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immune-related genes in
diagnosing non-alcoholic fatty
liver disease with ischemic
stroke and RRS1 pan-cancer
analysis

Huayan Bao 1†, Jianwen Li 2†, Boyang Zhang1†, Ju Huang1,
Danke Su1* and Lidong Liu1*

1Department of Medical Imaging Center; Guangxi Key Clinical Specialty (Medical Imaging
Department); Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital (Medical
Imaging Department), Guangxi Medical University Cancer Hospital, Nanning, China, 2Department of
Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
Background: The occurrence of ischemic stroke (IS) is associated with

nonalcoholic fatty liver disease (NAFLD). The cancer burden of NAFLD

complicated by IS also warrants attention. This study aimed to identify

candidate immune biomarkers linked to NAFLD and IS and analyze their

association with cancer.

Methods: Two of each of the NAFLD and IS datasets were downloaded,

differentially expressed genes (DEGs) were identified, and module genes were

screened via weighted gene coexpression network analysis (WGCNA).

Subsequently, utilizing machine learning (least absolute shrinkage and

selection operator regression, random forest and support vector machine-

recursive feature elimination) and immune cell infiltration analysis, immune-

related candidate biomarkers for NAFLD with IS were determined.

Simultaneously, a nomogram was established, the diagnostic efficacy was

assessed, and the role of candidate biomarkers in cancer was ascertained

through pan-cancer analyses.

Results: In this study, 117 and 98 DEGs were identified from the combined

NAFLD and IS datasets, respectively, and 279 genes were obtained from themost

significant modules of NAFLD. NAFLD module genes and IS DEGs were

intersected to obtain nine genes, which were enriched in the inflammatory

response and immune regulation. After overlapping the results of the three

machine learning algorithms, six candidate genes were obtained, based on which

a nomogram was constructed. The calibration curve demonstrated good

accuracy, and the candidate genes had high diagnostic values. The genes were

found to be related to the immune dysregulation of stroke, and RRS1 was
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strongly associated with the prognosis, immune cell infiltration, microsatellite

instability (MSI), and tumor mutation burden (TMB).

Conclusion: Six common candidate immune-related genes (PTGS2, FCGR1A,

MMP9, VNN3, S100A12, and RRS1) of NAFLD and IS were identified, and a

nomogram for diagnosing NAFLD with IS was established. RRS1 may serve as a

candidate gene for predicting the prognosis of patients with cancer who have

NAFLD complicated by IS, which could aid in their diagnosis and treatment.
KEYWORDS

non-alcoholic fatty liver disease, ischemic stroke, machine learning, diagnosis,
immune infiltration, pan-cancer
1 Introduction

In the absence of a history of heavy alcohol consumption or

another chronic liver disease, steatosis in >5% of hepatocytes is referred

to as nonalcoholic fatty liver disease (NAFLD) (1). It is associated with

the increased risk of various extrahepatic complications, including

cardiovascular disease, type 2 diabetes, chronic kidney disease, and

intrahepatic and extrahepatic malignancies (2, 3).

Recent studies have shown that NAFLD may be linked to a higher

risk of ischemic stroke (IS) (4). IS, one of the main causes of disability

and death, is a complex disease resulting from the interplay of

environmental and genetic risk factors (5). According to a

prospective study, NAFLD is an independent predictive factor for IS,

and the more severe the NAFLD, the higher the incidence of IS (6).. A

recent meta-analysis on the correlation between NAFLD and carotid

atherosclerosis and IS established that progressive hepatic steatosis can

significantly increase the probability of carotid atherosclerosis and

stroke in patients with NAFLD (7). The pathophysiological

mechanism of NAFLD leading to IS may include enhanced

activation of the liver and systemic inflammatory response, oxidative

stress, metabolic disorder, imbalance in adipokines, cytokines, etc., and

progressive atherosclerosis (especially carotid atherosclerosis) (8–11).

Likewise, these mechanism are also associated with the development

and progression of cancer. With the accelerated aging process and the

prevalence of unhealthy lifestyles, the cancer burden of NAFLD

patients with IS also deserves attention.

According to reports, the onset and progression of NAFLD

involve crosstalk or their temporal involvement among immune

cells such as innate-like T cells, neutrophils, monocytes, B cells,

and Dendritic cells (12). In addition, studies have shown that IS is

also closely related to immune cell infiltration. Brain-resident

immune cells (such as microglial, meningeal, and perivascular

macrophages) and peripheral immune cells (such as neutrophils,

macrophages, dendritic cells, lymphocytes, etc.) are involved in the

development of IS (13). It is well known that disturbances in the

immune microenvironment are also associated with the occurrence

and development of cancer. The alteration in the immunological

microenvironment is significant to the process of NAFLD leading to

IS, but the particular molecular mechanism has yet to be confirmed.
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In this study, two NAFLD and IS datasets were downloaded from

the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/

geo) database. The “Limma” package was used to identify the

differentially expressed genes (DEGs) in NAFLD and IS.

Subsequently, weighted gene coexpression network analysis

(WGCNA) was applied to determine the critical module in

NAFLD. To discern the candidate immune-related biomarkers for

NAFLD with IS, functional enrichment analysis, protein-protein

interaction (PPI) network creation, application of machine-learning

algorithms (least absolute shrinkage and selection operator [LASSO],

random forest [RF], and support vector machine-recursive feature

elimination [SVM-RFE]), evaluation of nomogram and receiver

operating characteristic (ROC) curve, and analysis of immune cell

infiltration were performed. Furthermore, pan-cancer analysis was

conducted to assess the functions of biomarkers in cancer.
2 Materials and methods

2.1 Microarray data

The flowchart employed for this research is depicted in Figure 1.

The 2 NAFLD datasets (GSE48452 and GSE89632) and 2 IS datasets

(GSE16561 and GSE58294) were downloaded from the GEO

database. The GSE48452 dataset (platform: GPL11532) includes

41 controls and 32 NAFLD patients. The GSE89632 dataset

(platform: GPL14951) includes 24 controls and 39 NAFLD

patients. The GSE16561 dataset (platform: GPL6883) includes 24

controls and 39 IS patients. The GSE58294 dataset (platform:

GPL570) includes 23 controls and 69 IS patients.
2.2 Data preprocessing and selection of
differentially expressed genes

The 4 original datasets were first subjected to background

correction and then normalized by using the “affy” package in the

R software. Subsequently, probe-level data were converted to their

respective gene expression values. When a gene corresponds to
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multiple probes, the gene expression value is replaced with the

average expression value. Following the integration of the datasets,

the batch effect was eliminated by using the combat function of the

“SVA” package in R, as there was a notable batch difference across

datasets from different platforms. Finally, in order to identify DEGs

between the disease and control groups, the “Limma” package in R

software was used with the false discovery rate (FDR) of <0.05 and |

log2 Fold change (FC)| >0.6 as the screening criterion.
2.3 Construction of co-expressed
gene modules

The weighted co-expression network for the expression matrix

of the NAFLD dataset was created using the “WGCNA” package in

the R software. For further analysis, the genes with a median

absolute deviation (MAD) >25% were selected. To ensure data

integrity, the “goodSamplesGenes” function was applied. To

determine and validate the optimal soft threshold (b) and

construct a scale-free network, the “pickSoftThreshold” was used.

Next, the adjacency matrix was turned into a topological overlap

matrix (TOM), and the gene modules were constructed using

hierarchical clustering and the dynamic pruning-tree algorithm.

The gene significance (GS) and module significance (MS) were

calculated by using phenotype and module data in order to examine

the relationship between modules or genes and the clinical features.
Frontiers in Immunology 03
2.4 Functional enrichment analysis and ppi
network establishment

The “clusterProfiler” package in the R software, the functional

enrichment analysis of the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) was performed, and

P < 0.05 was considered to indicate statistical significance. GO and

KEGG analyses were performed in accordance with the intersection

genes of the most significant module genes and DEGs of NAFLD, and

the intersection genes of the most significant module genes of

NAFLD and DEGs of IS, respectively. In addition, we also utilize

the String database (http://string-db.org/) for Protein–Protein

Interaction (PPI) network construction. The intersection genes of

the most significant module genes of NAFLD and the DEGs of IS

were imported into the String database, and then the species was

selected as “Homo sapiens”, and finally it was considered significant

when it was greater than the minimum interaction score of 0.4.
2.5 Machine learning for screening
candidate genes

To identify the important biomarkers, candidate genes for the

diagnosis of NAFLD with IS were further screened by using 3

machine-learning algorithms. LASSO regression, which can be used

for variable selection and regularization to increase the prediction
FIGURE 1

Depiction of the study flow chart.
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accuracy, was performed using the “glmnet” package in the R

software. RFE of the RF algorithm is a supervised machine-

learning algorithm that can be applied to rank the intersection

genes of NAFLD and IS as well as to determine the genes with

relative importance >2 as feature genes. SVM-RFE is an SVM-based

machine-learning algorithm that can determine the most suitable

subset of genes while avoiding overfitting. Finally, the genes selected

by the three machine learning algorithms were intersected, and the

intersected genes were used for subsequent analysis.
2.6 Establishment of nomogram and
evaluation of predictive efficiency

The nomograms were constructed using the ‘rms’ package in R

software based on the intersection genes screened by using three

machine-learning algorithms. Then, the calibration curve was applied

to evaluate the nomogram’s predictive capability. When establishing

the ROC curve of the candidate genes, the area under the curve (AUC)

was computed to assess the prediction accuracy of NAFLD with IS.
2.7 Immune cell infiltration analysis

Using the ssGSEA algorithm of the “GSVA” package in R

software, the immune infiltration of IS was quantified.

Spearman’s correlations were computed to investigate the

correlation between immune-infiltrating cells and the intersection

of genes of machine-learning algorithms.
2.8 Analysis of tumor-related prognosis

The “forestplot” package in R software was used to run

univariate Cox regression analyses, after which the p-value, HR,

and 95% CI values were computed. Subsequently, the data was

visualized through a forest plot.
2.9 Analysis of tumor-related
immune infiltration

TIMER, xCELL, MCPCOUNTER, CIBERSORT, EPIC, and

QUANTISEQ algorithms were used for further exploring the

correlation between candidate gene expression and immune

infiltration in all TCGA tumors. Then, we looked at the

relationship between candidate genes and the expression of genes

relevant to immunological checkpoints in diverse cancers.

Moreover, we examined the relationship between MSI or TMB in

different cancers and the expression of candidate genes.
2.10 Statistical analysis

R software (version 4.2.0; https://www.r-project.org/) was

utilized for all statistical analyses and graph generation. The
Frontiers in Immunology 04
Student t-test was utilized to compare group differences. The

predictive performance of the candidate genes utilized to build

the predictive model was evaluated using the ROC curve. P<0.05

was considered to indicate statistical significance.
3 Results

3.1 Identification of differentially
expressed genes

In the comprehensive dataset of NAFLD, 117 DEGs were

identified using the “Limma” package in R. A total of 98 DEGs

were identified in the combined dataset of IS. Volcano maps and

heatmaps were used to visualize the DEGs of IS and NAFLD, as

shown in Figures 2, 3, respectively. The detailed DEGs of NAFLD or

IS are listed in Supplementary Table S1 and Supplementary Table

S2, respectively.
3.2 Construction of weighted gene
coexpression network and identification of
key modules

WGCNA was used to identify the most significantly related

modules in the NAFLD combined dataset. The soft threshold was

set at b = 6 (scale-free R2 = 0.9) to fit the gene expression associated

with a scale-free network (Figure 4A). After removing the abnormal

samples, the clustering dendrogram of NAFLD and controls was

obtained, as shown in Figure 4B. Next, using dynamic hybrid

shearing, four gene coexpression modules were produced

(Figure 4C). The correlation of the gene modules with NAFLD

and controls is depicted in Figure 4D, and the turquoise module

(containing 279 genes) demonstrated the most significant

correlation with NAFLD (correlation coefficient = 0.6, p = 3e-09).

Additionally, in the turquoise module, a strong association was

noted between module membership and GS (correlation coefficient

= 0.47, p = 9.7e-17) (Figure 4E). Therefore, this module was used for

subsequent analyses.
3.3 Functional enrichment analysis and
construction of PPI network

First, the turquoise module genes of NAFLD with DEGs were

overlapped, and 95 intersection genes were obtained using Venn

diagrams (Figure 5A). Then, GO and KEGG functional enrichment

analysis were employed to comprehend the biological functions of

the intersection genes in NAFLD. GO enrichment analysis revealed

that “response to extracellular stimulus,” “fat cell differentiation,”

and “response to steroid hormone” were the mainly enriched

biological process (BP) (Figure 5B). Cellular component (CC)

analysis showed that the intersection genes were mainly enriched

in “extrinsic component of membrane,” “endoplasmic reticulum

lumen,” and “phosphatidylinositol 3-kinase complex” (Figure 5B).

In terms of molecular function (MF), “DNA-binding transcription
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activator activity,” “receptor ligand activity,” and “signaling

receptor activator activity” were the most important items

(Figure 5B). According to KEGG enrichment analysis

(Figure 5C), the intersecting genes were primarily enriched in the

pathways of “IL-17 signaling pathway,” “TNF signaling pathway,”

and “JAK-STAT signaling pathway.”

To further explore whether the key genes related to NAFLD

were associated with the pathogenesis of IS, the turquoise module

genes of NAFLD and the DEGs of IS were intersected to obtain nine
Frontiers in Immunology 05
intersection genes, which were displayed with Venn diagrams

(Figure 6A). According to GO enrichment analysis, these

intersection genes were primarily enriched in the BP of “epithelial

cell migration,” “regulation of inflammatory response,” “neutrophil

activation involved in immune response,” and “regulation of

neuroinflammatory response”, CC of “clathrin-coated vesicle

membrane,” “outer membrane,” and “secretory granule lumen,”

and MF of “calcium-dependent protein binding,” “RAGE receptor

binding,” and “IgG binding” (Figure 6B). According to KEGG
A B

FIGURE 3

Identification of DEGs in the integrated NAFLD dataset. (A) Rows represent DEGs, and each column refers to a sample. Red and blue represent the
upregulated and downregulated DEGs, respectively. (B) Red and green circles represent upregulated and downregulated DEGs, respectively.
A B

FIGURE 2

DEGs identification in the integrated IS dataset. (A) Rows represent DEGs, and each column refers to a sample. Red and blue represent upregulated
and downregulated DEGs, respectively. (B) Red and green circles represent upregulated and downregulated DEGs, respectively.
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enrichment analysis, the nine genes were primarily enriched in

“transcriptional misregulation in cancer,” “IL-17 signaling

pathway,” and “NF-kappa B signaling pathway” (Figure 6C). In

summary, these nine common genes were highly related to immune

regulation and inflammatory response and also associated with

transcriptional dysregulation in cancer. The functional enrichment

results of the common genes were similar to those of NAFLD,

which implies that the common genes could be used for

subsequent analysis.

In addition, after the identification of the nine intersection

genes relevant to immunity and cancer, a PPI network was created

to understand the interaction (Figure 6D).
Frontiers in Immunology 06
3.4 Screening candidate genes with
machine learning

In this study, candidate genes were screened using the three

machine learning algorithms of LASSO regression, SVM-RFE,

and RF. First, LASSO regression analysis was applied for the

intersection genes. After removing the redundant variables, six

characteristic genes were identified as potential biomarkers

(Figure 7A). Second, for the results of SVM-RFE analysis, when

the eigengene was nine, the error of the classifier was the smallest

(Figure 7B). Next, the relative importance of the genes was ranked

using the RF algorithm, and eight characteristic genes were
A B

D E

C

FIGURE 4

Identification of module genes in NAFLD. (A) The soft threshold (b) was determined to be 6 when the correlation coefficient was 0.9. (B) Clustering
dendrogram of NAFLD and control samples. (C) Each branch in the cluster diagram refers to a gene, and different colors represent a gene
co-expression module. (D) Heatmap of module–trait relationships. (E) Scatter plot of the correlation between gene module membership and gene
significance in the turquoise module.
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identified (Figures 7C, D). Finally, the genes analyzed with the

three machine algorithms were intersected, and six candidate

characteristic genes (PTGS2, FCGR1A, MMP9, VNN3, S100A12,

and RRS1) were recognized (Figure 7E).
Frontiers in Immunology 07
3.5 Diagnostic value evaluation

To augment the clinical utility, a nomogram was constructed

based on the six candidate genes (Figure 8A). The calibration curve
A B

C

FIGURE 5

Functional enrichment analysis of intersection genes in NAFLD. (A) With reference to the Venn diagram, the turquoise module of NAFLD and the
DEGs of NAFLD contain 95 intersection genes. (B) GO enrichment analysis of the intersecting genes. The X-axis represents the gene ratio for each
term, while the Y-axis refers to the different terms in GO. The p-value is indicated as the color of the circle, and the circle size indicates the number
of genes for the corresponding item. (C) The KEGG pathway enrichment analysis results of the intersecting genes.
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revealed that the discrepancy between the actual and predicted

values of IS risk was small, which demonstrated the high diagnostic

value of the nomogram (Figure 8B). Moreover, ROC analysis was

used to determine the AUC and 95% CI of each candidate gene. The

findings were as follows: FCGR1A (AUC: 0.806, 95% CI: 0.725–

0.880), MMP9 (AUC: 0.837, 95% CI: 0.775–0.897), PTGS2 (AUC:

0.768, 95% CI: 0.688–0.841), RRS1 (AUC: 0.904, 95% CI: 0.844–

0.956), S100A12 (AUC: 0.865, 95% CI: 0.790–0.925), and VNN3

(AUC: 0.847, 95% CI: 0.782–0.907) (Figure 8C). The above results

show that all candidate genes have a high diagnostic value.
3.6 Analysis of immune cell infiltration

The immune regulation mode in IS was further elucidated with

immune cell infiltration analysis because the intersection genes of

NAFLD and IS were primarily enriched in the inflammatory response

and immune regulation. In the combined IS dataset, Figure 9A displays

the percentage of immune cells in IS and controls. Compared with

controls , lower levels of Effector .memory.CD8.T.cel l ,
Frontiers in Immunology 08
Type.2.T.helper.cell, Activated.B.cell, Activated.CD4.T.cell,

Effector.memory.CD4.T.cell, Central.memory.CD8.T.cell,

Activated.CD8.T.cell, CD56bright.natural.killer.cell, Memory.B.cell,

and Central.memory.CD4.T.cell were observed in patients with IS.

On the contrary, higher levels of Eosinophil, MDSC,

Activated.dendritic.cell, Macrophage, Plasmacytoid.dendritic.cell,

Gamma.delta.T.cell, Immature.B.cell, Mast.cell, Neutrophil,

Regulatory.T.cell, Immature.dendritic.cell, Natural.killer.cell, and

Type.17.T.helper.cell were noted (Figure 9B). Additionally, a

correlation heatmap was used to demonstrate the correlation

between the six candidate genes and immune cells (Figure 9C). The

detailed results of correlation analysis between immune cells and

candidate genes are listed in Supplementary Table S3.
3.7 Pan-cancer analysis of RRS1 expression

According to the KEGG enrichment assessment, the

intersection genes of NAFLD and IS were associated with cancer
A B

D

C

FIGURE 6

Enrichment analysis and the PPI network of the intersection genes of NAFLD and IS. (A) The Venn diagram depicts the 9 intersection genes in the
turquoise module of NAFLD and the DEGs of IS. (B) GO enrichment analysis of 9 intersection genes. (C) KEGG analysis of 9 intersection genes.
(D) The PPI network illustrates the interactions among the 9 intersection genes.
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transcriptional dysregulation. In addition, RRS1 showed the highest

diagnostic value for NAFLD with IS (AUC: 0.904, 95% CI: 0.844–

0.956). Therefore, the immune-related gene RRS1 was selected for

further pan-cancer analysis. In the TCGA database, RRS1 was

highly expressed in 18 cancer types, including CHOL, BRCA, and

BLCA, with a statistical significance (Figure 10A). The data for

normal tissue in the GTEx database were then collected, and RRS1

was found to be weakly expressed only in LAML but strongly

expressed in 27 cancers, including ACC, BLCA, and BRCA

(Figure 10B). The expression status of RRS1 in each tumor cell

line is depicted in Figure 10C.
3.8 Prognostic value of RRS1 in
pan-cancer analysis

The relationship between the expression level of RRS1 and the

patient prognosis was investigated by determining progression-free

survival (PFS), disease-free survival (DFS), disease-specific survival

(DSS), and overall survival (OS). RRS1 expression was substantially

linked to LIHC and LUAD in OS analysis and acted as a risk factor

in both LIHC and LUAD (Figure 11A). The DFS study found a

significant relationship among three cancers—OV, LIHC, and

PAAD—and RRS1 expression (Figure 11B). Furthermore, RRS1

was a protective factor in OV but a risk factor in LIHC and PAAD.

In DSS analysis, the expression of RRS1 was significantly associated

with four cancers, namely, KIRP, PAAD, LUAD, and UCS, and was

a risk factor in all four cancers (Figure 11C). PFS analysis indicated
Frontiers in Immunology 09
that the expression of RRS1 was correlated with the PFS of seven

malignancies, namely, ACC, KIRP, LIHC, OV, PAAD, PRAD, and

UVM (Figure 11D). RRS1 served as a protective factor only in OV

and was a risk factor in the remaining six malignancies.
3.9 Immune cell infiltration related to RRS1
in pan-cancer analysis

The TIMER algorithm was used to assess the relationship

between RRS1 expression and the degree of immune cell

infiltration in various malignancies. RRS1 was related to B cells in

13 cancers, CD4+ T cells in 14 cancers, CD8+ T cells in 15 cancers,

myeloid dendritic cells in 17 cancers, macrophages in 16 cancers,

and neutrophils in 13 cancers according to TIMER analysis

(Figure 12A). Moreover, RRS1 was significantly negatively

correlated with immune cells in LGG, COAD, LUSC, BRCA,

SKCM, LUAD, and STAD but significantly positively correlated

with immune cells in LIHC, PCPG, and THCA. In addition, the

xCELL algorithm (Figure 12B), MCPCOUNTER program

(Figure 12C), CIBERSORT algorithm (Figure 13A), EPIC

algorithm (Figure 13B), and QUANTISEQ algori thm

(Figure 13C) demonstrated that diverse immune cells were highly

associated with RRS1 expression. Furthermore, the expression levels

in different malignancies were highly linked to immune checkpoint-

related genes (Figure 13D). RRS1 showed a positive correlation in

KICH, PCPG, and KIRP, whereas it showed a negative correlation

in SKCM, LUSC, and COAD.
A B

D EC

FIGURE 7

Machine-learning algorithm screening for candidate biomarkers of NAFLD with IS. (A) Biomarker screening in the Lasso regression. The lowest point
of the curve corresponds to the optimal number of genes (n = 6). (B) SVM-RFE algorithm screening for biomarkers. (C) The relationship between the
number of trees and the error rate is displayed in a random forest. (D) Ranking of genes according to their relative importance. (E) Venn diagram
depicting 6 candidate genes screened by 3 machine-learning algorithms.
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3.10 MSI and TMB analysis

MSI and TMB are expected to guide tumor immunotherapy.

According to the results of MSI analysis, RRS1 was significantly

correlated with LUSC, MESO, DLBC, and PCBG (Figure 14A). In

the TMB study, RRS1 was significantly associated with STAD,

PRAD, LUAD, and COAD (Figure 14B).
4 Discussion

NAFLD, a disease closely associated with metabolic

dysfunction, has become the most common cause of chronic liver

disease worldwide (14). NAFLD, together with the high incidence of
Frontiers in Immunology 10
hepatic (cirrhosis, liver cancer, etc.) and extrahepatic (including

type 2 diabetes, myocardial infarction, IS, and extrahepatic tumors)

complications, has imposed a huge burden on public health and the

economy (2, 3, 15–17). IS is one of the main causes of disability and

death, but the pathophysiological mechanisms of NAFLD and IS

have not been completely elucidated. Moreover, the cancer burden

of NAFLD complicated by IS warrants attention. In this study, six

common immune-related candidate genes (PTGS2, FCGR1A,

MMP9, VNN3, S100A12, and RRS1) for NAFLD and IS were

identified via comprehensive bioinformatic analysis and machine

learning algorithms.

Atherosclerosis, which can cause blood flow restriction and

potential plaque rupture risk, is one of the causes of IS (18, 19).

PTGS2, also known as COX-2, is upregulated in the macrophages of
A B

C

FIGURE 8

Nomogram construction and prediction accuracy evaluation. (A) Nomogram for diagnosing NAFLD with IS. (B) Calibration curves assessing the
predictive accuracy of the nomograms. (C) ROC curves for each candidate gene (PTGS2, FCGR1A, MMP9, VNN3, S100A12, and RRS1).
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atherosclerotic lesions and may augment the inflammatory

response in atherosclerosis (20, 21). S100A12 is connected with

NAFLD-related diseases (including obesity, type 2 diabetes, and

inflammation) and may participate in the development of

atherosclerosis by mediating the pathophysiological processes of

vascular inflammation, calcification, and oxidative stress (22–24).

Dysregulation of MMP-9 plays a pertinent role in various

pathophysiological processes, such as inflammation, atherosclerosis,

central nervous system diseases, and autoimmune diseases (25–28).

Importantly, elevated serum MMP-9 levels are associated with poor

prognosis in IS (29, 30). Additionally, many studies have confirmed

that PTGS2, S100A12, and MMP-9 gene polymorphisms are linked

to a high risk of IS (31–35).

Previous studies have demonstrated that inflammatory response and

immune regulation are involved in the development of IS (11, 36).

Within hours after the onset of IS, the neutrophil count in the peripheral

blood increases exponentially (37). Neutrophils accumulate in the brain

after the onset of IS and release toxic signals, such as neutrophil

extracellular traps, which prevent vascular reconstruction and repair

after IS (38). Simultaneously, peripheral blood monocyte count increases

significantly within 16 days after the onset of IS (39). In the early stages of

IS, M1 macrophages can disrupt the integrity of the blood-brain barrier

and contribute to the resolution of inflammation after switching to the
Frontiers in Immunology 11
M2 phenotype (40). In the present study, patients with IS exhibited

higher levels of Eosinophil, MDSC, Activated.dendritic.cell, Macrophage,

Plasmacytoid.dendritic.cell, Type.17.T.helper.cell, Immature.B.cell,

Neutrophil, Gamma.delta.T.cell, Natural.killer.cell, Mast.cell,

Immature.dendritic.cell, and Regulatory.T.cell, which agrees with

previous studies.

Furthermore, a relationship was observed between the levels of

various immune cells and the expressions of candidate genes. MMP-9

is one of the widely studied members of matrix metalloproteinases

(MMPs) (41). In inflamed tissues, MMPs can be produced by various

immune cells, such as neutrophils and macrophages (27, 42, 43). The

level ofMMP-9 in patients with nonalcoholic steatohepatitis (NASH) is

significantly higher than that in patients with hepatitis C, and the

enzyme is mainly localized in neutrophils in the liver tissues of patients

with NASH (44). S100A12 is predominantly secreted by neutrophils

and monocytes and plays a crucial role in inflammatory disorders (45,

46). Furthermore, elevated levels of neutrophil-to-lymphocyte ratio

(NLR), which reflects systemic inflammation, affect the severity and

prognosis of cardiovascular diseases, and VNN3 was confirmed to be

independently associated with NLR (47). In summary, the candidate

genes share a close relationship with inflammatory response and

immune regulation, which establishes their significance in the

immunological dysregulation process in IS.
A

B

C

FIGURE 9

Analysis of immune cell infiltration associated with IS. (A, B) The distribution of 28 immune cells in IS and control samples is depicted via a heatmap
and a violin plot. (C) Correlation between 6 candidate genes and immune cell infiltration.
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As the KEGG enrichment analysis results revealed that the

intersection genes of NAFLD and IS were associated with cancer,

the effect of RRS1 (the gene with the greatest prediction

performance of NAFLD with IS) was further investigated in pan-
Frontiers in Immunology 12
cancer. In TCGA and GTEx databases, the differential expression

analysis of RRS1 in 28 tumor types, including BRCA, LIHC, and

STAD, showed statistical significance. Moreover, the findings of this

research signified that RRS1 is a prognostic risk factor in various
A

B

C

FIGURE 10

The expression of RRS1 in pan-cancer. (A) In the TCGA database, the expression of RRS1 in diverse cancers. (B) In the TCGA and GTEx databases,
the expression of RRS1 in diverse cancers. (C) RRS1 expression in different cell lines. *p < 0.05, **p < 0.01, ***p <0.001. ns, no significance.
A B DC

FIGURE 11

Pan-cancer analysis of the correlation between RRS1 expression and prognosis. (A) The correlation between RRS1 expression and OS in diverse
cancers. (B) The correlation between RRS1 expression and DFS in diverse cancers. (C) The correlation between RRS1 expression and DSS in diverse
cancers. (D) The correlation between RRS1 expression and PFS in diverse cancers.
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cancers. These results indicate that RRS1 can promote the

development of tumors and may be a potential marker for poor

prognosis. RRS1 can promote the development of HCC by

enhancing ribosome biogenesis and attenuating RPL11-MDM2-

P53 signaling (48). Furthermore, RRS1 may augment breast cancer

cell invasion and metastasis via the RPL11-c-Myc-SNAIL axis (49).

Also, the downregulation of lncRNA SET-binding factor 2-

antisense RNA1 can upregulate miR-143 and inhibit RRS1 and

ultimately restrict the progression of breast cancer (50). In addition,

dysregulation of RRS1 is involved in the development of several

malignancies and the progression of various tumors, including

papillary thyroid carcinoma, retinoblastoma, and neuroblastoma

(51–54). These studies confirm the key role of RRS1 in tumor

progression. Notably, we observed that RRS1 was closely related to

CD8+ T cells, neutrophils, and other immune cells. RRS1 was

significantly negatively correlated with immune infiltrating cells

in tumors, such as COAD, LUAD, LUSC, and SKCM. Moreover,

our study identified that RRS1 is closely associated with immune

checkpoint-related genes, MSI, and TMB of various tumors.

Previous studies have shown that both MSI and TMB are

associated with the efficacy of immunotherapy (55). The

dysregulation of RRS1 may affect the efficacy of immunotherapy

in patients, which remains to be confirmed by further studies. In
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brief, the expression of RRS1 affects the prognosis of many tumors

and is related to immune regulation. RRS1 may be a candidate gene

for predicting poor prognosis in patients with cancer who have

NAFLD complicated by IS.

This study has several limitations. First, although the two

separate datasets of NAFLD and IS were merged, the total sample

size remained small. Second, the immune-related candidate genes

identified in this study have not yet been experimentally verified.

However, previous preclinical and clinical studies have confirmed

the potential correlation of the candidate genes with NAFLD and IS,

which supports the reliability of this study. Third, the results should

be confirmed using the data in the database in subsequent clinical

studies that integrate the clinical information of patients with

NAFLD and IS, such as sex and age.
5 Conclusion

Six common immune-related genes (PTGS2, FCGR1A, MMP9,

VNN3, S100A12, and RRS1) associated with NAFLD and IS were

identified using bioinformatics methods and machine learning

algorithms, and a diagnostic nomogram of NAFLD patients with

IS was established. Meanwhile, we pointed out that dysregulation of
A
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FIGURE 12

Pan-cancer analysis of the correlation between RRS1 expression and immune cell infiltration. (A) Correlation between RRS1 expression and the
infiltration levels of various immune cells based on TIMER. (B) Correlation between RRS1 expression and infiltration levels of various immune cells
based on xCELLs. (C) Correlation between RRS1 expression and infiltration levels of various immune cells based on MCPCOUNTER.
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FIGURE 13

RRS1 expression in relation to immune cell infiltration or immune-checkpoint genes analyzed via pan-cancer analysis. (A) Correlation between RRS1
expression and infiltration levels of various immune cells based on CIBERSORT. (B) Correlation between the RRS1 expression and infiltration levels of
various immune cells based on EPIC. (C) Correlation between RRS1 expression and infiltration levels of various immune cells based on QUANTISEQ.
(D) RRS1 expression and immune checkpoint genes correlation analyses.
A B

FIGURE 14

Pan-cancer analysis of RRS1 expression in association with MSI or TMB. (A) RRS1 expression and MSI correlation analyses. (B) RRS1 expression and
TMB correlation analyses.
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RRS1 may be a high risk factor for cancer in patients with NAFLD

complicated by IS. Further research on RRS1 is expected to aid in

the diagnosis and treatment of this type of cancer patient.
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