILC2 and ILC3) express T-bet, GATA3 and RORgt, respectively, as characteristic
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transcription factors as well as cytokines associated with Th1, Th2

and Th17 cells (1, 3). Due to the absence of T cell receptor (TCR)

expression in ILC, these cells elicit immune functions in response to

cytokines, chemokines and neurotransmitters, as has been well

described for NK cells (1, 2).

Similarly to T andNK cells, ILC express the glycophosphatidylinositol

(GPI) anchored protein CD90 in diverse tissues, and CD90 has often been

used as a keymarker to identify ILC (4–24) or as key target to deplete ILC

in Rag-deficient mice using a specific antibody (e.g. 25–32). Despite the

presence of CD90 on T and NK cells, very little is known regarding its

functionality (5). In NK cells, CD90 downregulation was associated with

successful differentiation, but its presence has also been linked to an

activation phenotype (33–35). IL-17A-producing inflammatory ILC2 in

lungs and small intestinal lamina propria (SI LP) have been observed to

have lower expression of CD90 in comparison to natural ILC2, but the

implications of this are not known (36–38). In relation to this, transition

of CD90low to CD90high ILC2 precursors has been described using an in

vitro model in which CLP were seeded, but again the role of the gain in

CD90 is unknown (39). Furthermore, IL-10 expressing intestinal ILC2

have a characteristic lack of CD90 expression (40). ILC3 from the

intestinal lamina propria of naïve mice were reported to have a

characteristic CD90high CD45low phenotype, however, ILC3 were also

found among CD90low CD45high ILC from the small intestine (41).

Recently, it was reported that in the murine liver Ly49E+ ILC1 have a

lower expression of CD90 than Ly49E- ILC1 (42, 43).

Here, we report for the first time that cytokine-producing

intestinal lamina propria ILC exhibit varied expression of CD90,

and strikingly some ILC show no expression of this marker. These

CD90- and CD90low ILC are a significant source of IFNg, IL-13 and
IL-17A upon dysbiosis and dextran sulphate sodium (DSS)-elicited

colitis. However, in naïve mice, CD90- ILC have a dominant type 2

cytokine expression profile. Furthermore, stimulation with IL-25/

IL-33 promotes the frequency of CD90-/low ILC2 in vitro.

Conversely, IL-12/IL-18 stimulation results in a lower prevalence

of CD90-/low NKp46+ ILC. These data suggest that CD90 expression

in intestinal ILC is regulated by cytokines and has a limited

suitability as a constitutive marker of the ILC lineage.
Results

CD90-negative colonic lamina propria
CD127+ ILC produce cytokines upon
induced colitis

CD90 expression in ILC was tested in a mouse model of DSS-

induced colitis. BALB/c Rag2-/- mice were treated with 5% DSS in the

drinking water for 5 days after which the animals showed clinical signs

of colitis like weight loss (44), and the cytokine expression profile of

colonic lamina propria (cLP) ILC was analyzed at day 10. Analyses of

CD45+ Lin- (CD3, CD5, B220, CD19, CD11b, TER-119, Gr-1, FcϵRI)
CD127+ cLP ILC re-stimulated with PMA and ionomycin (PMA Iono)

in vitro revealed that in addition to CD90high ILC there were CD90- and

CD90low ILC populations (Figure 1A; Supplementary Figures 1A, B).

The abundance of CD90high ILC was greater than that of CD90-

and CD90low ILC, but these populations represented ~30% and 20%,
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respectively, of the total CD127+ ILC population. In order to determine

whether CD90- and CD90low ILC were associated with a T-bet-

expressing ILC subset, we analyzed CD90- and CD90low ILC in

Tbx21-/- x Rag2-/- non-ulcerative colitis (TRnUC) mice. This revealed

that the presence of these cells was not dependent on T-bet, and their

frequency was not affected. CD90- and CD90low ILC were a relevant

source of IFNg, IL-13 and IL-17A, but still significantly less potent than
CD90high ILC in these DSS-treated Rag2-deficient mice (Figures 1C, D).

DSS-treated TRnUC mice did not have altered frequencies of CD90-

and CD90low ILC or IL-13 production in these cells in comparison to

DSS-treated Rag2-/- mice (Figures 1B–D). However, TRnUCmice had a

greater frequency of IL-17A expressing CD90- and CD90high ILC than

Rag2-/- mice. This could be explained by the far greater cellularity of

ILC3 in Rag2-/- mice driven by the deficiency of Tbx21 (45).

ILC2 expressing RORgt were reported to have no or lower

expression of CD90 in comparison to RORgt-negative natural ILC2
(36, 37). We detected CD90- and CD90+ ILC co-expressing IL-13

and IL-17A (Figures 1E, F). We also detected more CD90+ than

CD90- inflammatory IL-13+ IL-17A+ ILC2 (Figures 1E, F),

supporting the notion that inflammatory ILC2 have a CD90- and

CD90+ phenotype. We also noted that CD90- ILC can express IL-

17A independently of IL-13 (Figure 1F). Interestingly, T-bet-

deficiency appears to promote the frequency of CD90- IL-17+

among IL-13+ ILC2 in these Rag2-/- mice.

Functional CD90- and CD90low ILC were also observed in DSS-

treated wild-type BALB/cmice (Supplementary Figures 2A, B). In these

DSS-treated mice, CD90high ILC were a vastly more significant source

of IFNg, IL-13 and IL-17A in comparison to CD90- and CD90low ILC

(Supplementary Figures 2C, D). As observed in Rag2-deficient mice,

CD90- and CD90low ILC were able to produce IL-17A and IL-13, but

the proportion of CD90- and CD90low ILC producing these cytokines

was increased in DSS-treated BALB/c-background Tbx21-/- mice

(Supplementary Figures 2C, D). These Tbx21-/- mice also had an

enhanced frequency of IL-17A+ CD90high ILC (Supplementary

Figures 2C, D). CD90- and CD90low ILC were also detected in DSS-

treatedWTC57BL/6mice (Supplementary Figures 3A, B). As observed

in the other mouse strains, CD90- and CD90low ILC produced IFNg,
IL-13 and IL-17A, although CD90high ILC appeared to be a greater

source of these cytokines (Supplementary Figures 3C, D). In contrast to

BALB/c background mice, C57BL/6 background Tbx21-/- mice did not

have a greater prevalence of IL-17A- and IL-13-producing CD90-,

CD90low or CD90high ILC than WT mice, however, the frequency of

CD90low ILCwas reduced significantly (Supplementary Figures 3A–D).

Furthermore, we did not detect any IFNg producing IL-13+ ILC in

contrast to IL-17A production amongCD90+ and CD90- IL-13+ ILC2 in

DSS-treated BALB/c Rag2-/- mice and C57BL/6WTmice (Figures 1E, F;

Supplementary Figure 3E). These data indicate that low expression of

CD90 is not a simple marker of inflammatory ILC2 in these mice.
CD90-negative CD127+ ILC have a
predominant type 2 phenotype at
steady state

Similar to DSS-treated mice (Figure 1; Supplementary Figures 2,

3), most ILC were CD90high in naïve untreated C57BL6 mice.
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However, CD90- and CD90low ILC populations were also detected

in these mice (Supplementary Figures 4A, B). Interestingly, both

CD90- and CD90low ILC produced predominately IL-13 and IL-5

and fewer of these cells produced IFNg and IL-17A (Supplementary
Frontiers in Immunology 03
Figures 4B–G). Although moderately low, CD90- and CD90low ILC

had a significantly greater frequency of IFNg positivity than

CD90high ILC (Supplementary Figure 4C). A similar trend was

not observed for IL-17A (Supplementary Figure 4D). IFNg and IL-
A B

D

E F

C

FIGURE 1

CD90-negative Rag2-deficient ILC are a substantial source of IFNg and IL-13 during DSS colitis. cLP ILC from 5% DSS-treated Rag2-/- and TRnUC
mice were isolated and stimulated with PMA and ionomycin (3 hours) prior to flow cytometry analysis. (A) Frequencies of CD90hi, CD90low and
CD90- in total CD127+ ILC and (B) statistical analyses are shown. (C) IFNg, IL-13 and IL-17A expression in CD90hi, CD90low and CD90- total CD127+

ILC and (D) corresponding statistical analyses are outlined. (E) CD90 co-expression with IL-17A or IFNg in IL-13+ ILC and corresponding statistical
analyses are shown. (F) Flow cytometry and statistical analysis of CD90 and IL-13 expression in IL-17A+ ILC are presented. Data shown are
representative of 4 biological replicates. *p < 0.05; **p< 0.01; ***p<0.001.
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17A production was also driven mostly by distinct populations of

cells (Supplementary Figure 4B). Further analyses revealed that the

prevalence of IL-13+ and IL-5+ ILC was greater among CD90high

and CD90low ILC in comparison to CD90- ILC (Supplementary

Figures 4B–G, 5A). Tbx21-/- CD90-, CD90low and CD90high ILC

exhibit greater expression of IL-5 than ILC in WT mice

(Supplementary Figures 4B–G), which could be explained by one

of our previous reports indicating increased cLP ILC2 abundance in

Tbx21-/- mice (46). Since CD90- and CD90low ILC appeared to be

predominately functional ILC2, we sought to determine whether

these cells were able to adopt functional characteristics of ILC1 and

ILC3. Plasticity of ILC2 allowing expression of T-bet and RORgt is a
well-known phenomenon (1). Similar to the observations in DSS-

treated WT C57BL/6 and Rag2-deficient mice, we detected minimal

co-expression of IL-13 and IL-17A in CD90- and CD90low cLP ILC

from naïve WT and Tbx21-/- mice indicating the presence of a

minor inflammatory ILC2 population (Supplementary Figure 5A).

However, we could also find IL-13 and IL-17A co-expressing

CD90high ILC. In contrast, virtually no IL-13 and IFNg co-

expressing CD90- and CD90low ILC were detected in these mice

(Supplementary Figure 5B).
CD90 expression in CD127+ ILC is
controlled by stimulatory cues

Overall, we detected CD90- and CD90low ILC in both untreated

and DSS-treated mice. This suggests that CD90 is not a reliable

marker for detection of all ILC in the gut. When we analyzed CD127

and CD90 co-expression in lineage-negative cLP leukocytes, we

noticed that almost all CD90+ cLP ILC had a detectable surface

expression of CD127 in naïve C57BL/6 WT and DSS-treated

C57BL/6 WT, BALB/c WT and BALB/c Rag2 - / - mice

(Supplementary Figure 6). For further analyses, KLRG1 was used

as a marker of intestinal ILC2 in line with recent publications (37,

45–47). The use of KLRG1 as a marker for intestinal ILC2 has an

advantage over GATA3 as intestinal ILC3 have a low expression of

GATA3 and the expression of this transcription factor is variable

within the ILC2 population (48–50). KLRG1hi intestinal ILC as

gated in this study require GATA3 for post-developmental

maintenance, supporting the notion these cells are ILC2 (51). We

found that CD90- and CD90low ILC can be detected among both

KLRG1hi and KLRG1- cLP ILC from C57BL/6 background mice,

demonstrating that CD90- and CD90low ILC are also components of

the non-ILC2 compartment (Figure 2A).

Next, following an established method to develop ILC2 in vitro,

we seeded bone marrow-derived ILC2 precursors (ILC2p; defined

as Lin- CD127+ a4b7hi Flt3- CD25+) in a 6-day culture on OP9-DL1
stromal cells in the presence of IL-7, SCF and IL-33 (52). Strikingly,

the Lin- cell population that was generated also exhibited variable

levels of CD90 (Figure 2B). Most of the ILC were CD90high, but

there were also substantial CD90- and CD90low subpopulations.

In order to determine whether CD90 expression can be altered

by immunological stimulations, we isolated KLRG1+ cLP ILC2 and

KLRG1- cLP ILC for in vitro culture with OP9-DL1 cells in the

presence of distinct cytokines. Strikingly, ILC2 stimulation with IL-
Frontiers in Immunology 04
25 and IL-33 induced the presence of CD90-/low ILC2 (Figures 2C,

D; Supplementary Figure 7). A similar but less potent effect was

observed when IL-12 and IL-18 were added to the culture medium.

Additional IL-6/IL-1b/TNFa/IL-27 stimulation did not further

alter IL-12/IL-18-mediated CD90-/low ILC2 frequency, while IL-

1b/IL-23 stimulation also had no effect. Conversely to ILC2, IL-12/

IL-18 stimulation of non-ILC2 in the presence or absence of IL-6/

IL-1b/TNFa/IL-27 resulted in fewer CD90-/low NKp46+ ILC

(Figures 2C, D). IL-1b/IL-23 and IL-25/IL-33 stimulation of these

cells had no effect in terms of CD90 expression. Stimulation with

PMA and ionomycin or a soluble agonistic anti-CD28 antibody

[chosen due to reports of its expression in human ILC (53, 54)] also

had no effect on the frequency of CD90 expressing ILC2 or NKp46+

non-ILC2.
All ILC subset populations in the intestine
exhibit variable levels of CD90

In order to investigate CD90 variation in ILC more closely, we

analyzed single-cell (sc)RNA-seq data sets from three recent

publications: ILC2 from gut, skin, lung, fat and bone marrow (BM)

(Ricardo-Gonzalez et al. (49)), intestinal ILC2, LTi-like ILC3, NKp46

(NCR)+ ILC3 and ex-ILC3/ILC1 (47), and intestinal NK cells, ILC1 and

NKp46+ ILC3 (55) (Figures 3A–C; Supplementary Figure 8A).

Visualising clusters of cells that have similar transcriptional profiles

using uniform manifold approximation and projection (UMAP)

dimensionality reduction and overlaying expression levels of Thy1

(encoding CD90), we found that Thy1 expression could be detected

across all of the ILC subsets in each dataset (Figure 3C; Supplementary

Figure 8A). A pseudotime trajectory analysis of these ILC subsets did

not uncover a specific developmental direction from either Thy1 high

to low expression or vice versa (Figure 3C; Supplementary Figure 8A).

Identification of genes up and downregulated in cells positive for CD90

mRNA vs negative/low for CD90 mRNA within each dataset only

identified a limited set of genes (Figure 3D; Supplementary Figure 8B).

Together with the expression of CD90 across the various cell clusters,

this indicates that CD90-/low ILC are not a novel ILC population with

their own expression profile. In terms of ILC2, the Fiancette et al. data

set indicated a higher expression of Nkg7 in CD90 mRNA-high cells,

but no genes specific for CD90 mRNA-negative/low ILC2 were

detected in this data set. In contrast, in the Ricardo Gonzalez et al.

data set intestinal CD90 mRNA-negative/low ILC2 exhibited greater

expression of Gzma (encoding granzyme A) and Gdd45a, Scin and

Ctla4, while intestinal CD90 mRNA-high ILC2 were characterized by

S100a4, S100a6, Cd3d, Cd3g, Furin and Cxcl2 expression. S100a4 and

S100a6 expression was also detected in CD90 mRNA-high ILC2 from

fat, while S100a4 and S100a6 was exhibited in cutaneous and

pulmonary CD90 mRNA-high ILC2, respectively. Lgals1 expression

was detected in CD90 mRNA-high ILC2 from lungs, skin and fat

tissue. As observed in the Fiancette et al. data on intestinal ILC2, Nkg7

expression is also associated with CD90 mRNA-high ILC2 from skin

and bone marrow, in addition to Cd7,Ncr1, Klrk1,Ms4a4b and Ccl5 in

BM CD90 mRNA-high ILC2. No genes showed consistently higher

expression in CD90mRNA-negative/low cells across all the tissue types

but, in the bone marrow, CD90 mRNA-negative/low ILC2 were
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associated with the expression ofHbb-bs,Hbb-b7,Hba-a1,Hba-a2 and

S100a8. The Fiancette et al. data set revealed a characteristic expression

of S100a4, S100a6, Pm29 and Arg1 in CD90 mRNA-high LTi-like

ILC3, while genes specific for CD90mRNA-negative/low LTi-like ILC3

were not detected. Both the Fiancette et al. and Krzywinska et al. data

sets highlight a specific expression of Pcp4 in CD90 mRNA-high

NKp46+ ILC3, while the latter data set also indicate an expression of

Nrgn in CD90 mRNA-high NKp46+ ILC3 and Cd74 in CD90-/low

NKp46+ ILC3. In terms of the ex-ILC3/ILC1 cluster Tmem176a, Rorc

and Gda expression was enhanced in CD90 mRNA-high cells, while

Ccl5 expression was more common in cells in which CD90 mRNAwas
Frontiers in Immunology 05
absent or low. In the Krzywinska et al. data, CD90 mRNA-high ILC1

exhibited a characteristic expression of Il22, Cd83 and Pxdc1, while

CD90 mRNA-negative/low ILC1 were not defined by specific genes.

No genes were found to be upregulated in CD90 mRNA-high NK cells

but Prf1 and Gzma expression was enhanced in CD90 mRNA-

negative/low NK cells. Further analyses demonstrated that also only

a very few genes were specific for CD90 mRNA-negative/low and

CD90 mRNA-high in total ILC and NKp46+ ILC (Figure 3E). As

similar sets of genes were associated between CD90 mRNA-negative/

low and CD90mRNA-high ILC subsets, it appears that these respective

populations may be related.
A B

D

C

FIGURE 2

cLP ILC have a variable expression of CD90 depending on stimulatory cues. (A) KLRG1 and CD90 co-expression in cLP CD127+ ILC was
demonstrated by flow cytometry (n=12). (B) ILC2 were generated from ILC2p stimulated with IL-7, SCF and IL-33, and seeded onto OP9-DL1.
CD90hi, CD90low and CD90- ILC2 are shown. (C, D) KLRG1+ or KLRG1- CD127+ ILC were isolated and stimulated in vitro for 48 hours prior to
harvest and flow cytometry analyses of KLRG1+ or NKp46+ ILC, respectively. In addition to a control condition, soluble agonistic anti-CD28
antibodies, IL-12&IL-18, IL-1b&IL23, IL-25&IL-33 or IL-12&IL-18& IL-1b&IL-6&TNFa &IL-27 were used as stimuli. In a separate condition designated
as “PMA Iono”, sorted cells were stimulated with PMA and ionomycin in the presence of monensin for the final 4 hours prior to harvesting. (D) Flow
cytometry analyses of CD90hi and CD90low/neg CD127+ ILC and statistical analyses of CD90low/neg ILC frequencies among KLRG1+ or NKp46+ cLP
ILC are outlined. Data shown are representative of 3 biological replicates. **p< 0.01; ***p<0.001.
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FIGURE 3

Transcriptomic analyses of CD90 expression in intestinal ILC. scRNA-seq data sets of intestinal ILC from published studies (47, 49, 55) were
employed to analyze expression of Thy1 (encoding CD90) across ILC subsets and its role on the global transcriptional profile. (A) UMAP plots of ILC
subset annotation from the scRNA-seq data sets of the (47, 55) studies. (B) UMAP analyses of gene expression in the ILC subset clusters in the data
set obtained from (55). (C) UMAP analysis of Thy1 expression intensity in ILC subsets in the respective studies. A trajectory analysis along the Thy1
expression intensity was performed in the indicated ILC subsets. (D, E) Volcano plots comparing gene expression (log2 fold change and padj)
between Thy1high ILC versus Thy1low/negative (D) ILC subsets, as annotated in the respective published data set, and (E) total ILC. The most
differentially expressed genes are labelled. In order to generate the volcano plots the median normalized Thy1 expression across all datasets was
calculated and used to delineate Thy1high and Thy1low/negative cells.
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Dysbiosis correlates ILC1 and ILC3
lymphopenia and altered CD90 expression
in ILC

Next, we sought to further analyze CD90 expression dynamics in

a model of dysbiosis-driven spontaneous colitis in Rag2-/- mice. We

have previously shown that spontaneous colitis in Tbx21-/- x Rag2-/-

ulcerative colitis (TRUC) mice is partially driven by IL-17A-

producing CD90+ ILC (25, 56). Hence, it was anticipated that these

ILC would also promote inflammation in Rag2-/- mice receiving a

transfer of feces derived from TRUC mice. These mice developed

colitis with decreased body weight and increased colon weight (data

not shown). However, in contrast, we detected reduced frequency of

DN ILC3, CCR6+ ILC3, NKp46+ ILC3 and ILC1 (Figures 4A, B;

Supplementary Figure 1A). Hence, ILC2 formed a large proportion of

the cLP ILC upon fecal microbial transfer (FMT). In addition to these

ILC subset frequency alterations, we detected fewer CD90high and

more CD90low cells among the ILC population upon FMT treatment,

but the frequency of CD90- ILC was not altered in these mice

(Figures 4C, D). Consistent with a greater frequency of ILC2 in

FMT-treated mice, cLP ILC production of IL-13 was enhanced, while

a significant alteration in IFNg or IL-17A production was not

detected (Figure 4E). However, the frequency of IFNg producing

CD90high, CD90low and CD90- ILC was much reduced upon the

enforced dysbiosis (Figures 4F, G). Furthermore, pathogenic FMT

also resulted in a lower frequency of IL-17A+ CD90high ILC, while IL-

17A production in CD90low and CD90- ILC was not affected. When

comparing CD90high, CD90low and CD90- ILC that produced IFNg
and IL-17A, only a reduction in IFNg production in CD90- ILC was

observed. In contrast to IFNg and IL-17A, FMT appeared to promote

IL-13 production in CD90high, CD90low and CD90- ILC subsets.
Discussion

Ever since the discovery of ILC around a decade ago, there have

been refinements to the ILC analysis strategy by flow cytometry. This

is still an active process, as an increasing number of functional states

within the ILC subsets are being reported. In the past, many groups

have used CD90 as a marker for ILC and CD90-specific antibodies

are often employed to deplete ILC in vivo (e.g. 25, 27–32). However,

our results demonstrate that the use of CD90 to detect and purify ILC

has limitations when analyzing intestinal populations. In contrast to

the notion that CD90 is a pan-ILC marker, the data presented in this

study reveal that intestinal ILC can be separated into CD90- and

CD90high ILC in addition to CD90low ILC, which are most likely

transitional cells. CD90- ILC2 were also detected in the lungs

indicating that the findings in our study are applicable to ILC from

diverse tissues (57). In our hands, CD127 is a far more reliablemarker

of ILC than CD90. Virtually all CD90+ cLP ILC express CD127,

however other reports indicate that pulmonary ILC can lose CD127

in vivo and IL-7 downregulates CD127 expression in ILC in vitro (27,

58). Hence, in the absence of better ILC markers, we advise using a

combination of CD127 and CD90 to detect ILC.

In BALB/c background mice, CD90- ILC accounted for about a

fifth to a third of cLP ILC, and we detected a substantial amount of
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IFNg, IL-13 and IL-17A production by these cells in the context of

DSS- or dysbiosis-elicited colitis. Hence, we believe these findings

support the notion that these cells play a relevant role in the ILC

response in intestinal tissue. It is out of the scope of this report to

define a functionality of CD90 in ILCs, but it was striking to note

that whilst ILC2 accounted for most cytokine-producing cLP CD90-

ILC in C57BL/6 at steady state, the lack of CD90 expression was not

restricted to ILC2. The combination of IL-33 and IL-25, known to

activate ILC2, was a potent stimulus for CD90 downregulation in

cLP ILC2 in vitro, suggesting that low CD90 expression may be an

indicator of intestinal ILC2 activity. In this experiment CD90 in

sorted ILC2 was reduced within a relatively short culture period of

48 hours indicating that CD90 expression is dynamic. Interestingly,

CD90 expression in pulmonary ILC2 was also shown to drop upon

stimulation with IL-33 (59). Furthermore, distinct ILC2 clusters

from adult and neonate lungs with high and low expression of

CD90 were detected by scRNAseq analysis (60). This publication

also presents a trajectory analysis predicting transformation of adult

pulmonary ILC2 along these clusters which may also indicate a

dynamic expression of CD90 in ILC2. In our report cLP ILC2

stimulation with IL-12 and IL-18 also enhanced the frequency of

CD90-/low cells. It has been reported that IL-12/IL-18 and IL-25/IL-

33 can induce ILC2 to express T-bet and RORgt, respectively (37,

61). In a model of DSS-induced colitis, we could not associate either

IFNg or IL-17A production by cLP ILC2 with loss of CD90

expression. In contrast to ILC2, CD90 expression was enhanced

by IL-12/IL-18-mediated stimulation in NKp46+ cLP ILC, which

may further indicate that CD90 plays a functional role.

Furthermore, in dysbiotic mice we noticed a reduced expression

of CD90 in IL-13-producing ILC indicating that CD90

downregulation occurs in activated ILC2 in these mice. Such

modified expression of CD90 upon exposure to pathogens is not

without precedent. The frequency of intestinal CD90- ILC2 was

enhanced in Hoil1-/- mice, a mouse model defined by microbe-

driven intestinal inflammation (62). In comparison, an alteration of

CD90+ ILC2 prevalence was not observed in these mice (62).

Furthermore, Aspergillus fumigatus-induced inflammation also

leads to the promoted occurrence of pulmonary CD4+ T cells

with low expression of CD90 (63). In the intestine, variable

expression of CD90 can be observed in Vg7+ intraepithelial

lymphocytes in addition to conventional CD4+ and CD8+ T cells

(64, 65).

The functional role of CD90 expression on murine ILC is

unknown and is also ill-defined in other lymphocytes, while

CD90 expression in human ILC appears to be lacking. Known

ligands of CD90 are integrins avb3, axb2, aMb2, a5b1, aVb5,
syndecan-4 and CD97, and interactions with binding partners have

reported to occur either in cis or in trans (4, 66–69). In vitro studies

in unpolarized and polarized CD4+ T cells suggested that CD90

activation with a specific antibody can promote proliferation as well

as IFNg, IL-17A and IL-13 production, in particular in the case of

co-stimulation with an agonistic anti-CD28 antibody in the absence

of TCR stimulation (70, 71). Further work is required to determine

the significance of this signaling axis, but, strikingly, scRNA-seq

analysis in germinal center (GC) T follicular helper (TFH) cells

showed distinct transcriptional differences between cells with high
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expression of CD90 versus cells with low or no expression of CD90

(72). These differences included high expression of genes indicative

of exocytosis/degranulation in CD90-/low GC TFH cells, and genes

relating to chemokine receptors and proliferation in CD90high GC

TFH (72). Moreover, in addition to CD90high CD8+ T cells, splenic

CD90- and CD90low CD8+ T cells are also a relevant source of IFNg
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in a mouse model of LCMV infection (73). The CD90 extracellular

domain has binding sites for avb3 and syndecan-4, which may be

the basis of a reported in trans interaction of CD90 with avb3 and

syndecan-4 expressed on other cells (4, 74). Indeed, the interaction

between CD90 and avb3 was functional in CD4 T cells in terms of

promoting the differentiation of Th2 cells (74). Binding sites for the
A B
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G

C

FIGURE 4

Dysbiosis-triggered appearance of functional cLP ILC with a low expression of CD90. Feces from TRUC mice were transferred into Rag2-/- mice and
cLP leukocytes were isolated 21 days later from treated and untreated mice. (A) KLRG1+ ILC2, KLRG1- RORgt- NKp46+ NK1.1+ ILC1, KLRG1- RORgt+

ILC3 subsets from FMT-treated and untreated control mice were analyzed by flow cytometry. ILC3 subsets were defined as NKp46+ CCR6-, CCR6+

NKp46- or DN (‘double negative’) in these analyses. (B) A statistical analysis of ILC subset frequency among the whole cLP ILC population is outlined.
(C) ILC with no or a low or high expression of CD90 were analyzed by flow cytometry and (D) a statistical analysis of the frequency of these ILC
among the whole ILC population is presented. (E) The per cell expression of IFNg, IL-17A and IL-13 in ILC was analyzed statistically. (F) IFNg, IL-17A
and IL-13 expression in CD90-, CD90low and CD90high ILC was determined by flow cytometry. (G) Related statistical analyses investigating the
frequency of respective ILC and the per cell expression of IFNg, IL-17A and IL-13 in the CD90-, CD90low and CD90high ILC populations are shown.
Data are representative of 4 biological replicates. ns, non-significant; *p < 0.05; **p< 0.01; ***p<0.001; ****p<0.0001.
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in trans interaction with other integrins or CD97 are yet to be

characterized. In addition to in trans interactions, avb5 is

inactivated by binding CD90 in cis, preventing activation of latent

TGF-b1 (4, 75). Cis CD90-CD90 interactions have been suggested

to promote cluster formation in lipid rafts, which may play a critical

role for RhoA-dependent signaling, as reported downstream of

CD90 (4, 69). Due to its numerous known ligands, CD90 may equip

ILC for intercellular interactions with several hematopoietic or non-

hematopoietic cell types, but the functional role of CD90 for ILC

has still to be defined (5). Interestingly, CD90 was demonstrated to

regulate PPARg expression in adipocytes (76), and other groups

have reported previously that PPARg plays an important role in

ILC2 functionality (77, 78). Our study marks the first step to

defining CD90 function in ILC by revealing that intestinal ILC

can be separated into CD90+ and CD90- populations. These data

have critical implications for the analysis procedures through which

ILC functionality will be uncovered in intestinal tissue.
Methods

Animals

C57BL/6 WT, Tbx21-/- (both C57BL/6 and BALB/c background)

and Rag2-/- (BALB/c background) mice were sourced commercially

(Charles River). A colony of colitis-free BALB/c Rag2-/- x Tbx21-/-

(TRnUC) mice was generated from a descendant of the TRUC colony

described previously (25, 56, 79). All mice were housed in specific

pathogen–free facilities at King’s College London Biological Services

Unit or at Charles River Laboratories.
Isolation of cells

cLP leukocytes were isolated using a published method (80).

Briefly, the epithelium was removed by incubation in HBSS lacking

Mg2+ or Ca2+ (Invitrogen) supplemented with EDTA and HEPES.

The tissue was further digested in 2% of fetal calf serum (FCS Gold,

PAA Laboratories) supplemented in 0.5 mg/ml collagenase D, 10

mg/ml DNase I and 1.5 mg/ml dispase II (all Roche). The LP

lymphocyte-enriched population was harvested from a 40%-80%

Percoll (GE Healthcare) gradient.
Flow cytometry

Flow cytometry was performed using a standard protocol. Fc

receptor blocking was carried out with anti-CD16/32 specific

antibodies. A lineage cocktail of antibodies specific for CD3,

CD45R, CD19, CD11b, TER-119, Gr-1, CD5 and FcϵRI was used
for cLP ILC analyses. Live/Dead Fixable Blue Cell Stain Kit

(Invitrogen) stain was used to exclude dead cells from the

analysis. The cLP ILC gating strategy is outlined in our recent

publications (44, 45). For a complete list of the antibodies used see
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Table 1. A FoxP3 staining kit (ebioscience) was used for

intracellular staining of cytokines and transcription factors. In

case of cytokine expression analyses, cells were pre-stimulated

with 100 ng/ml PMA and 2 µM ionomycin in the presence of 6

µM monensin for 3-4 hours prior to flow cytometry analysis.

Samples were acquired using an LSRFortessa™ cell analyser

(Becton Dickinson, USA), and all the data were analyzed using

FlowJo software (Tree Star, USA).
ILC2 generation in OP9-DL1 system

ILC2p were seeded on OP9-DL1 to generate ILC2 using an

established method (52). Briefly, 7,500 cells were co-cultured with

mitomycin pre-treated OP9-DL1 in presence of rmIL-7, rmSCF and

rmIL-33 (all 20 ng/ml) for 6 days prior to FACS analysis.
TABLE 1 Antibody clones and distributors.

Antibody Clone Company

a4b7 DATK32 eBioscience

CD25 PC61.5 eBioscience

CD3 17A2 eBioscience

CD5 53-7.3 eBioscience

CD19 1D3 eBioscience

B220 RA3-6B2 eBioscience

CD11b M1/70 eBioscience/Biolegend

Gr-1 RB6-8C5 eBioscience

Flt3 A2F10 eBioscience

Ter119 TER-119 eBioscience

FcϵRI MAR-1 eBioscience

CD127 A7R34 eBioscience

NKp46 29A1.4 eBioscience

IL-13 eBio13A eBioscience

IFNg XMG1.2 eBioscience

CD45 30-F11 Invitrogen

CD90.2
5a-8

30-H12
eBioscience

BD

IL-5 TRFK5 BD

IL-17A eBio17B7 eBioscience

KLRG1 2F1 eBioscience

CCR6 29-2L17 eBioscience

NKp46 29A1.4 eBioscience

RORgt AFKJS-9 eBioscience

NK1.1 PK136 Biolegend
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cLP ILC sorting and in vitro culture

Single-cell suspensions from colonic lamina propria were

stained with fluorescently labelled antibodies and isolated using a

BD FACSAria III cell sorter (BD Biosciences). Live CD45+ Lin-

CD127+ ILC FACS sorted as KLRG1+ and KLRG1- were cultured in

DMEM supplemented with 10% FCS, 1xGlutaMax (Gibco), 50 U/

ml penicillin, 50 µg/ml streptomycin, 10 mM HEPES, 1x non-

essential amino acids (Gibco), 1 mM sodium pyruvate and 50 mM
b-mercaptoethanol (Gibco). 20,000 cells were plated per well of a

96-well plate pre-seeded with OP9-DL1 using an established

method (52, 81). The medium was further supplemented with

rmIL-7 and rhIL-2 (both at 10 µg/ml) and further recombinant

mouse cytokines or anti-CD28 antibody (2µg/ml; clone 37.51) as

indicated (all cytokines were used at a final concentration of 10 µg/

ml unless indicated otherwise). Cells were harvested and analyzed

by flow cytometry after 2 days in culture. FACS sort-derived cells

from these conditions were harvested and analyzed without

additional pre-stimulation.
In vivo models

DSS-elicted colitis was induced by adding 3 or 5% DSS (36-50

KDa, MP Biomedicals, Ontario, USA) to the drinking water for 5 days

and mice were sacrificed 10 days after the beginning of the treatment.

To establish a non-colitic control condition, mice were administered

sterile drinking water. Regarding all in vivo models, body weights and

clinical abnormalities were monitored on a daily basis.

For dysbiosis-induced colitis models TRUC mice cecal feces

were administered to colitis-free Rag2-/- mice via the oral route

using a published method and sacrificed 21 days after FMT (45).

Regarding all in vivo models, body weights and clinical

abnormalities were monitored on a daily basis.
Single-cell RNA-seq analysis

Raw expression matrices were obtained from GEO accession

GSE117567 (49) and raw sequencing data were obtained from

ArrayExpress accessions E-MTAB-9795 (47) and E-MTAB-11238,

(55). Raw reads were mapped to mm10 using CellRanger 6.0.1.

UMAP co-ordinates and clustering metadata was obtained from

correspondence with the authors of (47, 55), therefore downstream

processing steps can be considered identical to those carried out by

the respective authors. For the matrices obtained from 49, cells with

over 10% reads mapping to mitochondrial genes and cells with less

than 400 genes detected were removed. Each matrix was then

normalized using SCTransform (82), followed by RunPCA

(PCs = 30) and RunUMAP (dims = 30). Shared nearest neighbor

and clustering were carried out using FindNeighbours (dims = 30)

and FindClusters respectively. NormalizeData was then ran, and

this assay was used for downstream visualization and differential

expression analysis using the MAST algorithm (83). Pseudotime/

trajectory analyses were carried out using monocle3 (84, 85).
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Statistics

Results are expressed as mean ± SEM. Data were analyzed using

Student’s t-test using GraphPad Prism 5.0 (GraphPad Inc., USA).

ns: non-significant; *p < 0.05; **p< 0.01; ***p<0.001; ****p<0.0001.
Study approval

All animal experiments were performed in accredited facilities in

accordance with the UK Animals (Scientific Procedures) Act 1986

(Home Office Licence Numbers PPL: 70/6792, 70/8127 and 70/7869).
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://www.ebi.ac.uk/arrayexpress/,

E-MTAB-9795. https://www.ebi.ac.uk/arrayexpress/, E-MTAB-

11213. https://www.ebi.ac.uk/arrayexpress/, E-MTAB-11212.
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SUPPLEMENTARY FIGURE 1

Gating strategy for cLP ILC. Murine cLP ILC were isolated from Rag2-deficient

mice for flow cytometry analysis. (A) ILC were gated as live single CD45+ Lin-

CD127+ leukocytes. The lineage cocktail contained CD3, CD5, CD19, B220,

CD11b, Gr-1, FcϵR1 and Ter119. (B) CD90 expression intensity in cLP ILC was
evaluated using an FMO control sample.
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SUPPLEMENTARY FIGURE 2

CD90-negative WT cLP CD127+ ILC are a source of IFNg, IL-13 and IL-17A
upon DSS treatment of BALB/c mice. cLP ILC from 3% DSS-treated BALB/c

WT and Tbx21-/- mice were isolated and stimulated with PMA and ionomycin

(3 hours) prior to flow cytometry analysis. (A) Frequencies of CD90hi, CD90low

and CD90- in total CD127+ ILC and (B) statistical analyses are outlined. (C)
IFNg, IL-13 and IL-17A expression in CD90hi, CD90low and CD90- CD127+ ILC
and (D) corresponding statistical analyses are shown. Data shown are

representative of 4 biological replicates. *p < 0.05; **p < 0.01; ***p<0.001.

SUPPLEMENTARY FIGURE 3

CD90-negative WT cLP CD127+ ILC are a minor source of IFNg, IL-13 and IL-
17A during DSS colitis in C57BL/6 mice. cLP ILC from 3% DSS-treated C57BL/6

WT and Tbx21-/- mice were isolated and stimulated with PMA and ionomycin (3
hours) prior to flow cytometry analysis. (A) Frequencies of CD90hi, CD90low and

CD90- in total CD127+ ILC and (B) statistical analyses are outlined. (C) IFNg, IL-
13 and IL-17A expression in CD90hi, CD90low and CD90- CD127+ ILC and (D)
corresponding statistical analyses are shown. (E) CD90 co-expression with IL-

17A or IFNg in IL-13+ ILC is demonstrated. Data shown are representative of 4
biological replicates.*p< 0.05; **p< 0.01; ***p<0.001.

SUPPLEMENTARY FIGURE 4

Intestinal CD90-negative CD127+ ILC have a predominant type 2 phenotype.
cLP CD127+ ILC were isolated from untreated C57BL/6 WT and Tbx21-/- mice

and stimulated with PMA and ionomycin (4 hours) prior to flow cytometry

analysis. (A) Frequencies of CD90hi, CD90low and CD90- in CD127+ ILC and
statistical analyses are outlined. (B) IL-13, IL-5, IFNg and IL-17A expression in

CD90hi, CD90low and CD90- total CD127+ ILC and statistical analyses of (C)
IFNg and (D) IL-17A, (E) IL-13 and (F) IL-5 expression flow cytometry analyses

in CD90hi, CD90low and CD90- CD127+ ILC are illustrated. (G) Statistical
analysis of IL-5+ IL-13- CD90hi, CD90low and CD90- CD127+ ILC. Data shown

are representative of 3 biological replicates. *p < 0.05; **p< 0.01; ***p<0.001.

SUPPLEMENTARY FIGURE 5

Characterization of CD90 expression in inflammatory ILC2. cLP CD127+ ILC
were isolated from untreated C57BL/6 WT and Tbx21-/- mice and stimulated

with PMA and ionomycin (4 hours) prior to flow cytometry analysis. Flow
cytometry analyses of IL-13 co-expression with (A) IL-17A and (B) IFNg in

CD90hi, CD90low and CD90- CD127+ ILC are outlined. Data shown are

representative of 3 biological replicates.

SUPPLEMENTARY FIGURE 6

CD90 and CD127 co-expression in cLP ILC. cLP leukocytes were isolated

from untreated C57BL/6 and DSS-treated C57BL/6, BALB/c and Rag2-
deficient BALB/c mice. CD127 and CD90 co-expression in lineage-negative

leukocytes are shown.

SUPPLEMENTARY FIGURE 7

Gating strategy for cLP ILC for in vitro assay analysis. KLRG1+ or KLRG1-

CD127+ ILC were isolated and stimulated in vitro for 48 hours prior to harvest

and flow cytometry analyses of KLRG1+ or NKp46+ ILC, respectively. ILC from
these cultures were gated as live single CD45+ Lin- leukocytes. The lineage

cocktail contained CD3, CD5, CD19, B220, CD11b, Gr-1, FcϵR1 and Ter119.

SUPPLEMENTARY FIGURE 8

Transcriptome analyses of CD90 expression in intestinal ILC2. A scRNA-seq
data set from a published study (49) was employed to analyze CD90

expression across ILC2 isolated from lungs, skin, fat and bone marrow (BM)
and its role on the global transcriptional profile. (A) A UMAP plot of Thy1

expression intensity in ILC2 and a trajectory analysis along the CD90

expression intensity was performed in these ILC2. (B) Volcano plots
comparing gene expression (log2 fold-change and padj) between CD90high

ILC versus CD90low/negative ILC2, as annotated in the published data set. The
most differentially expressed genes are labelled.
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