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Identification of novel inhibitors
against hantaviruses through 2D
fingerprinting and molecular
modeling approaches

Abdulrahman Alshammari*

Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
With the immensely growing outbreaks of hantavirus with still no effective

treatment available, there is an urgent need of exploring new computational

approaches which will target potential virulent proteins that will eventually

reduce its growth. In this study, an envelope glycoprotein, Gn, was targeted. The

glycoproteins, which are the sole targets of neutralizing antibodies, drive virus

entry via receptor-mediated endocytosis and endosomal membrane fusion.

Inhibitors are herein proposed to negate its action mechanism. On the basis of

the scaffolds of favipiravir, a FDA compound already used against hantavirus, a

library was designed using a 2D fingerprinting approach. Upon molecular docking

analysis, the top four docked compounds—(1) favipiravir (-4.5 kcal/mol), (2) N-

hydroxy-3-oxo-3, 4-dihydropyrazine-2-carboxamide (-4.7 kcal/mol), (3) N, 5, 6-

trimethyl-2-oxo-1H-pyrazine-3-carboxamide (-4.5 kcal/mol), and (4) 3-propyl-

1H-pyrazin-2-one (-3.8)—were prioritized on the basis of the lowest binding

energies score. Through molecular docking, the best-categorized compound

was subjected to molecular dynamics simulation for a 100-ns time span.

Molecular dynamics sheds light on each ligand behavior within the active site.

Among the four complexes, only favipiravir and 6320122 compound were found to

be stable inside the pocket. This is due to the presence of common rings, pyrazine

and carboxamide ring, whichmake a significant interaction with active key residues

Furthermore, the MMPB/GBSA binding free energy analysis calculated for all

complexes supported the dynamics results by calculating the most stable values

for favipiravir complex (-9.9933 and -8.6951 kcal/mol) and for 6320122 compound

complex (-13.8675 and -9.3439 kcal/mol), which demonstrated that the selected

compounds have a proper binding affinity with the targeted proteins. The

hydrogen bond analysis similarly revealed a strong bonding interaction. The

results yielded a strong interaction between the enzyme and the inhibitor

throughout the simulation; thus, the inhibitor has the potential to become a lead

compound and could be subjected to experimental evaluation to unveil their

blockage ability.
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1 Introduction

While the entire world is grappling with COVID-19, the outbreak

of hantavirus also takes place (1). Hantaviruses belong to the family of

Bunyaviridae which has over 300 species that are grouped into five

subgroups, one of which is Hantavirus (2). Literature shows that other

members of this family opted for the mode of transmission which is

through arthropods, whereas hantavirus is transmitted from small

mammals such as dogs, cat, sheep, and mainly rats. Until recently, it

was believed that the main natural reservoirs for the human

transmission of pathogenic hantaviruses were rodent bites, pee,

saliva, or contact with rodent waste products (3). Hantavirus remains

a serious public health threat. An estimated 200,000 persons per year

have been exposed to contamination in recent years across the globe

(4). Despite the fact that some nations have not yet recorded human

hantavirus infection in their data, an increasing number of nations are

reporting the virus’ emergence (5). Moreover, despite the fact that

hantaviruses do not infect rats, they can nevertheless spread to people

through insectivores, contaminated samples, and aerosolized rodent

excrement as shown in Supplementary Figure S1. Hantavirus can cause

potentially fatal illnesses in humans, such as hemorrhagic fever with

renal syndrome and HPS, whereas others have not been linked to such

illnesses (6). The surface of the virus is made of ribonucleic acid (RNA)

(7). The three negative, single-stranded RNAs that make up the genome

share the 3′ genome segment’s terminal sequence (8). The names of

these three segments are large (L), medium (M), and small (S). It can

also connect the L protein, the viral envelope RNA dependent

polymerase, the nucleoprotein (N), and the glycoprotein (Gn) (3).

The outer membrane of the hantavirus envelope displays a lattice of

two glycoproteins, Gn and Gc, which orchestrate host cell recognition

and entry. Glycoproteins help viruses in entering bodily cells, that is

why Gn serves to be an important therapeutic or preventative target (4).

Several drugs have been proposed against hantavirus, but to date no

drugs are found against glycoproteins (5). Development and drug

targeting identification is a multi-disciplinary, highly expensive, and

time-consuming process. Scientific advancement during the past two

decades have brought about several changes in the field of drug

development and processing in such a way that advancement

computational base approaches play a vital role and thus have

enabled the identification of drug targets (9). On the bases of several

computational approaches, structure and ligand base drug designing

could speed up the drug development against several emerging viral

strains as around the globe researchers are endeavoring to find out

specific drugs that target identification against pathogenic viral strains

to tackle them and reduce the infection rate (6). However, so far, no

specific drug has been approved by the Food and Drug Administration

against hantavirus. Drugs such as ribavirin, favipiravir, lactoferrin, and

vandetanib were known to have been approved against ancient the

species of hantavirus (7). In this study, we propose inhibitors that are

similar to the FDA drug favipiravir that has shown experimentally

effective results against Sin Nombre orthohantavirus and Andes virus in

vitro. Moreover, this drug was approved for the newly emerging wave of

influenza in 2014 in Japan and was also repurposed against COVID-19.
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This provokes us to use this drug in this study, with the sole purpose of

generating analogs of favipiravir. Based on proteomics-based solution

for the tackling of hantavirus and mainly depending on our

understanding of the target proteins of hantavirus, a thorough step-

wise conclusive approach is vital for understanding the role of target

protein substitutions on the binding with target receptors; hence, the

docking study is important in order to check the binding interaction

between ligands and receptors. This analysis will also provide an insight

to understand this structure-based interaction. Molecular dynamic

simulation analysis is an in silico simulation approach mainly used to

analyze the dynamic behavior of docked molecules and can analyze the

binding stability of the docked molecules as well (8). Despite the fact

that numerous studies have been conducted to identify and develop

antiviral therapies and vaccines to prevent and treat hantavirus

infections, there is currently no WHO- or FDA-approved vaccine or

therapy available for patients. In the current study, 2D fingerprinting

and molecular docking, followed by a detailed interaction analysis

between the ligand and protein, were carried out. The shortlisted drug

target candidates are tested in extensive molecular dynamics simulation

to assess their real time behavior. The results were later further

validated by binding free energy calculations and hydrogen bond

analysis, which confirm the complex stability during the simulation

run time. This study saves the cost of experimental laboratory resources

as well as is time-saving in order to finally propose probable therapeutic

substances which are possible potential targets to act as a good inhibitor

against the target disease under consideration.
2 Research methodology

The schematic representation of the designed study is presented

in Figure 1.
2.1 Structural modeling

The fasta sequence of Gn protein having PDB ID 6y6p was used

to perform BLASTp to search the PDB for a suitable structure for the

template. Based on query coverage, resolution, and sequence identity,

the best templates were chosen (10). The 5OPG template was used,

and it was tested using Swiss model (11) and Modeller (12). ERRAT,

Verify3D, PROCHECK, and the RAMACHADRAN PLOT were

among the quality evaluation tools used to assess the predicted

models’ thermodynamic stability and quality (13).
2.2 Ligand-based similarity search

Favipiravir is an antiviral drug that can be used to treat other viral

infections in addition to influenza. It serves as the parent molecule in

the development of a library of inhibitors with similar scaffolds that

target proteins. Based on the scaffolds in the PubChem repository, a

300-compound inhibitor library was created (14). To find favipiravir-
frontiersin.org
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like similar compounds, 70% Tanimoto coefficient was used as the

evaluation criterion (15). All compounds were downloaded in.sdf

format. Open Babel software was used to convert the compounds

from 2D to 3D format, and ChemDraw software was used in the

MM2 force field to optimize the compounds (16, 17). After that, the

compounds and proteins were subjected to molecular docking.
2.3 Molecular docking approach

The prepared compounds and the best-modeled structure were

proceeded for molecular docking. The protein was first minimized

from UCSF Chimera software with the help of Tripos Force Field. The

750 steepest descent steps were used to remove highly adverse steric

clashes. This was followed by 750 steps of conjugate gradient

performed after finishing the steepest descent steps to further refine

the structure (18). Preparation of protein and ligand is essential prior

to molecular docking. AutoDockTools-1.5.6 was used to remove

water atoms and the native ligand from the active site, add polar

hydrogen atoms and charges, and convert the PDB files for the

protein and ligand to PDBQT format (19, 20). The grid box was

designed to target the Gn protein’s active site, with the center at X:

20.7 (Å), Y: 23.8 (Å), and Z: 65.5 (Å) and the grid box dimensions at

X: 9 (Å), Y: 9 (Å), and Z: 9 (Å) (21). The compounds’ binding

affinities were calculated and ranked based on their highest negative

values of binding affinity, which corresponded to their best binding

affinities. Chimera and Discovery Studio Client 2017 softwares were

used to create 3D and 2D representations of protein–ligand

complexes as mentioned in Supplementary Figure S2 (22).
2.4 ADMET and toxicity analysis

To check the pharmacokinetics and toxicity parameters of

favipiravir and the top-ranked docked analogs, the online webserver

admetSAR was utilized (23). The admetSAR provided the complete
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profile of absorption, distribution, metabolism, excretion, and toxicity

(ADMET) of favipiravir and the top selected analogs (24). The

admetSAR is an open-source, user-friendly database that provides

the ADMET properties of chemical entities by using their common

names, SMILES, or structure similarity (25). It contains ADMET data

profiles of more than 96,000 compounds with 45 different ADMET

properties of FDA-approved, experimentally determined, and clinical

trial compounds (26).
2.5 Molecular dynamic simulation

The top-ranked docked pose with minimum binding energy was

further evaluated in molecular dynamic simulation (27). The

inhibitor parameterization was done through general AMBER force

field (28), while the receptor properties were calculated using the

ff14SB force field (29). As shown in Supplementary Figure S3, the

complex was integrated into a TIP3P water box. The system was

neutralized by the addition of Na+ ions to it. Langevin dynamics was

used to keep the system temperature stable after heating it to 300 K

(NVT) for 20 ps. Restriction of 5 kcal/mol-A2 on carbon alpha atoms

was allowed at a time step of 2 fs. During equilibration, the system was

relaxed for 100 ps. For 100 ps, the system pressure was maintained

using an NPT ensemble. Finally, a production run of 100 ns was

completed at the rate of 2 fs. AMBER CPPTRAJ was used to examine

the generated trajectories for structural parameters (30).
2.6 Hydrogen bond analysis

Hydrogen bonds are essential non-covalent interactions that occur

when a hydrogen atom moves between the donor and acceptor atoms

of an electronegative hydrogen bond (31). Hydrogen can absorb or give

hydrogen when it is bound to oxygen, nitrogen, or fluorine. The

hydrogen bond connections between receptor and ligand molecules

were measured using the VMD plugin. A total of 5,000 frames of MD
FIGURE 1

Overall flow diagram followed for targeting the Gn protein of hantavirus.
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simulation were screened out to determine the number of hydrogen

bonds created during the simulation (32).
2.7 MMPB/GBSA binding energy calculation

The MMPBSA.py module of AMBER18 (33) was used to calculate

the solvation free energy and interaction energy for the receptor,

ligand, and receptor–ligand complexes. The net binding free energy of

the system was calculated as the average of the above-mentioned

energies using the MM-PBSA method and its AMBER complement

MM-GBSA to trace the difference between the bound and unbound

states of a molecule’s solvated conformations. The following Eq (1).

can be used to calculate the binding free energy mathematically:

DGbinding freeenergy

¼DGbind, vaccum+DGsolv, complex −

ðDGsolv, ligand+DGsolv, receptorÞðiÞ

DG solv  ¼  DG electrostatic,  ∈   ¼  80 + DG electrostatic, 

∈   ¼  1 + DG hydrophobic ðiiÞ

DG vaccum  ¼  DE molecular, mechanics 

− T ,DG normal mode analysis ðiiiÞ

The PB or GB equations were used to calculate the solvation

energy for all system states, revealing the solvation state’s electrostatic

contribution (28).
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3 Results and discussion

3.1 Structural modeling

As the crystal structures of Gn reported in the PDB contain

missing restudies, homology modeling was thus first performed via

MODELER and SWISS-MODEL. Among them, the best generated

model was chosen on the basis of physicochemical criteria and quality

factors. Furthermore, the models were subjected towards structural

analysis and verification servers. The analysis suggests that the best

model was given by SWISS-MODEL server, with 89% residues, which

is shown in Supplementary Figure S4 and Table 1.
3.2 Molecular docking

The field of structure-based drug design relies heavily on

molecular docking to predict the binding mode and intermolecular

framework of chemical interactions between small molecules and

proteins. The active site residues (Pro29, Try117, Ser298, Gly299,

Ile300, and Pro301) of Gn were found from literature and were opted

for site-directed docking. Similar compounds obtained on the basis of

favipiravir scaffolds were subjected for docking upon docking the top

three compounds that were filtered out on the basis of binding energy

value (kcal/mol) as listed in Table 2.
3.2.1 Interaction analysis of Gn complexes
For favipiravir compound, oxygen atoms of carboxamide scaffold

form hydrogen bonds with SER298, TRY297, and SER116, whereas
TABLE 1 Stereochemical property analysis modeled proteins.

Predicted 3D models Errat Verify3D M.F.R. A.A.R. G.A.R. Disallowed regions Prosa web

Swiss model 93.0% 96% 89% 10.6% 0.0% 0.0% -8.0

Modeller 34.4% 26 85% 11% 2% 1% -3.1
M.F.R., mostly favored regions; A.A.R., additionally allowed regions; G.A.R., generally allowed regions.
TABLE 2 Docking results of the top-hit compounds, with lowest binding energy score and interactive amino acid residues.

Compound structure Compound name Binding
energy

Interacting residues

Favipiravir-5-fluoro-2-oxo-1H-pyrazine-3-carboxamide -4.5 TRY297, SER (116–298),
GLY299

Structure2D_CID_6320122-(N-hydroxy-3-oxo-3,4-dihydropyrazine-2-
carboxamide)

-4.7 ILE295, HIS259, PHE324

(Continued)
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the dihydropyrazine ring N and F atom establishes a hydrogen and

halogen bond with the GLY299 residue. Among the top compounds,

compound 6320122 possesses a higher docking score with -4.7 kcal/

mol. Similar to favipiravir, the oxygen atom of the carboxamide ring

contributes to making a conventional hydrogen bond with SER298,

TRY297, SER116, and GLY299 residues, whereas for both compound

308044 and compound 12826353, residues SER116 and GLY299 were

found to be common, with the exception of THR116 and TRP63,

respectively, as shown in Figure 2. Furthermore, these top-docked

compounds were checked for ADMET properties, followed by

advanced computational analysis to investigate the contribution of

common residues, such as GLY299 and SER116, in defining the

binding affinities at the active site and the role of ligand movement

based on MD simulation results.
3.3 ADMET and toxicity

The admetSAR webserver was used to calculate the ADME and

toxicity properties of favipiravir and its top-docked analogs (29).

Different ADMET properties such as blood–brain barrier, human

intestinal absorption, p-glycoprotein inhibition, CYP450 2C9

inhibitor, human ether-a-go-go-related gene inhibition, acute oral

toxicity, and rat acute toxicity (LD50, mol/kg) were calculated. The

calculated properties are summarized in Table 3. In the case of blood–

brain barrier, all compounds showed a positive value with high

probabilities. All top analogs selected along with favipiravir were

found to be non-inhibitors of p-glycoprotein. The drugs should be a

non-inhibitor of CYP450 2C9, as this enzyme is essential for the

metabolism of drugs, so all compounds are non-inhibitors of

CYP450 2C9 enzyme. Human intestinal absorption parameter is

important in ADME, as it plays a key role in transporting drugs to

the target. All compounds shared an acceptable range of human

intestinal absorption profile and toxicity parameters, while
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Structure2D_CID_12826353 indicated the highest LD50 value in rat

acute toxicity, thus demonstrating their non-toxicity. The dynamics

of these compounds further reveal their favorability towards

Gn proteins.
3.4 Molecular dynamic simulation

Molecular dynamics simulation findings serve as an influential

tool to observe the intimate conformational details taking place in

biological systems. There were four protein systems subjected for MD

simulations for 100 ns. The stability of complexes was monitored

from RMSD. The RMSD values of Gn’s alpha carbon atoms in

complex with favipiravir and its analogs were calculated using the

original docked structure; these are Gn-favipiravir (maximum, 3.7Å

and mean 2.24 Å), Gn-6320122 (maximum, 3.6Å and mean 2.46 Å),

Gn-308044 (maximum, 3.4 Å and mean 2.28 Å), and Gn-12826353

(maximum, 3.04 Å and mean 2.30 Å). Upon inspection at the

structural level , i t was found that only few structural

rearrangements take place. The major ligands move from the active

site, as the size of the pocket is wider. In the case of Gn–favipiravir

complex, a higher peak was noted in its RMSD plot. It was found that,

at 60 ns, the ligand slightly shifted from its original docked position as

shown in Figure 3. Similarly, in the case of favipiravir analogs,

structural changes were monitored, which eventually shed light on

the movement of the ligand in the pocket (Figure 4). In the case of

Gn-6320122 complex, it was found that, at 25 ns, the ligand moved

from the pocket and kept on moving outside the active site in an

anticlockwise movement, but at nearly 100 ns, it entered the pocket

again and remained there (Figure 5). Upon comparing with the

dynamics of Gn-308044 and Gn-12826353 complex, it was found

that both the chemical structures of ligands 308044 and 12826353 did

not favor interacting with the binding pocket of Gn, that is why they

were not retained in the pocket (Figures 6, 7). In Gn-308044 complex,
TABLE 2 Continued

Compound structure Compound name Binding
energy

Interacting residues

Structure2D_CID_308044-(N,5,6-trimethyl-2-oxo-1H-pyrazine-3-
carboxamide)

-4 LEU294, LYS326

Structure2D_CID_12826353-(3-propyl-1H-pyrazin-2-one) -3.8 HIS259
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1113321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alshammari 10.3389/fimmu.2023.1113321
B

C

D

A

FIGURE 2

Depiction of the molecular interactions between the top selected candidates and Gn receptor (A) favipiravir, (B) 6320122, (C) 308044, and (D) 12826353.
TABLE 3 Pharmacokinetic parameters of favipiravir and its top analogs.

Parameters Favipiravir Structure2D_CID_6320122 Structure2D_CID_308044 Structure2D_CID_12826353

Blood–brain barrier + + + +

(0.81) (0.64) (0.5) (0.80)

Human intestinal absorption + + + +

(0.8.00) (0.80) (0.7) (0.9)

P-glycoprotein inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor

(0.7) (0.86) (0.9) (0.90)

CYP450 2C9 inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Inhibitor

(0.80) (0.68) (0.90) (0.80)

Human ether-a-go-go-related gene Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor

(0.94) (0.82) (0.9) (0.90)

Acute oral toxicity III III III III

(0.63) (0.5) (0.60) (0.60)

Rat acute toxicity (LD50, mol/kg) (2.27) (2.1) (2.20) (2.3)
F
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at the start of simulation, the ligand moved away from the pocket and,

at 50 ns, remained at the far distance from the pocket. At nearly 100

ns, the ligand tried to be in close vicinity to the binding site but still
Frontiers in Immunology 07
did not reenter in the pocket. Such similar trend and behavior were

also observed for the Gn-12826353 complex. In order to further

validate the molecular dynamic simulation results, the complexes

were further subjected to free binding energy analysis.
3.5 MMPB/GBSA binding free
energy calculation

The top compounds’ MMPB/GBSA-based binding energy and

molecular interactions were calculated. For energy calculation,

hundreds of snapshots of the trajectory analysis were evaluated.

Convergence of average values determined by MMPB/GBSA is

required to obtain reliable results from absolute binding free energies.

Upon validating the molecular dynamic simulation results, it was found

from the results also that Gn-favipiravir and Gn-6320122 form a stable

complex compared with the other complexes. In stabilizing favipiravir,

both Van der Walls and electrostatic interactions play a key role in

stabilizing it in the Gn active site, whereas for the Gn-6320122 complex,

electrostatic interactions were more dominant. As shown in Table 4, the

combined average values of gas phase binding free energy using both

MMPBSA and MMGBSA methods were found to be significant in

contributing to complex stabilization.
FIGURE 4

The movement of favipiravir compounds was noted in the binding site from 0 to 60 ns during the 100-ns time span.
FIGURE 3

Root mean square deviation (Å) for all complexes. The Y axis denotes
the root mean square deviation graph, and the X axis represents time
in nanosecond (ns), which eventually highlight the changes that
occurred at the protein structural organization per nanosecond.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1113321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alshammari 10.3389/fimmu.2023.1113321
3.6 Per residue energy decomposition

To improve our knowledge of how residues contribute energy to

complex stabilization, per residue energy is calculated. All residues are

classified as hotspot amino acids because they contribute less than -1

kcal/mol energy and play an important role in stabilizing the docked
Frontiers in Immunology 08
complex system. The GB analysis residues with binding energy less than

1 kcal/mol for Gn-favipiravir include ALA 278 (-7), ASN279 (-5),

ALA286 (-5), ILE294 (-7), and TYR296 (-7), whereas in the case

where PB residues were involved, these were SER287 (-2), ALA286

(-5), ALA295 (-7), and TRY296 (-0.002). In terms of residues that have a

binding energy less than 1 kcal/mol in GB for Gn-6320122, these include
FIGURE 6

The instability of ligand 308044 was noted over a time span of 100 ns.
The ligand leaves the pocket in the initial phase of the molecular
dynamics simulation and continues to move in space.
FIGURE 7

Ligand 12826353 left the pocket during simulation of 100 ns and
remained swinging in the space around the protein.
FIGURE 5

Compound 6320122 moved from the original docked position from the active site and swings in the anticlockwise direction and then re-positioned the
ligand in the active site.
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GLU17 (-6), GLU97 (-2), and ARG101 (-0.22), whereas in the case

where PB residues were involved, these were GLU17 (-4.5), GLU97

(-1.7), and ARG101 (-0.2). These residues lie in close proximity to the

active site of Gn and considerably have low energy value, thus

highlighting the importance of these residues presented in Figures 8, 9.
Frontiers in Immunology 09
3.7 Hydrogen bond

The greater the number of hydrogen bond interactions, the

greater is the strength of the ligand–protein interaction. To map the

number of hydrogen bonds for Gn-favipiravir and Gn-6320122,
TABLE 4 Binding energy calculation for favipiravir and its analogs.

Energy components Gn-favipiravir Gn-6320122 Gn-308044 Gn-12826353

MMPBSA MMGBSA MMPBSA MMGBSA MMPBSA MMGBSA MMPBSA MMGBSA

EEL -9.61 -9.61 -168.17 -168.17 -572.07 -572.07 -298.47 -298.47

VDWAALS -9.47 -9.47 -4.78 -4.78 -6.80 -6.80 -12.21 -12.21

DELTA G gas -19.09 -19.09 -172.96 -172.96 -578.87 -578.87 -510.68 -510.68

DELTAG solv 9.10 10.39 159.09 163.61 566.47 572.48 488.04 494.33

Total energy -9.99 -8.69 -13.86 -9.34 -12.39 -6.38 -7.64 -6.35
fr
B

A

FIGURE 8

Per residue free binding energy calculation representation for Gn-favipiravir based on (A) MMGBSA and (B) MMPBSA.
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hydrogen bond analysis was performed. The hydrogen bond analysis

reveals that both ligands made hydrogen bonds with their respective

protein residues within the range of 0–100, which is a good range for a

stable interaction as shown in Figure 10.
4 Conclusion

In this study, 2D fingerprinting and structure-based virtual

screening were performed using an FDA drug—favipiravir—to find

potential candidates against Gn protein which is an important target

in combating the hantavirus. Upon molecular docking, three top

analogs of favipiravir were found. These potential candidates were

further subjected towards extensive molecular dynamic simulation to

investigate the dynamics of these candidates in a real system. The

dynamics highlighted two best compounds, favipiravir and 6320122,

that were found to be stable. The dynamics revealed that the presence

of pyrazine and carboxamide ring in their structure allows them to

vastly bind to the active site residues. Hence, the outcome of this study

not only suggested favipiravir and 6320122 compounds as best

potential inhibitors that must undergo in vitro, in vivo, and clinical
B

A

FIGURE 9

Per residue free binding energy calculation representation for Gn-6320122 based on (A) MMGBSA and (B) MMPBSA.
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FIGURE 10

Hydrogen bond analysis for top complexes obtained from molecular
dynamics simulation. The red color bonds depict the hydrogen bond
frequency of Gn-favipiravir, while the bonds in black are of Gn-6320122.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1113321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alshammari 10.3389/fimmu.2023.1113321
trial phases in the future but also highlighted the importance of these

rings (pyrazine and carboxamide) in compounds. This directs the

future researchers in the domain of drug designing to have primary

focuses on pyrazine and carboxamide ring chemical scaffolds in

designing valuable inhibitors against the hantavirus.
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