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Effects of Helicobacter pylori
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Helicobacter pylori has developed several strategies using its diverse virulence

factors to trigger and, at the same time, limit the host’s inflammatory responses in

order to establish a chronic infection in the human stomach. One of the virulence

factors that has recently received more attention is a member of the

Helicobacter outer membrane protein family, the adhesin HopQ, which binds

to the human Carcinoembryonic Antigen-related Cell Adhesion Molecules

(CEACAMs) on the host cell surface. The HopQ-CEACAM interaction facilitates

the translocation of the cytotoxin-associated gene A (CagA), an important

effector protein of H. pylori, into host cells via the Type IV secretion system

(T4SS). Both the T4SS itself and CagA are important virulence factors that are

linked to many aberrant host signaling cascades. In the last few years, many

studies have emphasized the prerequisite role of the HopQ-CEACAM interaction

not only for the adhesion of this pathogen to host cells but also for the regulation

of cellular processes. This review summarizes recent findings about the

structural characteristics of the HopQ-CEACAM complex and the

consequences of this interaction in gastric epithelial cells as well as immune

cells. Given that the upregulation of CEACAMs is associated with many H. pylori-

induced gastric diseases including gastritis and gastric cancer, these data may

enable us to better understand the mechanisms of H. pylori’s pathogenicity.
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1 Introduction

Discovered in 1982 in the stomach of patients with gastritis and peptic ulceration (1),

Helicobacter pylori – with its sophisticated mechanisms of pathogenesis – has gained much

attention from many research groups over the past decades. Ten years later, in 1994, H.

pylori was categorized by the World Health Organization as a class I carcinogen (2). This

gram-negative, microaerophilic bacterium infects more than half of the world’s population
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at different rates depending on geographic location, with developing

countries being the most affected regions with an H. pylori

prevalence of up to over 80% (3, 4). According to many studies,

the main routes of infection are thought to be oral-oral, fecal-oral,

and gastro-oral via water or food consumption. Nevertheless, the

exact mode of H. pylori transmission is not yet fully understood (5).

In 1992, Pelayo Correa demonstrated the progression of gastric

pathologies that can develop as a result of a chronic H. pylori

infection of the gastric mucosa. First, chronic gastritis and atrophy

are induced, which can later progress to intestinal metaplasia,

dysplasia, and finally gastric adenocarcinoma (6). While all H.

py lor i indiv idua l s deve lop chronic gas t r i t i s , gas t r ic

adenocarcinoma only occurs in 1-3% of cases (7). However, H.

pylori was estimated to be responsible for 89% of non-cardia gastric

cancer cases worldwide (8) and, according to GLOBOCAN 2020,

gastric cancer is the fourth leading cause of cancer-related mortality

for both sexes combined, accounting for around 1.08 million new

cases and 769 000 deaths per year (9).

Over many thousands of years of colonizing the human

stomach, H. pylori has diversified into numerous strains

possessing various virulence factors (10). These have granted the

bacterium the ability not only to directly affect the physiological and

molecular processes of gastric epithelial cells but also to interact

with the host’s immune cells to promote a strong inflammatory

response (11) (Figure 1). One of H. pylori’s best-known virulence
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factors is the cytotoxin-associated gene A (CagA), which is injected

by the bacterium into the host cells, leading to the activation of the

host immune response and alteration of the host’s cellular processes

(12–15). In addition, several bacterial adhesins of the Helicobacter

outer membrane protein (Hop) family, including HopZ, BabA,

SabA, and OipA, are also found to play a pivotal role in the

colonization and pathogenesis of H. pylori (16, 17). Recently,

another member of the Hop family, the HopQ adhesin, was

reported not only to be involved in bacterial adhesion but also to

be essential for the translocation of the effector protein CagA into

the host cells by the Type IV secretion system (T4SS), which can

aberrantly modify host cell signaling resulting in inflammatory

responses. In 2016, HopQ was discovered by Javaheri et al. and

Königer et al. to interact with the human Carcinoembryonic

Antigen-related Cell Adhesion Molecules (CEACAMs) expressed

on the host’s cell surface to facilitate the CagA translocation (14,

18). Since then, the HopQ-CEACAM interaction has been reported

to act in a virulence-enhancing manner, possibly contributing to the

development of many gastric pathologies. Due to the rising

importance of the HopQ-CEACAM interaction, this minireview

aims to summarize recent and novel findings of the molecular

characterization, function, and consequence of this interaction.
2 Helicobacter pylori virulence
factors: Type IV secretion system,
CagA, HopQ

As a pathogen that colonizes and persists in the human

stomach, H. pylori possesses numerous virulence factors. Among

those, the T4SS, CagA, and HopQ play a critical role in the

bacterium’s pathogenicity. HopQ binds human CEACAM

receptors with high affinity and specificity, an interaction

necessary for the translocation of CagA into infected cells via the

T4SS (14, 18). Importantly, apart from enabling this translocation,

the T4SS also seems to regulate the activation of the nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-kB) signaling
pathway, resulting in the production of the pro-inflammatory

cytokine IL-8 in host cells (19–22). This is in line with the fact

that other bacterial factors such as peptidoglycan, bacterial nucleic

acids, heptose-1,7-biphosphate (HBP), and ADP-glycero-b-D-
manno-heptose, delivered by the T4SS into host cells, activate the

NF-kB signaling (23–26). Similarly, HopQ binding to CEACAMs

also acts as an essential regulator of the NF-kB pathway in a T4SS-

dependent manner (21, 22) (Figure 2).
2.1 Type IV secretion system

Like several other bacteria, H. pylori possesses a T4SS, a pilus-

like protein complex spanning both bacterial membranes and

reaching into the extracellular space (27). The T4SS in H. pylori is

encoded by the cag pathogenicity island (cagPAI), a DNA stretch of

approximately 40 kb containing about 30 genes (28) originally

derived from a bacteriophage. The core complex of the T4SS is
FIGURE 1

H. pylori infects the human stomach mucosa by binding to the
apical side of the gastric epithelial cells. The infection causes
immune cell infiltration of the gastric mucosa. Activated
macrophages, dendritic cells, and neutrophils produce interleukin 12
(IL-12), which is involved in the differentiation of naïve T cells into
Th1 lymphocytes, leading to the secretion of proinflammatory
cytokines IFNg and TNFa.
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located between H. pylori’s inner and outer membranes and

comprises CagM, CagT, CagX, CagY, and Cag3 (29). It is

connected to the extracellular pilus, made up of several proteins,

including CagI, CagL, CagY, and CagA, which can target integrin

a5b1 receptors on gastric epithelial cells (15). Once in contact with

the host cell, the T4SS can fulfill its syringe-like function: the

injection of H. pylori effector molecules into the host cell.

Although also the translocation of peptidoglycan (23) and

microbial DNA (24) through the T4SS have been discussed, the

translocation of CagA (30) has received most attention (31). While

the exact mechanism of this molecular injection remains unclear

and goes beyond the scope of this review, its downstream effects in

the host cells have been studied in depth.
2.2 Cytotoxin-associated gene A

CagA is a protein of 120–140 kDa (32) that is also encoded by

the cagPAI (28, 32). After its translocation into the host cell

cytoplasm via the T4SS, host kinases of the Src family

phosphorylate tyrosine residues located within CagA’s Glu-Pro-

Ile-Tyr-Ala (EPIYA) motifs (33). Both phosphorylated and non-

phosphorylated CagA then interact with a multitude of host

proteins, including the Src homology 2 (SH2)-containing tyrosine

phosphatase 1 and 2 (SHP-1 and SHP-2) (34, 35), growth factor
Frontiers in Immunology 03
receptor-bound protein 2 (Grb2) (36), CT10 regulator of kinase

(Crk) (37), and partitioning-defective 1 microtubule affinity-

regulating kinase (PAR1/MARK) (38). This triggers numerous

cellular pathways, leading to changes in cell morphology,

signaling, and function. For instance, the dysregulation of the

host cell’s actin cytoskeleton causes cells to elongate and adopt

the aberrant so-called “hummingbird” phenotype (30). The cell’s

polarity and interaction with adjacent cells are disrupted. At the

same time, pro-proliferative, pro-inflammatory, and pro-oncogenic

pathways are activated (39) (Figure 3).

In 1995, Blaser et al. reported that patients infected with CagA-

proficient H. pylori strains had a higher risk of developing gastric

cancer compared to patients infected with CagA-negative strains

(40). These findings have since been confirmed and reviewed by

Cover (41). It was not until 2008 that Ohnishi et al. were able to

causally show that CagA, by aberrantly activating the oncogene

SHP-2 in a phosphorylation-dependent manner, promotes gastric

adenocarcinoma and MALT lymphoma development and can

therefore be classified as an oncoprotein (42).

Many molecular mechanisms by which CagA contributes to

gastric carcinogenesis are now known (43), with more being

discovered every year, such as the activation of the oncogenic

Yes-Associated Protein (YAP) pathway (44) or the mechanistic

target of rapamycin complex 1 (mTORC1) pathway (45, 46).

Furthermore, CagA inhibits several tumor suppressor proteins,
FIGURE 3

A functional Type 4 secretion system (T4SS) can facilitate the
injection of several bacterial components such as bacterial DNA,
peptidoglycan, heptose-1,7-biphosphate, ADP-glycero-b-D-manno-
heptose, and CagA into the host cell. Once CagA is inside the host
cell, both phosphorylated and non-phosphorylated CagA can
interact with numerous proteins, contributing to several
carcinogenic processes including morphological changes,
inflammation, and cell proliferation.
FIGURE 2

The adhesin HopQ binds to the N-terminal domain of CEACAM1,
disrupting the trans-dimerization of the receptor. The HopQ-CEACAM1
interaction enables the translocation and phosphorylation of CagA and
the activation of canonical and non-canonical NF-kB signaling in a Type
IV secretion system (T4SS)-dependent fashion. Once activated, the
transcription factor complexes p52/RelA of the canonical, as well as
p52/RelB of the non-canonical NF-kB pathway, are translocated into
the nucleus, activating the expression of target genes.
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including the runt-related transcription factor 3 (RUNX3) (47) and

the apoptosis-stimulating protein of p53-2 (ASPP2) (48). In

addition to these direct effects on cancer-promoting signaling

pathways, CagA causes inflammation, which is known to be

associated with cancer development (49).

CagA is highly imunogenic and induces an inflammatory

response in the host organism that goes beyond the effects of H.

pylori itself. As early as in 1997, Yamaoka showed a correlation

between infection of CagA-proficientH. pylori strains and increased

levels of the inflammatory cytokines IL-1b, IL-6, IL-8, and TNFa
(50). Interestingly, at the same time, CagA seems to limit H. pylori’s

inflammatory effects. Via an interaction with the C-terminal Src

kinase (Csk), CagA inactivates the kinases responsible for its own

phosphorylation. As a consequence, CagA-SHP-2 signaling and the

subsequent inflammatory pathways are downregulated (51). CagA

also downregulates cathepsin C (CtsC), impairing neutrophil

activation (52), and induces tolerogenic, i.e., immune-suppressive,

dendritic cells (DCs) (53, 54). By reducing the immune response

against H. pylori, these mechanisms might support the bacterium’s

viability and contribute to its long-term persistence in the

human stomach.

In summary, CagA interferes with a multitude of cellular

pathways, triggering a number of cellular responses that

contribute to inflammation and gastric carcinogenesis. Hence, it

is important to understand what enables its translocation via

the T4SS.
2.3 HopQ

The H. pylori genome contains about 30 different hop genes,

which encode outer membrane proteins (OMPs), some of these

serving as bacterial adhesins, such as HopS (named BabA), HopZ,

HopE or HopQ (55). This review will focus on HopQ. Two families

of hopQ alleles exist: type I hopQ alleles are found more commonly

in cag-positive H. pylori strains from patients with peptic ulcer

disease, while type II hopQ alleles are found more commonly in cag-

negative H. pylori strains from patients without ulcer disease (56).

Nowadays, it is known that HopQ is necessary for the

translocation of CagA into host cells (57) and that this is

a ch i e v ed by the b i nd ing o f HopQ to the human

Carcinoembryonic Antigen-related Cell Adhesion Molecules

(CEACAMs) 1, 3, 5, and 6 (14, 18). Interestingly, HopQ does not

show homology to CEACAM-binding adhesins from other Gram-

negative bacteria (14).
3 HopQ-CEACAM interaction

After its identification as a tumor-specific marker for colorectal

cancer in 1965 by Gold and Freedman, the carcinoembryonic

antigen (CEA), later classified as CEACAM5, was the first of a

wide family of CEACAMs to be discovered as important regulators

in carcinogenesis (58). They are mostly expressed on the surface of

different cell types such as epithelial cells, endothelial cells, and

immune cells (59). Besides their ability to mediate intercellular cell-
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cell adhesion and communication by forming homophilic and

heterophilic cis- or trans-interactions on the cell surface (60, 61),

CEACAMs are also important modulators for differentiation (62–

64), proliferation (65), apoptosis (66), migration (67, 68), invasion

(68), tumor development (69), and immune response (70, 71).

Indeed, deregulation of CEACAMs was observed in many cancers

such as of CEACAM6 in childhood acute lymphoblastic leukemias

and early colorectal adenomas, or of CEACAM1 in colorectal and

prostate cancer, as well as in melanoma (72–76). CEACAM1, -5,

and -6 were also detected to be highly expressed in H. pylori-

induced gastritis, precancerous lesions, and gastric cancer, while in

a healthy stomach, they were only found at low expression levels, if

at all (14, 22). In the human stomach, H. pylori was reported to

induce the expression of CEACAMs at the apical side of epithelial

cells, although the exact mechanism through which H. pylori

modulates the expression of CEACAMs is still unclear. Then, H.

pylori employs CEACAMs as receptors for its persistent binding.

Depending on the strain, H. pylori can bind specifically to

CEACAM1, -3, -5, and -6 with different affinities, but no binding of

the bacterium to CEACAM4, -7, or -8 could be observed (14).

Importantly, both Javaheri et al. and Königer et al. showed that the

N-terminal domain of CEACAM1 or CEACAM5 was the binding

site for H. pylori HopQ. The binding of the bacterium is highly

specific to human CEACAMs since no interaction with murine,

bovine, or canine CEACAMs was observed. Interestingly, none of

H. pylori’s known adhesins such as BabA, SabA, HopZ, and AlpA/B

was involved in the binding of the bacterium to CEACAM1 and

CEACAM5, but the outer membrane HopQ, which hence is the

bona fide adhesin interacting with these receptors (14, 18). Indeed,

the HopQ-deficient H. pylori strain P12DhopQ was incapable of

binding to CEACAM1 and CEACAM5, and gastric cancer cells

MKN28 lacking CEACAM did not bind recombinant HopQ (14).

The bacterial adhesin was determined to form a strong, dose-

dependent complex with CEACAM1 with a 1:1 stoichiometry in

solution and in crystals, and a dissociation constant of KD = 296 ±

40 nM (14, 77, 78).

Recently, the X-ray structure of the extracellular domain of

HopQ type I (HopQAD-I), which provides the interaction surface

with the N-terminal domain of human CEACAM1 (C1ND), was

revealed. A conserved 3 + 4-helix bundle topology with four b-
strands (S1, S2, S3, and S4) and three disulfide-clasped loops (CL1,

CL2, and CL3) was demonstrated as a high-resolution structure, of

which each element was proven to contribute to the stability of the

HopQ-CEACAM1 interaction (14, 78) (Figure 4). Two of the b-
strands, S3 and S4, form the insertion domain (HopQ-ID), which

contains binding sites for glycans. HopQ-ID was reported by

Javaheri et al. to be crucial for the binding of HopQ to C1ND

since the absence of this domain caused a tenfold decrease in

binding affinity. However, the insertion domain was later shown

to be located quite distantly from the binding interface and to

contribute only indirectly to the C1ND binding by interacting with

S1 and S2 to support the ordering of the CL1 and CL1-H4 (the loop

connecting CL1 to Helix 4) loops into their binding conformation

(77, 78). Clustering together, the CL1, CL1-H4, and CL2 loops

establish protein-protein contact with the GFCC’C” interaction

surface of the immunoglobulin-like (IgV) domain of C1ND in a
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glycan-independent manner (14, 78). Three N-linked glycosylation

sites are anticipated to be present in the CEACAM1IgV domain:

Asn70CEACAM1, Asn77CEACAM1, and Asn81CEACAM1. They were

found to point away from HopQ-ID, and thus have no significant

impact on the interaction surface (77, 78). In fact, under enzymatic

deglycosylation conditions, both CEACAM1IgV and CEACAM1IgC2
exhibited no major difference in binding affinity compared to the

glycosylated CEACAM1IgV (14, 77).

In contrast to the mechanism observed for other bacterial

proteins interacting with CEACAM receptors, HopQ-CEACAM1

binding is driven by a protein-protein interaction featuring three H-

bonds between Gln44CEACAM1, Tyr34CEACAM1, and Ser32CEACAM1

with Thr149HopQ in the CL1-H4 helix; five H-bonds between the

strand G of C1ND and Ser135HopQ, Thr136HopQ, Asn137HopQ, and

Ser138HopQ in the CL1-H4 loop; and one H-bond between

Thr56CEACAM1 in the strand C” and Tyr106HopQ in the CL1.

Additionally, the protein-protein contact is supported by

hydrophobic bonds between the hydrophobic amino acids

Phe29CEACAM1, Ile91CEACAM1, and Leu95CEACAM1 and the

hydrophobic platform created by Ile102HopQ in CL1-H3,

Ile240HopQ, and Ile242HopQ in CL2, and Leu150HopQ in CL1-H4

(78). Notably, in a directed point mutation analysis, the mutation of

Leu150HopQ to Arg abolished the binding of HopQAD-I to C1ND

completely. Moreover, the steric clashes in the interaction surface

created by the mutation of Thr56CEACAM1 to Lys and Ala49CEACAM1

to Leu reduced the binding either only by 20% or in the same
Frontiers in Immunology 05
manner as the DhopQ mutant strain, respectively. This showed the

importance of Leu150HopQ and Ala49CEACAM1 for the interaction

between C1ND and CL1 (78).

CL1, anchored by Cys103HopQ and Cys132HopQ, was also

proven to be a substantial component of the CEACAM1 binding

site since Cys103Ser and Cys132Ser mutant strains did not show

binding to CEACAM1 at the level observed for DhopQ mutant

strains. Of note, the HopQ expression was maintained at the same

level in the Cys103Ser mutant strain as in the wild-type strain,

indicating that the lack of binding was not the result of a reduced

expression of the adhesin but the loss of interaction with

CEACAM1 on the interaction surface. In contrast, CL2 (anchored

by Cys238HopQ and Cys270HopQ) and CL3 (anchored by

Cys362HopQ and Cys385HopQ) mutants had no defects on

CEACAM1 binding. As observed with the HopQAD-I-CEACAM1

interaction, the loss of the disulfide bond of CL1 was also

demonstrated to be crucial in HopQAD-I binding to CEACAM5

(81). CL1 and CL1-H4 loops were also reported to be disordered in

the unbound HopQAD-I; these loops were rearranged and became

ordered only until they bound to C1ND through a coupled folding

and binding mechanism (77, 78).

Using differential scanning fluorimetry, HopQ alone was measured

to have amelting temperature (Tm) of approximately 45°C between pH

5.5 and pH 7.0, and thus to be less stable than the HopQ-CEACAM1

complex, which not only had a Tm of about 50°C over the same pH

range but also remained intact even at pH 3.0 (77). These results
FIGURE 4

3D structure of the HopQAD-I-C1ND interaction. C1ND, yellow; HopQAD-I, white; CL1, magenta; CL1-H4, red; CL2, blue; CL3, green. The residues are
depicted as red dots. This illustration was adapted from the crystal structure representation generated by Moonens et al. (78) using RCSB Protein
Data Bank (79) (PDB ID: 6GBG, www.rcsb.org) and Mol* (80) (www.molstar.org).
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provide evidence, that, by binding to the N-terminal IgV domain of

CEACAM1, HopQ type I enters a more stable structure than its

unbound state. The X-ray structure of the extracellular domain of

HopQ type II (HopQAD-II) revealed that HopQAD-I and HopQAD-II

target the same epitope on the GFCC’C” sheet of C1ND. Although

HopQAD-II provides seven H-bonds less than HopQAD-I to the

interaction surface with C1ND, it can bind C1ND with a sixfold

higher affinity than that of the HopQAD-I-C1ND interaction. Thus,

HopQAD-II binding to CEACAM1 is rather hydrophobic and

entropically driven, while the HopQAD-I-C1ND interaction is

enthalpically driven and entropically disfavored (78).

In C1ND, a b-sandwich fold with nine anti-parallel b-sheets is

arranged in two opposing b-sheets: ABED, which is used by

CEACAM1 to form cis-oligomerization on the same cell, and

GFCC’C”, which is involved in the cross-cell trans-dimerization

interface (82, 83). As discussed before, the non-glycosylated

GFCC’C” surface is also in direct contact with HopQAD-I, assembling

H-bonds and hydrophobic bonds with CL1, CL1-H4 and CL2 (78).

Indeed, a total of 26 residues were found to be shared by the interface

that C1ND uses for HopQAD-I binding and trans-dimerization,

including Phe29CEACAM1, Gln44CEACAM1, Ile91CEACAM1,

Leu95CEACAM1, Val96CEACAM1, Asn97CEACAM1 (77). While the

mutation of Phe29CEACAM1, Gln44CEACAM1, Val96CEACAM1, and

especially Asn97CEACAM1 to Ala influenced the dimerization of

CEACAM1 remarkably – in the case of Asn97Ala, dimeric

CEACAM1 was even converted into monomers –, these mutations

only caused a modest decrease in the binding energy with HopQ. This

indicates that the binding energy with HopQ is distributed over many

residues (77). Moreover, H. pylori can not only exploit the GFCC’C”

interface of CEACAMs but also disrupt its trans-dimerization upon

binding (77, 78). CEACAM1 was shown to be present as trans-dimer

in solution, yet upon infection with H. pylori wild-type but not DhopQ
mutant strain, the cross-linking efficiency of CEACAM1 is attenuated.

Thus, in the presence ofH. pylori, the equilibrium between dimeric and

monomeric CEACAM1 is shifted to monomeric CEACAM1 to favor

the formation of the HopQ-CEACAM1 complex (78).
4 Downstream effects of
HopQ-CEACAM binding

An important consequence of the HopQ-CEACAM interaction

is the T4SS-mediated CagA translocation and phosphorylation in

the host cells. Nearly a decade ago, CagA translocation was for the

first time reported to be HopQ-dependent by Belogolova et al. Out

of 19 genes, which were found by screening transposon mutant

library to alter T4SS-dependent activation of the NF-kB signaling

pathway and secretion of IL-8, HopQ was identified as an important

factor supporting the pro-inflammatory response and the CagA

translocation (57). Nevertheless, it was not until 2016 that the

binding partners of HopQ, CEACAMs, and the dependence of the

CagA translocation and phosphorylation on the HopQ-CEACAM

interaction were described by Javaheri et al. and Königer et al. This

shed light on how H. pylori can utilize different virulence factors to

interact with the host cells and thereby enhance its pathogenicity.
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While the lack of HopQ leads to an alteration of cagPAI-

dependent CagA translocation and a reduction of IL-8 secretion

(14, 57), the impact on these events appeared to depend on different

CEACAMs and cell lines. In gastric cell lines expressing high levels

of CEACAM1, -5, and -6 such as AGS, KatoIII, and MKN45, CagA

can be translocated into the host cells and successfully

phosphorylated. Of note, the elevated expression levels of

CEACAM5 and -6 were reported to foster CagA translocation

even to a larger extent. In contrast, in cell lines expressing little or

none of these CEACAMs, including MKN28, Hela, and HEK293,

no CagA translocation could be observed (18). However, while the

single knockdown of one of CEACAM1, -5, and -6 in AGS cells was

not able to revoke CagA translocation, the simultaneous

knockdown of all present CEACAMs in this cell line abolished

CagA translocation to a similar extent as is observed when using the

H. pylori DhopQ mutant strain for infection. This indicates a

functional redundancy of CEACAMs in AGS cells. Moreover, the

fact that the altered HopQ-CEACAM interaction only reduces the

CagA translocation into AGS cells by 50% suggests that another

receptor on AGS cells aside from CEACAMs or another H. pylori

adhesin aside from HopQ might also be involved in CagA

translocation (18). Conversely, in KatoIII cells, the triple

knockdown of CEACAM1, -5, and -6, like the lack of HopQ,

completely abrogated CagA translocation, indicating that in these

cells, CagA translocation seems to be enabled mostly by the HopQ-

CEACAM interaction (84).

Integrin is one of the alternative receptors expressed on gastric

epithelial cells reported to be engaged for the T4SS-mediated CagA

translocation (85). Previously, many studies on different cell lines have

been focusing on the functional role of integrin in CagA translocation

and signal transduction upon H. pylori binding. Like CEACAMs,

integrin acts in different manners depending on the cell line. In AGS

and KatoIII cells, the single knockout of integrin b1, the double

knockout of integrin b1b4 and avb4, and the triple knockout of all

ab integrins had no major impact on CagA translocation and the

induction of IL-8 expression, in contrast to the abrogation of

CEACAMs expression (84). Additionally, the absence of integrin-

linked kinase (ILK), which interacts with the cytoplasmic domain of

integrin b1 to mediate signaling from the extracellular matrix to the

intracellular compartment (86), was also not essential for CagA

translocation (21, 84). Thus, it was concluded that neither integrin

interaction with the T4SS nor integrin signaling but HopQ-CEACAM

interaction is required for CagA translocation into AGS and KatoIII

cells (84). In another study using AZ-521 cells infected with a T4SS-

defective strain, the overexpression of CEACAM1 and -5, but not

CEACAM6 or integrin, was able to compensate for the insufficiency of

the T4SS for CagA translocation (87). However, the fact that this cell

line was reported to be a misidentified duodenal cancer cell line raises

questions about the usefulness of using AZ-521 cells for studying the

effects of H. pylori in the stomach.

Upon H. pylori-induced inflammation, several signaling

pathways are activated including the canonical and non-canonical

NF-kB (19–21, 88). While the activation of the canonical NF-kB
pathway involves the phosphorylation and proteasomal

degradation of IkBa, leading to the translocation of the

heterodimer p50/RelA into the nucleus (89, 90), the activation of
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the non-canonical NF-kB pathway leads to the phosphorylation of

IKKa, the phosphorylation and degradation of p100 to p52, and the

translocation of the heterodimer p52/RelB into the nucleus (91–93)

(Figure 2). Various studies have shown that both NF-kB pathways

are mainly T4SS-dependent and CagA-independent (19–22).

Indeed, in NCI-N87 and AGS cells infected with H. pylori lacking

a functional T4SS, the phosphorylation and degradation of IkBa
did not occur, in contrast to cells infected with the DcagA mutant

strain (21). Similarly, the absence of CagE, a protein important for

the T4SS pilus formation (94), but not CagA strongly reduced the

processing of p100 to p52 in the non-canonical NF-kB pathway

(22, 88).

Furthermore, the single knockdown, as well as the double

knockdown of integrin a5 and/or b1, and the knockdown of ILK

did not influence the activation of the canonical NF-kB signaling,

showing that integrin-mediated pathway is dispensable for NF-kB
activation during H. pylori infection (21, 84). In contrast, the

HopQ-CEACAM interaction is a prerequisite for the activation of

canonical and non-canonical NF-kB pathways. In gastric cells

expressing high levels of CEACAMs, infection with the DhopQ
mutant strain induced the activation of both pathways less

effectively than wild-type H. pylori strains (21, 22, 95). However,

NUGC-4 and SNU1 or Hela cells, expressing low levels of

CEACAM1 or no CEACAMs, respectively, showed no significant

changes in IL-8 secretion as well as the processing of p100 to p52

upon infection with HopQ-deficient H. pylori, indicating that

efficient binding of HopQ to CEACAMs is necessary for the

activation of these carcinogenic pathways (21, 22). Notably, a

correlation between the upregulation of CEACAM1 and the

activation of the non-canonical NF-kB pathway in H. pylori-

induced gastritis, intestinal-type, and diffuse-type gastric tumors

was also reported (22), strongly indicating a vital contribution of

CEACAM1 to the pathogenic hallmarks of H. pylori infection.

Interestingly, the HopQ-CEACAM interaction is not only

pivotal for the regulation of the epithelial cell response but also

appears to modulate the immune response. During infection, H.

pylori induces the infiltration of several immune cells including

macrophages, DCs, neutrophils, and T cells (1, 96–99) (Figure 1). In

human neutrophils expressing CEACAM1 and CEACAM6, CagA

translocation and phosphorylation are facilitated effectively in a

HopQ-dependent manner, whereas macrophages and DCs with low

expression levels of these CEACAMs only allow low levels of CagA

translocation and phosphorylation in a HopQ-independent manner

(100). In addition, in murine neutrophils expressing human

CEACAMs, thus exhibiting a functional HopQ-CEACAM

interaction, infection with H. pylori infection increases the

production of the proinflammatory chemokine MIP-1a compared

to wild-type murine neutrophils. Conversely, upon infection,

murine macrophages expressing human CEACAMs show

significantly lower expression levels of CXCL1 and CCL2 than

wild-type murine macrophages. This indicates the critical role of

functional HopQ-CEACAM interaction in modulating chemokine

secretion in different myeloid cells. In addition, by exploiting

different CEACAMs, H. pylori can also regulate the oxidative

burst of neutrophils and phagocytosis to support its intracellular

survival in a HopQ-dependent fashion (100). The HopQ-CEACAM
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interaction can not only influence the activity of distinct myeloid

cells in different ways but also affect the functions of natural killer

(NK) cells and T cells. In activated CD4+ T cells expressing high

levels of CEACAM1, IFNg secretion is inhibited during infection

with wild-type H. pylori in a HopQ-dependent manner. Similarly,

the cytotoxic activity of activated CD8+ T cells and NK cells with

high levels of CEACAM1 is also impeded during infection with the

wild-type strain compared to DhopQ strain (101). These data

suggest that H. pylori, and specifically HopQ, might be able to

limit the inflammation caused by the bacterium’s infection, thereby

possibly supporting lifelong persistence in the human stomach. The

details of the bacterium’s immune evasion strategies have been

reviewed before (102).
5 Discussion and outlook

Causing hundreds of thousands of premature deaths each year,

H. pylori-associated diseases are a relevant factor for morbidity and

mortality around the globe. However, given that about half of the

world’s population is infected (3) and only relatively few individuals

develop severe pathologies (103), it is clear that not all infections are

equal. It is known that H. pylori’s oncoprotein CagA is one of the

most important virulence factors contributing to the bacterium’s

pathogenicity. The translocation of CagA via the T4SS and its

subsequent interference with cellular processes are detrimental to

gastric epithelial cells and explains a substantial part of H. pylori’s

effects on inflammation and carcinogenesis (41, 104). CagA

translocation requires the binding of H. pylori’s outer membrane

protein HopQ to CEACAM receptors expressed on human gastric

cells, and this interaction leads to different molecular changes,

discussed in detail above. Although research is emerging on this

matter, some questions are still unanswered.

As mentioned before, by binding to the trans-dimerization

interface in the N-terminal domain of CEACAM1, HopQ can

interfere with its monomer/dimer equilibrium (78). While many

studies reported that the binding of SHP-1/2 to the tyrosine-

phosphorylated Immunoreceptor tyrosine-based inhibitory motif

(ITIM) of the CEACAM1-L variant supports the inhibitory effects

of the ITIM on colon, prostate, and breast tumor cell growth (105–

109), the role of ITIM and SHP-1/2 upon H. pylori infection of the

gastric epithelial cells has not yet been studied intensively. Since the

trans- or cis-dimerization of CEACAM1-L and the clustering of

ITIM are required for SHP-1/2 to be sequestered to the ITIM

domain (110), the disruption of the trans-dimerization of

CEACAM1 in the presence of H. pylori HopQ leads to the release

of SHP-1/2 from ITIM, possibly altering the downstream signaling

transduction of CEACAM1, as proposed by Moonens et al. (78).

However, ITIM seems to be dispensable for CagA translocation and

phosphorylation, as the overexpression of CEACAM1-4S or

CEACAM1-4L in MKN28 cells infected with H. pylori results in

similar levels of phosphorylated CagA (78). Still, this needs to be

confirmed in independent models and non-cancer cells. The fact

that CagA also interacts with SHP-2 (34, 42) contributes even

further to the complexity of this protein interaction network.

Moreover, not only downstream but also upstream signaling of
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CEACAM1 upon H. pylori infection remains unknown.

Considering the correlation between H. pylori infection and the

upregulation of CEACAM1 in gastritis, pre-cancerous, and gastric

cancer tissues (14, 22), the mechanisms through which H. pylori

regulates CEACAM1 expression and signaling represent an

interesting topic for future research.

Although integrin a5b1 was suggested by Kwok et al. to be a

receptor required for T4SS to inject CagA into host cells (85), more

recent studies have shown that integrins and their downstream

signaling are not essential for the translocation and phosphorylation

of CagA, in contrast to CEACAMs binding to HopQ (21, 84). It needs

to be clarified whether the interaction between integrins and T4SS is

compulsory for CagA translocation into host cells and, if at all, whether

integrins and CEACAM receptors work in cooperation to support the

tethering of T4SS onto host cells and the subsequent CagA

translocation. It is also important to mention that the binding of H.

pylori to CEACAMs during infection occurs mostly on the apical side

of gastric epithelial cells (14, 18), while integrins, as receptors for cell-

cell adhesion and cell attachment to the extracellular matrix (111, 112),

are located at the basolateral side. The spatial difference between these

two receptors raises questions about if and how H. pylori can interact

with both receptors, and how they may interact with each other. In

KatoIII cells, the triple knockout of CEACAM1, -5, and -6 was reported

to have no significant influence on the intrinsic expression of av and b
integrin. However, the triple knockdown of avb1, avb4, and b1b4
integrins in these cells resulted in a lower expression and recruitment of

CEACAM5 to the binding surface with H. pylori compared to wild-

types cells (84). Furthermore, Wessler and Backert suggested a new

model, in which integrin-dependent T4SS activation for CagA

translocation is facilitated through another virulence factor, the

serine protease HtrA, which hijacks the tight junctions and

adherence junctions between cells, enabling H. pylori ’s

transmigration to the basolateral side of polarized epithelial cells

(113). Nevertheless, given the importance of CEACAM receptors,

there are still unclarities about the role of integrin and the

correlat ion between this receptor and CEACAMs in

CagA translocation.

A recent study showed that recombinant HopQ coupled with

fluorochromes was able to detect CEACAM-expressing colorectal

tumors and metastases in a mouse model (114), hinting that this

interaction might be exploitable for diagnostic purposes. Apart

from that, impairing the HopQ-CEACAM interaction might

represent a new approach for H. pylori prevention and treatment.

Besides hygiene measures, no effective H. pylori prevention

strategies exist. Moreover, while antibiotic treatment is still

mostly efficacious, it has several limitations including costs, low

compliance due to side effects and relatively long duration (10-14

days according to recent guidelines), and, most importantly, the risk

of antimicrobial resistance. The inhibition of CEACAMs binding to

H. pylori’s HopQ might impair the mechanism which makes the

infection so hazardous. This could be achieved either by inhibiting
Frontiers in Immunology 08
the upregulation of CEACAMs, or by blocking the interaction of H.

pylori to CEACAM receptors expressed on the host’s cell surface

with, for example, competitive CEACAM-binders. Another strategy

is to target the essential structural components of the HopQ-

CEACAM complex. This offers new possibilities for prevention

and treatment options targeted especially at those H. pylori

infections with the greatest risk for gastric pathologies.
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