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The role of macrophages-
mediated communications
among cell compositions of
tumor microenvironment in
cancer progression

Mengyuan Li †, Ping Jiang †, Shuhua Wei,
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Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
Recent studies have revealed that tumor-associated macrophages are the most

abundant stromal cells in the tumor microenvironment and play an important role

in tumor initiation and progression. Furthermore, the proportion of macrophages

in the tumor microenvironment is associated with the prognosis of patients with

cancer. Tumor-associated macrophages can polarize into anti-tumorigenic

phenotype (M1) and pro-tumorigenic phenotype (M2) by the stimulation of T-

helper 1 and T-helper 2 cells respectively, and then exert opposite effects on tumor

progression. Besides, there also is wide communication between tumor-

associated macrophages and other immune compositions, such as cytotoxic T

cells, regulatory T cells, cancer-associated fibroblasts, neutrophils and so on.

Furthermore, the crosstalk between tumor-associated macrophages and other

immune cells greatly influences tumor development and treatment outcomes.

Notably, many functional molecules and signaling pathways have been found to

participate in the interactions between tumor-associated macrophages and other

immune cells and can be targeted to regulate tumor progression. Therefore,

regulating these interactions and CAR-M therapy are considered to be novel

immunotherapeutic pathways for the treatment of malignant tumors. In this

review, we summarized the interactions between tumor-associated

macrophages and other immune compositions in the tumor microenvironment

and the underlying molecular mechanisms and analyzed the possibility to block or

eradicate cancer by regulating tumor-associated macrophage-related tumor

immune microenvironment.
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1 Introduction

With the advancement of tumor immunology research,

increasing cell subtypes have been identified in the tumor nest, and

then the roles of the tumor microenvironment (TME) have attracted

extensive attention (1). With the development of single-cell

technologies, there is a new understanding of the importance of

TME for tumor initiation and progression (2, 3). TME is a complex

environment that is mainly composed of tumor cells and various

immune cells, such as T cells, tumor-associated macrophages

(TAMs), natural killer (NK) cells, neutrophils, dendritic cells (DCs),

B lymphocytes and cancer-associated fibroblasts (CAFs) (4–9).

Previous studies revealed that the interactions among various

immune cells in the TME play an important role in tumor

progression. The underlying mechanisms include gap junctions

(10), receptors (11), release of small molecules (12), tunneling

nanotubes (13), vesicles (14) and mechanical forces (15, 16).

Furthermore, recent clinical trials have found that immunotherapy,

which mainly relies on the activation of immune effector cells within

TME by inhibiting immune checkpoints, has achieved a great success

to improve the prognosis of patients with malignant tumors (17–19).

Particularly, several immune checkpoint inhibitors to PD-1 and PD-

L1 have been supplemented into the first-line treatment for some

malignancies (20, 21).

TAMs are one of the most abundant cell types present in the TME

of various cancers (22) and are tightly associated with other tumor

infiltrated immune cells. Recent studies found that regulators of

TAMs polarization and function can effectively modulate tumor

progression (23). PD-1/PD-L1 and cytotoxic T lymphocyte antigen

4 (CTLA4) remain the most widely used targets of immune

checkpoint inhibitors, which mainly regulating the immune

functions of T cells (24–26), and increasing studies revealed that

the number, activation status and polarization direction of TAMs are

closely associated with the therapeutic efficacy (27–29). These

findings suggest that TAMs have an irreplaceable effect in

immunotherapy for cancers. In addition, chemotherapy coupled to

macrophage-targeting strategies induces a more strong anti-tumor

effect and achieves more tumor regressions in triple-negative breast

cancer (29), pancreatic adenocarcinoma (30) and non-Hodgkin

lymphoma (31). Meanwhile, macrophages inhibition combined

with radiotherapy can also enhance anti-tumor effects (32, 33).

Therefore, macrophages-based therapy may represent a novel

approach for treating cancer. In this review, we summarized the

characteristics of TAMs and the interactions between TAMs and

other infiltrated immune cells, hoping to contribute to the

understanding of TAMs and suggest effective ways related to

TAMs-based modulation to block or eradicate cancers.
2 The characteristics of macrophage

2.1 The origin of macrophage

Although the exact mechanism of macrophage formation remains

controversial, two distinct lineages, bone marrow-derived

macrophages, and tissue-resident macrophages have been widely
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recognized (34–38). Tissue-resident macrophages are embryonically

derived and self-maintain locally (39), while bone marrow-derived

macrophages are differentiated from monocytes originating from

progenitors in the bone marrow which migrate from the

bloodstream into tissues both in homeostasis and inflammation,

following the stimulation of local growth factors, pro-inflammatory

cytokines, and microbial products (Figure 1). Besides, these

macrophage populations have a distinct temporal and spatial

distribution in the TME (40). Tissue-resident macrophages spread

to surrounding tumor cells early in the initial stages to promote

epithelial-mesenchymal transition (EMT) and enhance the invasion,

and they increase the number of regulatory T cells to promote the

immune escape of tumor cells (40). Thus, the tissue-resident

macrophages may be a novelly potential target for tumor therapy

(38, 41). Phenotypically, different subtypes of macrophages can be

identified by a set of overlapping and unique markers (Figure 1) and

we have summarized them in Table 1.
2.2 Macrophage polarization

Usually, macrophages are mainly polarized into two distinct

subtypes to exert functions in regulating tumor progression.

Lipopolysaccharide (LPS) together with pro-inflammatory cytokines

such as Interferon-g (IFN-g) and tumor necrosis factor-a (TNF-a)
assists the polarization of macrophages to the M1 phenotype (42, 43).

Th1 cells are shown to be the major source of IFN-g and TNF-a in the

TME general inflammation. The alternatively activated macrophages

(M2) are mainly activated by Th2 cytokines interleukin (IL)-4 and IL-13.

The M1 macrophages secrete pro-inflammatory cytokines TNF-a, IFN-
g, IL-1b and IL-8 and exert pro-inflammatory and anti-tumor functions.

While M2 macrophages mediate anti-inflammatory and tumorigenesis

actions through producing anti-inflammatory factors transforming

growth factor-beta (TGF-b), arginase 1 (Arg-1) and IL-10.

Moreover, recent findings revealed that M2 macrophages can be

further divided into M2a, M2b, M2c and M2d subsets with distinct

functions (Table 2). M2a-subset macrophages activated by IL-4 or IL-13

play an essential role in fibrosis, parasite killing and allergy. Both positive

of CD206 and CD68 (CD206+/CD68+) is the character of M2a-subset

macrophages. M2b-subset macrophages induced by immune complexes

in combination with IL-1b or LPS play a vital role in immune response

and are characterized by the expression of CD86 receptors (44, 45). M2c

macrophages induced by IL-10, TGFb or glucocorticoids exert a key role
in anti-inflammatory and are characterized by the expression of CD163

receptors (46, 47). The M2d macrophages play an important role in

tumor progression and are characterized by increased IL-10 and VEGF

secretion and decreased expression of IL-12 and TNF-a, however, the
specific mechanism underlying programming the M2d macrophages

remains controversial (48, 49).
3 Macrophages regulate tumor
progression

Different directions of TAM polarization result in opposite

functions in cancer progression. At the initial stages of tumor
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formation, macrophages mainly play a proinflammatory role and

suppress tumor development, although the related evidence is still

limited (50). As the tumor grows, macrophages in the TME are

“educated” to a protumor phenotype by Th2 cells. Then, cytotoxic

macrophages become tumor-supportive macrophages and promote

tumor progression (51). A growing number of evidence suggested

that TAMs exerted modulatory functions on tumorigenesis,

progression, metastasis, angiogenesis and chemo-resistance (52)

(Figure 2). For example, colony stimulating factor-1 (CSF-1)

promotes malignant transformation in mammary cancer by

recruiting macrophages (53). TAMs can also facilitate tumor cell

intravasation and extravasation by secreting epidermal growth factor

(EGF) (54) and vascular endothelial growth factor (VEGF) (55). EGF

secreted by TAMs promotes tumor cell intravasation into blood

vessels, while VEGF triggers endothelial cell barrier disruption by

destroying adherens junctions. In addition, TAMs modulate tumor

metastasis by regulating the EMT process through STAT/miR-506-

3p/FoxQ1 signaling and TAT/miR-506-3p/FoxQ1 pathway and

promote extracellular matrix degradation via secreting matrix

metalloproteinases and C-C motif chemokine ligand 18 (CCL18)

(56–60). Besides, M1-type TAMs can exert a direct killing effect on

tumor cells once activated by IFN-g or mediate adaptive immunity by

recruiting and activating CD8+ T cells and NK cells after presenting

tumor antigens and producing chemokines and cytokines (50).

Majority of the TAM’s in the TME tends to be M2 but not M1
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thereby shifting the antitumor microenvironment to an

immunosuppressive milieu (61). However, several studies reached

opposite conclusions. For example, M2 macrophages may have a

partial limiting effect on colorectal cancer metastasis (62), whereas

M1 macrophages promote tumor progression (63, 64). Therefore, the

characteristics of TAMs contribute to better understanding the cancer

states and exploring new ways to block or eradicate cancers.
4 Interactions between TAMs and other
cell components in the TME

Recently, substantial studies revealed that TAMs play a pivotal

role in regulating tumor development through interacting with

various immune cells in TME (50). For example, M2-phenotype

TAMs gradually becomes the major TAM under the stimulation of

Th2 cells, and then the antitumor functions of TAMs are diminished

(61). In addition, M1-type TAMs can exert a killing effect on tumor

cells once activated by IFN-g (50). TAMs can also express T-cell

immune checkpoint ligands, such as PD-L1, CD80 and CD86, to

inhibit T-cell functions (50, 65). Therefore, it is important to better

understand the interactions between TAMs and other immune cells

in the TME. The detailed interactions between other TME contents

and TAMs were further described as follows (Figure 3).
B

A

FIGURE 1

The bone marrow-derived macrophages pathway and biomarkers. (A) Monocytes egress from bone marrow and migrate to tumor sites, differentiating
into TAMs. (B) Markers for mesenchymal stem cells, monocytes, TAM, M1-type TAM, and M2-type TAM.
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4.1 TAMs and T cells

Both TAMs and T cells can polarize into different subtypes with

different functions under diverse signals’ stimulation. On the one

hand, the polarization of TAMs is mainly regulated by T cells,

especially Th1 and Th2 cells. On another hand, during antigen

presentation, macrophages can also simultaneously activate

multiple T cells (66). T cells perceive the stimulatory signals

through interacting with macrophages and are eventually

activated. Therefore, macrophages play an important role in

activating T cells. Different macrophages subtypes may have

different functional effects on T cells. For example, the M1

macrophages can activate T cells via upregulating B7 receptors,

such as CD80 (B7-1) and CD86 (B7-2), while M2 macrophages are

not able to express costimulatory molecules of the B7 family but
Frontiers in Immunology 04
exert disruption function through binding with T cells (67). FOLR2+

macrophages, which are located in the perivascular spaces in the

tumor tissue, can effectively activate the CD8+ T cells in the tumor

nest, and then improve the prognosis of breast cancer patients (68).

In addition, macrophages also inhibit T cell proliferation in vitro

through indoleamine 2,3-dioxygenase (IDO)-induced tryptophan

degradation (69). The cavity-resident macrophages with high levels

of Tim-4 can weaken the efficacy of anti-PD1 therapy in lung cancer

by reducing PD-1 expression levels in CD8+ T cells (70). Moreover,

the levels of TAMs-secreted TGF-b are significantly elevated in

malignant pleural effusion, which plays an important role in

destroying T cell function and promoting cancer progression in

lung cancer patients (12).

Recent studies have confirmed that TAMs could produce large

amounts of extracellular vesicles to influence the biological function
TABLE 1 Phenotypic marker molecules of murine and human macrophage subsets.

Mouse Human

Macrophage M1 M2 Macrophage M1 M2

CD45 + + + CD45 + + +

CD11b + + + CD11b + + +

CD11c – – – CD11c + + –

CD68 + – – CD68 + – –

F4/80 + + + CD16 +/- – high

CD163 – – + CD163 – – +

CD206 + – + CD206 + – +

CD80 – + + CD80 – + +

CD86 + + + CD86 + + +

Ly6c + high low

MHC-II + + + HLA-DR + + +

iNOS – + – iNOS – + –

IL-1b – + – IL-1b – + –

IL-8 – + – IL-8 – + –

TNF-a – + – TNF-a – + –

Arg-1 – – + Arg-1 – – +

IL-10 – – + IL-10 – – +

IL-12 – + – IL-12 – + –

TGF-b – – + TGF-b – – +

CD204 – – + CD204 – – +
TABLE 2 M2-type macrophages subsets.

Subset Stimuli Markers Functions

M2a IL-4, IL-13 CD206, CD68 Anti-inflammatory

M2b IL-1b, LPS CD86 Immunoregulation, tumor progression

M2c IL-10, TGFb, glucocorticoids CD163 Anti-inflammatory, angiogenesis, matrix remodeling, phagocytosis, wound healing

M2d LPS, IL-6 IL-10, VEGF Tumor progression, immunosuppressive, angiogenesis
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of tumor cells and T cells in TME through extracellular vesicles fusion

or cell-cell membrane contact (71). Notably, though TAMs exert

immunosuppressive in various cancers, TAMs-derived extracellular

vesicles can promote T cells proliferation and activation and exhibit

M1 macrophages characteristics in colorectal tumor (71). However,
Frontiers in Immunology 05
M2 macrophages-derived extracellular vesicles induce CD8+ T cells

exhaustion and promote tumor progression in hepatocellular

carcinoma (72). Wang et al. introduced the nucleus of tumor cells

into M1 macrophages to create chimeric exosomes, the chimeric

exosomes can enter lymph nodes and induce T cells activation
FIGURE 2

The roles of TAMs polarization in cancer progression. M1-type TAMs inhibit tumorigenesis by secreting IFN-g, TNF-a, IL-18, IP10, IL-12, and iNOS2; while
M2-type TAMs promote cancer development through several biological molecules, such as Arg-1, IL-10, IL-4, IL-13, TGF-b, CCL17, CCL-18, and so on.
FIGURE 3

The molecular interactions between TAMs and other immune cells in the TME. A “+” or “-” sign shows a stimulatory or inhibitory interaction.
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through direct exosome contact or antigen presenting cells induced

immunostimulatory manner (14).

In addition to producing soluble secreted factors and extracellular

vesicles, macrophages also modulate functions of T cells through

direct interaction. A new research found that there were unique,

antigen-specific synaptic interactions between TAMs and CD8+ T

cells through using lattice light sheet microscopy (73). These

interactions were unable to activate T cells, but result in exhaustion

of T cells, which is significantly enhanced under hypoxic conditions

(73). Therefore, seeking effective ways to target both macrophages

and T cells may be a promising approach to improving the efficacy

of immunotherapy.
4.2 TAMs and Tregs

Treg cells are a subset of CD4+ T cells which play a key role in

tumor-associated immunosuppression (74). These cells are defined by

the characteristic of the expression of transcription factor Foxp3 and

IL-12 receptor a-chain (CD25). In inflammation resolution, Tregs

stimulate macrophages’ efferocytosis via the production of IL-10 and

induce apoptotic cell internalization (75). They can efficiently

promote macrophages’ polarization into the M2 phenotype and

downregulate the immune response (76, 77). Meanwhile,

macrophages can maintain Tregs proliferation to suppress type 2

inflammatory responses (78). Furthermore, Kraaij et al. found that

Tregs induced by macrophages are regulated via macrophages-

derived reactive oxygen species (ROS) (79).

Many studies have established that Tregs promote tumor

progression, such as hepatocellular carcinoma (80), breast cancer

(81) and esophageal squamous cell carcinoma (82). Studies have also

revealed a significant association between macrophages and Tregs in

tumor progression (83). For example, TAMs induce the conversion of

CD4+ T cells into Tregs through secreting TGF-b and promoting PD-

1 expression on CD4+ T cells, resulting in Tregs infiltration in tumors

(84). M2 macrophages can activate the TGF-b/Smad signaling

pathway by expressing TGF-b, then induce Tregs generation and

promote colorectal cancer development (85). In epithelial ovarian

cancer, TAMs can upregulate Treg/Th17 ratios and promote tumor

progression through releasing exosomes that contain miR-29a-3p and

miR-21-5p targeting STAT3 to T cells (86). In addition, Liu et al.

found that Tregs facilitate the M2-polarization of macrophages

through inhibiting CD8+ T cells expression of IFN-g and activating

M2 macrophages sterol regulatory element-binding protein 1

mediated fatty acid synthesis (87). Thus, targeting Tregs and TAMs

interaction may be an effective anti-tumor approach. In addition,

radiotherapy is considered one of the most important treatment

modalities in clinic. It is well recognized that radiotherapy induces

inflammatory ce l l s recru i tment into TME, as wel l as

immunosuppressive cells (88). Mondini and colleagues confirmed

that radiotherapy can promote the secretion of CCL2 by tumor cells

and induce the accumulation of CCR2+ Tregs and CCR2-dependent

macrophages which can produce TNF-a, then TNF-a induces Tregs

activation and decreases the efficacy of radiotherapy (89). Therefore,

CCL2/CCR2 inhibitors in combination with radiotherapy may be an
Frontiers in Immunology 06
efficient approach for improving the therapeutic effects of

radiotherapy in tumor treatment.

In addition to potential therapeutic targets, macrophages and

Tregs infiltration can also be used as a prognostic biomarker for

tumors. For example, the high level expression of Tregs indicates a

better prognosis in early-stage gastric cancer patients, while the

opposite results have been found in late-stage patients (90).

Meanwhile, M2 macrophages predict a worse prognosis in general,

however, high infiltration of M2 macrophages suggests a good

prognosis in signet ring cell carcinoma and mucinous

adenocarcinoma. The combination of both indicators can improve

the prediction accuracy of cancers. In addition, single-cell RNA

sequencing (scRNA-seq) revealed that M2 macrophages and Tregs

infiltration are adverse prognostic factors for prostate cancer patients

(91), colorectal cancer (92) and hepatocellular carcinoma patients

(93). Thus, the specific prognostic value of TAMs and Tregs should be

investigated in different cancers.
4.3 TAMs and CAFs

Activated fibroblasts in tumors are defined as CAFs (94). Though

the origin of CAFs remains controversial, some researchers proposed

that CAFs can derive from tissue-resident fibroblast, bone-marrow-

derived mesenchymal stem cells (95), pancreatic or hepatic stellate

cells (96, 97), adipocytes (98) and endothelial cells (99). CAFs exhibit

a wide range of phenotypic and functional heterogeneity, and there is

no clear biological marker to identify CAFs at present (100, 101). The

functions of CAFs in tumor progression have been widely studied. For

example, CAFs have been demonstrated to promote tumorigenesis

and metastasis in breast cancer (102), lung cancer (103) and colorectal

carcinoma (104). Moreover, CAFs have also been found to exert anti-

tumor effects in pancreatic cancer (105).

As TAMs and CAFs are both major components in TME and

TAMs infiltration increases in the regions where CAFs are enriched,

there might exist a tight correlation between them (106, 107). Studies

have revealed that CAFs can regulate TAMs infiltration in TME and

induce TAMs to polarize into a pro-tumorigenic phenotype (107).

For example, Zhang et al. found that CAFs can induce TAMs

infiltration and promote M2 macrophage polarization, which leads

to loss of NK cells function and contributes to an immune suppressive

environment in colorectal cancer (108). Furthermore, a similar effect

of CAFs on TAMs was found in hepatocellular carcinoma through

secreting CXCL12 (109). Similarly, CAFs can also stimulate TAMs

through other cytokines, such as IL-6, GM-CSF (110) and CCL2

(111). In addition to cytokines, CAFs can also regulate M2

macrophage polarization through expressing hypoxia inducible

factor 2a (HIF2a) and promote pancreatic cancer progression

(112). Meanwhile, CAFs not only promote TAMs infiltration and

polarization but also enhance TAMs expression of PD-1, which leads

to decreased phagocytosis and enhanced immunosuppressive

functions (113, 114).

TAMs also regulate CAFs functions and activation as well. For

example, Tang et al. revealed that TAMs promote CAFs generation via

Smads-mediated macrophage-myofibroblast transition (115).
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Meanwhile, M2 macrophages can enhance CAFs activation by

regulating the mesenchymal-mesenchymal transition of fibroblasts

(115) and secreting TGF-b (116). Then, activated CAFs further

enhance TAMs recruitment and activity, resulting in an

immunosuppressive environment. Collectively, the interaction

between TAMs and CAFs generates a cancer-promoting phenotype.

However, the exact mechanism of CAFs and TAMs interaction remains

undefined, further investigation is required for therapeutic exploitation.
4.4 TAMs and B cells

Recently, several studies have revealed that high levels of B cells in

the tumor nest indicate a persistent immune activation response and

predict a good efficacy of immunotherapy for patients with cancer

(117). Furthermore, TAMs and B cells have a close association. For

example, subcapsular-sinus macrophages play an important role in

accumulating various larger antigens through the expression of

sulphated glycoproteins which can preserve the integrity of antigens

and then present antigens to the neighboring follicular B cells (118–

120). Meanwhile, macrophages can regulate the transportation and

retention of B cells in the splenic marginal zone (121).

Besides, tissue-resident macrophages are not only derived from

monocytes but can also differentiate from early pro-B cell/fraction B

within the bone marrow, these macrophages’ precursors enter into

the systemic circulation and acquire the same transcriptome identical

as embryonically derived macrophages (122). These macrophages

precursors also gain CD115, F4/80, and CD16/32 after entering

inflammation sites, which are very similar to blood monocyte-

derived macrophages (122). Thus, pre/pro-B cells may be an

additional source of macrophages. It is worth noting that B1 cells

can migrate into the inflammatory milieu and differentiate into a

macrophage-like cell type in vitro (123). In turn, macrophages can

also regulate B cell proliferation via secreting B cells-activating factor

(BAFF) and a proliferation-inducing ligand (APRIL) (124).

Macrophages have also been verified to support the later B1 cells

development via expressing IL-6 (125). Meanwhile, B cells can also

regulate the polarization of macrophages. For example, B cells induce

peritoneal macrophages to polarize into an M2-like phenotype

through secreting IL-10 and this phenomenon is also observed in

tumors where B cells reprogram TAMs into the M2 macrophages

(126). In addition, Andreu et al. found that B cells promote the M2

macrophage infiltration and induce the proangiogenic and

protumorigenic effects of macrophages through activating Fc-

gamma (FcRg) in squamous carcinoma (127). Chemokines

receptors trigger B cells migration into lymphoid follicles, such as

chemokine (C-X-C motif) receptor 4 (CXCR4) and CXCR5 (128). Liu

and colleagues demonstrated that CXCR3+ B cells infiltrate

predominantly in hepatocellular carcinoma invading edge and are

associated with tumor recurrence, furthermore, CXCR3+ B cells

induce TAMs repolarization into M2 macrophages through an IgG-

dependent manner and promote hepatocellular carcinoma

progression (129).

Collectively, current studies have revealed that TAMs and B cells

have associations in their origins and influence each other. However,

the detailed mechanisms remain unclear and still require

further clarification.
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4.5 TAMs and neutrophils

Neutrophils are phagocytic cells that are an important part of the

innate immune system and play a pivotal role in the first–line of

defense (130). Like TAMs, tumor–associated neutrophils (TANs) can

also polarize into anti–tumor (N1) phenotype and pro–tumor (N2)

phenotype according to different cytokines stimuli (131). Considering

that neutrophils can recruit macrophages via secreting IL–8 and

TNF–a in an inflammatory environment and macrophages can in

turn regulate neutrophils function, the TAMs and TANs may have

close interrelationships during tumor progression (132). For example,

TAMs induce IL–17 production through releasing IL–1b, the IL–17
can enhance neutrophils recruitment and promote tumor metastasis

in breast cancer (133, 134). Similarly, TANs promote TAMs and T–

regulatory cell recruitment in hepatocellular carcinoma via secreting

CCL2 and CCL17, leading to tumor growth and drug resistance (135).

Meanwhile, both TAMs and TANs can produce matrix

metalloproteinase–9, which releases angiogenic factors and VEGF

to promote angiogenic (136).

Besides, growing evidence has found that the neutrophils-to-

lymphocytes ratio is a prognostic biomarker in patients with

pancreatic tumors (137), colorectal cancers (138) and hepatocellular

carcinoma (139), and a higher ratio predicts a poor prognosis. The

accumulation of TAMs in TME can elevate the neutrophils-to-

lymphocytes ratio and confers a poorer prognosis for patients

(137). Furthermore, Huang et al. found that a combination of

CD163+ TAMs and CD66b+ TANs is an important prognostic

marker for gastric cancer patients (140).
4.6 TAMs and DCs

Macrophages and DCs are forefront cells of innate immunity,

they are capable of sensing and immediately against invading

pathogens (141). Though macrophages and DCs are different cell

types and originate from different lineages, they express several same

markers and exhibit some similar functions (142). For example,

macrophages and DCs are both found in peripheral tissues and

accumulate in the areas of pathogen entry (143). Besides,

macrophages and DCs can exert a synergetic effect on connecting

innate and adaptive immunity through recognizing and presenting

the foreign antigens to T cells (144–146). The phagosomal

degradation of DCs is lower than macrophages, which retain the

antigenic peptides and initiates adaptive immune responses (143).

ScRNA-seq analyses found that macrophages and DCs play a key

role in mediating cellular cross-talk in the TME and regulate tumor

immunity (147). The potent anti-tumor immune response needs

antigen presentation by macrophages and DCs. Immature DCs can

get matured and migrate from the periphery to the lymph node and

activate T cells when they recognize pathogen-associated molecular

patterns (PAMPs) and damage-associated molecular patterns

(DAMPs) (148). Whereas, the maturation and function of DCs can

be inhibited by several factors secreted by tumor cells and TAMs, such

as VEGF, IL-10, IL-6, M-CSF and TGFb (149–153). Furthermore, a

study revealed that the immature or defective DCs results in T cells’

unresponsiveness and immunosuppression in TME (154). DAMPs

have been referred to endogenous molecules and fragments from
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damaged cells and tissues, which were also be recognized as danger

signals (155, 156). The adenosine triphosphate (ATP), which is also

an important component of TME, is likely to be the prototypical and

most widely diffused DAMPs (157). Studies have confirmed that ATP

can not only promote DCs migration into lymph nodes and activate T

cells, but also regulate TAMs physiology (158–160). Regarding the

proteins involved in this ATP-related signaling, there are Connexins

and Pannexins channels, which allow contact dependent or

independent communication (160–162). Interestingly, Pannexins

are differentially expressed during macrophage polarization, which

makes them valuable target for therapy (163). In advanced

osteosarcoma, Zhou et al. found that monocytes and macrophages

make up the majority of total myeloid cells at 70-80%, while DCs only

account for less than 5% by scRNA-seq analysis (164). It is still

uncovered whether the decreasing proportion of DCs is associated

with poor prognosis in tumors. Currently, there are limited studies

exploring the interaction of DCs and macrophages on the effects of

tumors, targeting the cross-talk between DCs and macrophages may

be an effective anti-tumor strategy.
4.7 TAMs and NK cells

NK cells are also an important component of innate immunity

which play a pivotal role in the defense against infections and cancer

(165). NK cells can also promote TAMs to repolarize into the M1-

type macrophages (166). The cross-talk between macrophages and

NK cells have been verified as an important part of inflammatory and

anti-tumor reactions. Macrophages promote NK cell activation

mainly through secreting cytokines, such as IL-15, IFNb (167), IL-

12, IL-18 (168) and IL-23 (169). Once activated, NK cells produce

large amounts of IFN-g to exert cytotoxic effects. Besides, M1

macrophages increase NK cells number and induce NK cell

activation to express TNF-related apoptosis-inducing ligand which

can promote hepatic stellate cell apoptosis in the fibrotic liver (170).

In contrast, TAMs can also inhibit NK cell function through

expressing TGF-b (171).

Notably, NK cells exhibit distinct functions when interacting with

different phenotypes of TAMs. For example, activated NK cells can

kill M0- and M2-TAMs, while the M1-TAMs are more resistant to

lysis than M0- and M2-TAMs due to their high levels of HLA class I

molecules (172). Besides, after stimulation with LPS, M0- and M2-

TAMs induce the activation of resting NK cells and promote the

expression of CD69, CD25 and CCR7.
4.8 TAMs and NKT cells

Natural killer T (NKT) cells are a unique lymphocyte population

which can recognize lipid antigens presented by the MHC class I-like

molecular CD1d (173). Upon activated by CD1d, NKT cells initiated

an essential role in autoimmunity, infection and tumor immunity

through secreting a lot of cytokines, including TNF-a, IFN-g, IL-4, IL-
6 and IL-17 (174–177). Furthermore, the activated NKT cells also

increase the proportion of M1-type macrophages and reduce M2

macrophages in the TME to exert an antitumor effect (173). In

addition, recent study found that TAMs can promote tumor growth
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through producing IL-6, but accounting for majority of CD1d-

expressing cells (178). Further mechanismic research revealed that

CD1d-activated NKT cells can recognize TAMs specifically and kill

TAMs to suppress tumor growth (178). Therefore, NKT-based

therapies that can against both tumor cells and TAMs will be an

effective antitumor treatment.
5 Cancer cell therapy by targeting
TAMs-based communications among
TME

Since the first chimeric antigen receptor (CAR)-T cell therapy

(Kymriah) was approved by FDA, the cell therapy field is still

expanding and evolving (179). Although CAR-T therapy has

achieved remarkable success in hematological malignancies, the

efficacy of CAR-T treatment of solid tumors is limited (180, 181).

Therefore , i t is urgent to find more effect ive cel lular

immunotherapeutic strategies. Currently, the unique characteristics

of macrophages make it a proper candidates for the treatment of solid

tumors (182). CAR macrophages (CAR-M) demonstrated antigen-

specific phagocytosis and increase antigen-presentation ability.

Meanwhile, CAR-M can also reprogram M2 macrophages to M1

and stimulate the expression of pro-inflammatory cytokines and

chemokines to induce a pro-inflammatory microenvironment and

enhance T cell-mediated antitumor activity (182, 183). Nevertheless,

clinical trials and results about CAR-M have been highly limited,

there is still a long way to go for CAR-M therapy (184). Given that the

crucial role of TAMs in cancer progression and response to treatment,

TAMs-based cell therapies have been well studied and the

combination therapeutic strategies in clinical trials are included

in Table 3.
5.1 Targeting TAMs and T cells in cancer
cell therapy

Immune checkpoint inhibitors have demonstrated effective anti-

tumor effects by regulating T cell activity. Furthermore, their

functions in regulating macrophages have also been revealed. PD-

L1 is a significant immune suppressor which can regulate

macrophages and T cells interaction in tumors (185). Xiong et al.

reported that anti-PD-L1 therapy can not only activate CD8+ T cells

expressing a high level of granzyme-B but also reprogram

macrophages from anti-inflammatory to a pro-inflammatory

phenotype, meanwhile, increasing the CD8+ T/Treg ratio (186).

Therefore, targeting both macrophages and T cells is required for

synergistic therapy.

The CD47/signal regulatory protein-a (SIRPa) cascade is an

important transmembrane protein that functions as a “don’t eat

me” signal, which can be delivered to macrophages (187). Depletion

of SIRPa on intratumoral macrophages can enhance the therapeutic

response of radiotherapy and reshape the TME from anti-

inflammatory to pro-inflammatory. Furthermore, the SIRPa-/- can

promote high levels of pro-inflammatory factors expression, induce

tumor-specific cytotoxic CD8+ T cells expansion and activation, and
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TABLE 3 The combination therapy targeting on TAMs in clinical trials.

Targets Drugs
Clinical
Phase Conditions

Combinations
in trials Sponsor

Gov
identifier

CSF1 MCS110 1 Breast Cancer Doxorubicin
Washington University School of
Medicine NCT03285607

Paclitaxel

Doxorubicin

1/2 Triple Negative Breast Cancer PDR001 Novartis Pharmaceuticals NCT02807844

Pancreatic Carcinoma

Melanoma

Endometrial Carcinoma

1/2 Melanoma Dabrafenib Dana-Farber Cancer Institute NCT03455764

Trametinib

PD-0360324 2 Recurrent Fallopian Tube Carcinoma Cyclophosphamide M.D. Anderson Cancer Center NCT02948101

Recurrent Ovarian Carcinoma

Recurrent Primary Peritoneal Carcinoma

CSF1R LY3022855 1 Solid Tumor
Durvalumab or
Tremelimumab Eli Lilly and Company NCT02718911

Neoplasms NR Eli Lilly and Company NCT01346358

1 Pancreatic Cancer Pembrolizumab
Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins NCT03153410

1/2 Melanoma Vemurafenib Dana-Farber Cancer Institute NCT03101254

Cobimetinib

PLX3397 1/2 Melanoma Pembrolizumab Daiichi Sankyo, Inc. NCT02452424

Non-small Cell Lung Cancer

Squamous Cell Carcinoma of the Head and
Neck

Gastrointestinal Stromal Tumor (GIST)

Ovarian Cancer

Cabiralizumab 2 Pancreatic Cancer Stage IV Gemcitabine Hitendra Patel NCT03697564

Nivolumab

1 Advanced Melanoma APX005M Yale University NCT03502330

Advanced Melanoma Nivolumab

Renal Cell Carcinoma

2 Head and Neck Squamous Cell Carcinoma Nivolumab
Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins NCT04848116

2 Resectable Biliary Tract Cancer Nivolumab
Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins NCT03768531

Edicotinib 2 Recurrent Acute Myeloid Leukemia

DCC3014 1 Sarcoma Avelumab
Memorial Sloan Kettering Cancer
Center NCT04242238

Advanced Sarcoma

High Grade Sarcoma

Leiomyosarcoma

Leiomyosarcoma

(Continued)
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TABLE 3 Continued

Targets Drugs
Clinical
Phase Conditions

Combinations
in trials Sponsor

Gov
identifier

Leiomyosarcoma

Dedifferentiated Liposarcoma

ARRY-382 2 Advanced Solid Tumors Pembrolizumab Pfizer NCT02880371

SNDX-6352 2 Unresectable Intrahepatic Cholangiocarcinoma Durvalumab
Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins NCT04301778

CSF1R-
TKI pexidartinib 1 Clorectal Cancer Durvalumab Centre Leon Berard NCT02777710

Pancreatic Cancer

Metastatic Cancer

Advanced Cancer

CCR2 PF-04136309 2 Metastatic Pancreatic Ductal Adenocarcinoma Nab-paclitaxel Pfizer NCT02732938

Gemcitabine

CCR2/
CCR5 BMS-813160 2 Non-small Cell Lung Cancer Nivolumab

Icahn School of Medicine at Mount
Sinai NCT04123379

Hepatocellular Carcinoma BMS-986253

1/2
Locally Advanced Pancreatic Ductal
Adenocarcinoma (PDAC)

Stereotactic Body
Radiation

Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins NCT03767582

Pancreatic Ductal Adenocarcinoma Nivolumab

GVAX

1/2 Pancreatic Ductal Adenocarcinoma Nivolumab
Washington University School of
Medicine NCT03496662

Gemcitabine

Nab-paclitaxel

CCR5 Maraviroc 1 Metastatic Colorectal Cancer Pembrolizumab University Hospital Heidelberg NCT03274804

CD40 APX005M 1 Advanced Melanoma Cabiralizumab

Advanced Melanoma Cabiralizumab

Renal Cell Carcinoma

1/2 Non Small Cell Lung Cancer Metastatic Nivolumab Apexigen, Inc. NCT03123783

Metastatic Melanoma

Neoplasm of Lung

Melanoma

2 Soft Tissue Sarcoma Doxorubicin Columbia University NCT03719430

1/2 Melanoma Pembrolizumab M.D. Anderson Cancer Center NCT02706353

CDX-1140 1/2 Melanoma Poly-ICLC Craig L Slingluff, Jr NCT04364230

1/2 Non Small Cell Lung Cancer SBRT Albert Einstein College of Medicine NCT04491084

Lung Cancer

SGN-40 1 Multiple Myeloma lenalidomide Seagen Inc. NCT00525447

dexamethasone

1 Multiple Myeloma bortezomib Genentech, Inc. NCT00664898

CD47 AK117 1/2 Acute Myeloid Leukemia Azacitidine Akeso NCT04980885

1/2 Myelodysplastic Syndrome Azacitidine Akeso NCT04900350

(Continued)
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TABLE 3 Continued

Targets Drugs
Clinical
Phase Conditions

Combinations
in trials Sponsor

Gov
identifier

ALX148 2
Microsatellite Stable Metastatic Colorectal
Cancer Cetuximab Criterium, Inc. NCT05167409

Pembrolizumab

2/3 Gastric Cancer Trastuzumab ALX Oncology Inc. NCT05002127

Gastroesophageal Junction Adenocarcinoma Ramucirumab

Gastric Adenocarcinoma Paclitaxel

2 Head and Neck Cancer Pembrolizumab ALX Oncology Inc. NCT04675333

Head and Neck Squamous Cell Carcinoma
Cisplatin/
Carboplatin; 5FU

2 Head and Neck Cancer Pembrolizumab ALX Oncology Inc. NCT04675294

Head and Neck Squamous Cell Carcinoma

1/2 Aggressive B-Cell Non-Hodgkin Lymphoma Lenalidomide M.D. Anderson Cancer Center NCT05025800

Ann Arbor Stage III Grade 2 Follicular
Lymphoma

Ann Arbor Stage III Grade 3 Follicular
Lymphoma

TTI-622 1/2 Ovarian Cancer

Pegylated
Liposomal
Doxorubicin Trillium Therapeutics Inc. NCT05261490

Ovarian Neoplasms

Ovarian Carcinoma

Fallopian Tube Cancer

Fallopian Tube Cancer

Primary Peritoneal Carcinoma

1/2 Leiomyosarcoma Doxorubicin Trillium Therapeutics Inc. NCT04996004

Myelodysplastic Syndromes

TG-1801 1 Marginal Zone Lymphoma Ublituximab TG Therapeutics, Inc. NCT04806035

Follicular Lymphoma

Aggressive Lymphoma

Magrolimab 2 Hodgkin Lymphoma Pembrolizumab Stanford University NCT04788043

Classic Hodgkin Lymphoma

Relapsed Classical Hodgkin Lymphoma

Refractory Classic Hodgkin Lymphoma

SL-172154 1 Cutaneous Squamous Cell Carcinoma NR Shattuck Labs, Inc. NCT04502888

Squamous Cell Carcinoma of Head and Neck

PI3K Alpelisib 2 Breast Cancer, PI3K, Alpelisib Chemotherapy UNICANCER NCT03386162

BKM120 1 Recurrent Non-small Cell Lung Cancer
pemetrexed
disodium City of Hope Medical Center NCT01723800

Stage IV Non-small Cell Lung Cancer carboplatin

1/2 Breast Cancer Lapatinib Institut Paoli-Calmettes NCT01589861

1 Extensive Stage Small Cell Lung Cancer cisplatin University of California, Davis NCT02194049

(Continued)
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TABLE 3 Continued

Targets Drugs
Clinical
Phase Conditions

Combinations
in trials Sponsor

Gov
identifier

Unspecified Adult Solid Tumor, Protocol
Specific etoposide

1
Unspecified Adult Solid Tumor, Protocol
Specific docetaxel Roswell Park Cancer Institute NCT01540253

1/2
Metastatic Squamous Neck Cancer With
Occult Primary Squamous Cell Carcinoma cetuximab University of Chicago NCT01816984

Recurrent Metastatic Squamous
Neck Cancer With Occult Primary

Recurrent Salivary Gland Cancer

2 Advanced Prostate Cancer Cabazitaxel
SCRI Development Innovations,
LLC NCT02035124

BYL719 1 Advanced Gastric Cancer AUY922 Novartis Pharmaceuticals NCT01613950

1 Estrogen Receptor-positive Breast Cancer letrozole Vanderbilt-Ingram Cancer Center NCT01791478

HER2-negative Breast Cancer

Invasive Ductal Breast Carcinoma

Copanlisib 2 Endometrial Cancer Fulvestrant M.D. Anderson Cancer Center NCT05082025

Ovarian Cancer

1/2 Colon Cancer Nivolumab
Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins NCT03711058

PF-05212384 1 Advanced Cancer PD-0325901 Pfizer NCT01347866

Irinotecan

Duvelisib 1 Chronic Lymphocytic Leukemia Venetoclax AbbVie NCT02640833

Small Lymphocytic Lymphoma

Non-Hodgkin Lymphoma

TLR

TLR7 Imiquimod 1/2 Breast Cancer Cyclophosphamide NYU Langone Health NCT01421017

Metastatic Breast Cancer

Recurrent Breast Cancer

1 Melanoma (Skin)
indocyanine green
solution University of Oklahoma NCT00453050

Metastatic Cancer

RO7119929 1 Carcinoma, Hepatocellular Tocilizumab Hoffmann-La Roche NCT04338685

Biliary Tract Cancer

Secondary Liver Cancer

Liver Metastases

SHR2150 1/2 Solid Tumor Anti-Cancer Agent Chinese PLA General Hospital NCT04588324

BNT411 1/2 Solid Tumor Atezolizumab BioNTech SE NCT04101357

Extensive-stage Small Cell Lung Cancer Carboplatin

TLR9 MGN1703 1 Advanced Cancers Ipilimumab M.D. Anderson Cancer Center NCT02668770

Melanoma

(Continued)
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TABLE 3 Continued

Targets Drugs
Clinical
Phase Conditions

Combinations
in trials Sponsor

Gov
identifier

Tilsotolimod 1 Advanced Cancer Ipilimumab
Gustave Roussy, Cancer Campus,
Grand Paris NCT04270864

Nivolumab

SD-101 1 Advanced Malignant Solid Neoplasm BMS 986178 Ronald Levy NCT03831295

Extracranial Solid Neoplasm

Metastatic Malignant Solid Neoplasm

1 Metastatic Pancreatic Adenocarcinoma Nivolumab University of California, Davis NCT04050085

Refractory Pancreatic Adenocarcinoma

Pancreatic Cancer

1 Metastatic Uveal Melanoma in the Liver Nivolumab TriSalus Life Sciences, Inc. NCT04935229

Ipilimumab

IMO 2055 1 Colorectal Cancer Metastasis Cetuximab EMD Serono NCT00719199

FOLFIRI

CMP-001 2 Melanoma Nivolumab Diwakar Davar NCT03618641

Lymph Node Cancer

2 Melanoma Nivolumab Diwakar Davar NCT04401995

Relapsed Acute Myelogenous Leukemia

IMO-2125 3 Metastatic Melanoma Ipilimumab Idera Pharmaceuticals, Inc. NCT03445533

TLR4 GLA-SE 1 Colorectal Cancer Metastasis FOLFOX regimen
Gustave Roussy, Cancer Campus,
Grand Paris NCT03982121

Nivolumab

Ipilimumab

GSK1795091 1 Cancer Placebo GlaxoSmithKline NCT02798978

Neoplasms

TLR8 VTX-2337 1 Colorectal Adenocarcinoma Cyclophosphamide Mayo Clinic NCT02650635

Metastatic Pancreatic Adenocarcinoma

Recurrent Breast Carcinoma

2 Epithelial Ovarian Cancer PLD Celgene NCT01666444

Fallopian Tube Cancer

Fallopian Tube Cancer

TLR7/8 MEDI9197 1 Solid Tumors durvalumab MedImmune LLC NCT02556463

BDC-1001 1/2 HER2 Positive Solid Tumors Nivolumab Bolt Biotherapeutics, Inc. NCT04278144

BDB001 1 Tumor, Solid Atezolizumab
Birdie Biopharmaceuticals HK
Limited NCT04196530
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exert efficient anti-tumor immunity in colorectal and pancreatic

tumors (188). Therefore, targeting CD47/SIRPa signaling may play

an important role in regulating macrophages and T cells.

Furthermore, recent studies have revealed that the combination of

anti-PD1/PD-L1 and inhibition of CD47/SIRPa signaling developed

more effective cancer immunotherapy through activating

macrophages phagocytosis and antitumor effects which can further

activate CD8+ T cells (189, 190). In addition to the CD47/SIRPa
cascade, CD40 agonists re-educate TAMs into M1 macrophages to

restore cancer immune surveillance (191), and the combination

therapy of anti-PD1/PD-L1 and anti-CD40 also enhances anti-

tumor efficacy (191, 192).

Recently, a novel nanomedicine has been constructed that can

activate CD4+ T cells and CD8+ T cells and polarize the M2

macrophages to M1 macrophages, which induced potent anti-

tumor immunity and has good clinical application prospects (193).

Besides, Wang and colleagues found a novel cryo-thermal therapy

that can induce substantial amounts of iron secretion, which promote

M1 macrophage polar izat ion through inhib i t ing ERK

phosphorylation and the M1 macrophages can further promote

CD4+ T cells differentiation into CD4 cytolytic T lymphocytes

(CTL) (194). In addition, blockade of macrophage scavenger

receptor common lymphatic endothelial and vascular endothelial

receptor-1 (Clever-1) (185), ibuprofen (195), sophoridine (196) and

all-trans retinoic (197) have also been demonstrated to activate

endogenous antitumor CD8+ T cells and convert the TME from

anti-inflammatory to pro-inflammatory state.

Adoptive immunotherapy with CAR-T cells has shown good

clinical value on the prognosis of patients with cancer, expecially

those with hematologic malignancies (198). Rodriguez and colleagues

demonstrated that CAR-T cells specific for human FRb specifically

recognize and delete M2-like FRb+ TAMs and enhance the anti-

tumor efficiency of CAR-T cells (199). However, cytokines, including

IL-6 and IL-1b released from macrophages may cause serious adverse

effects of CAR-T therapy, such as cytokine release syndrome (CRS)

(200, 201). CRS is thought to be the most common severe toxicity of

CAR-T therapy which is characterized by high fevers, hypotension,

hypoxia, sunus tachycardia and depressed cardiac function and

greatly limit the broad use of CAR-T treatment (202–206).

Therefore, it is urgent to find effective therapeutic strategy targeting

macrophages to reduce the occurrence of CRS. Taken together, these

findings suggest that novel strategies targeting both TAMs and T cells

can significantly enhance anti-tumor activity.
5.2 Targeting TAMs and Tregs in cancer
cell therapy

High-level infiltration of Tregs in TME has been demonstrated to

be associated with poor prognosis (207), while the depletion of Tregs

with anti-CD25 has been used in tumors and achieved preliminary

results in melanoma (208), ovarian, breast and lung carcinoma (209).

Currently, there is limited evidence for the use of combination

therapy between macrophages and Tregs. Liver X receptor (LXR) is

a member of the nuclear receptor family of transcription factors (210),
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studies have found that LXR agonists can obstruct tumor growth in

melanoma (211), breast cancer (212), lung cancer and colon cancer

(213). However, the exact mechanism of their anti-tumor activities

remains undefined. Carbo and colleagues found that LXR agonist

T0901317 can reduce infiltration of Tregs in tumors and TAMs

expression of chemokine CCL17 which attracts Tregs migration.

Furthermore, LXR agonists also inhibit IRF4 expression which

further reduces the downstream genes in macrophages, such as

CCL17 (214). Thus, activation of LXR might be an effective

treatment in regulating the TAMs and Tregs-mediated

immunosuppressive in tumors. Macrophage receptor with

collagenous structure (MARCO) is a scavenger receptor expressed

mainly in macrophages (215), MARCO-expressing TAMs have been

demonstrated to induce Tregs proliferation and promote tumor

progression in lung cancer, thus targeting MARCO with antibodies

decrease Tregs frequencies and activation (216).
5.3 Targeting TAMs and CAFs in cancer
cell therapy

Due to the highly heterogeneous of CAFs, it is difficult to target

CAFs through unique markers. Thus, it is necessary to investigate the

molecules and signaling pathways that affect CAFs activation and

function. Studies have demonstrated that NFkB induces CAFs

activation and promotes tumor epithelial-mesenchymal transition

and induces chemo-resistance by expressing IL-6 and IL-8 (103,

217). Therefore, the NFkB signaling pathway may be a potential

target for cancer therapy. CSF1/CSF1R signaling pathway plays a key

role in regulating TAMs proliferation and polarization, many studies

have confirmed the effectiveness of CSF1R inhibitors in depleting

TAMs and targeting tumors (218, 219). However, Kumar et al. found

that CAFs can promote polymorphonuclear myeloid-derived

suppressor cells migrating into tumor tissues through secreting

CXCL1 and weaken the anti-tumor effect of CSF1R inhibitors

(220). Therefore, a combination of CSF1R inhibitor with blockade

of macrophage recruitment may improve treatment efficacy.

Furthermore, a synergistic anti-tumor effect was observed when

combined anti-PD-1 with these two inhibitors.
5.4 Targeting TAMs and B cells in
cancer therapy

The relationship between TAMs and B cells in inflammation and

tumor has been reported, however, the related applications in

treatment have been poorly analyzed. Affara et al. found that

clearance of B cells can regulate TAMs reprogram into the M1

macrophages by using B cells-specific deletion mice, induce

macrophages to express anti-tumor chemokines and activate CD8+

T cells in squamous carcinomas. In addition, aCD20 monoclonal

antibodies, which can deplete B cells, have also been demonstrated to

promote TAMs to express high levels of angiostatic and CCR

chemokines, such as CXCL10, CXCL11, and CCR5, which can

elevate CD8+ T cells infiltration and improve the response to
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chemotherapy. Thus, the interaction of B cells and macrophages may

serve as a target for cancer cell therapy.

It is well known that CD40 agonist antibodies can reprogram M2

macrophages into M1 macrophages. Furthermore, Inoue and

colleagues found that CD40-CD40L interaction can down-regulate

the immunosuppressive effects of B cells on T cells and NK cells and

stimulate IFN-g production to exert anti-tumor immune response

(221). Therefore, depletion of B cells and reprogramming

macrophages via CD40 agonist antibody may have potential use in

cancer treatment. Studies have confirmed that TAMs have an

important role in the progression of B-cell lymphomas, such as

classic Hodgkin’s lymphoma (222) and chronic lymphocytic

leukemia (223). Considering the CSF1/CSF1R signaling pathway as

an effective therapeutic target for depleting and reprogramming

TAMs, blockade of CSF1/CSF1R signaling has been demonstrated

to effectively deplete neural-like cells and control the progression of

chronic lymphocytic leukemia (223). However, TAMs depletion not

only induces leukemic cell death mainly through the TNF pathway,

but also increases CD20+ leukemic cell infiltration (224). Therefore, a

combination targeting TAMs and anti-CD20 mAbs may provide an

effective strategy for chronic B lymphocytic leukemia. In conclusion,

targeting the TAMs and B cells is also a promising therapeutic

strategy for malignant tumors.
5.5 Targeting TAMs and neutrophils in
cancer cell therapy

Dual targeting of TAMs and TANs might be an effective anti-

tumor therapy strategy. The CSF-1R blockade can significantly

deplete TAMs infiltration and stimulate intratumoral type I

interferon signaling, which further targets the immunosuppressive

TANs and elevate anti-tumor immune response during cisplatin

therapy (225). In addition, voets et al. found that selective pan-

allele anti-SIRPa antibody ADU-1805 has also been demonstrated to

increase macrophages phagocytosis and enhance neutrophils

trogocytosis, but not impact T cells activation (226). Furthermore,

Ring and colleagues have revealed a new anti-human SIRPa antibody,

KWAR23, which can elevate both neutrophils and macrophages’ anti-

tumor activity in vitro and in vivo (227). Currently, the optimal

treatment for cancers has not yet been defined. Therefore, discovering

effective therapeutics targeting both macrophages and neutrophils is

important for tumor patients.

IL-23 promotes M2 macrophages and neutrophils infiltration and

releases immunosuppressive cytokines, such as TGF-b, IL-10 and

VEGF, which reduce CD8+ T cells proliferation and suppress anti-

tumor responses (228). Therefore, IL-23 could be a potential target for

new therapeutic strategies by regulating macrophages and neutrophils

simultaneously. In addition to IL-23, phospholipase D-2 (PLD2) has

also been found to play a significant role in tumor progression and

metastasis, and PLD was also identified to modulate macrophages and

neutrophil signaling pathways (229, 230). In addition, a study found

that PLD-specific inhibitors can reduce TAMs and TANs infiltration

in tumors and decrease tumor growth in breast cancer, which may

implicate PLD as a potential therapeutic target in the treatment of

cancers (231). Besides, DKK1 was also found to inhibit TAMs and

TANs infiltration in lung metastases (232).
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5.6 Targeting TAMs and DCs in cancer
cell therapy

Tumor immunotherapy with DCs vaccinations are being

extensively investigated in recent years (233). The vaccines aim to

enhance DCs immunogenicity and activate cytotoxic T cells (234).

Some clinical trials of DCs vaccines have demonstrated that vaccines

can significantly elevate the anti-tumor effectors in renal cell

carcinoma (235), acute myeloid leukemia (236) and lung cancer

(237). In addition, a combination of TAMs depletion and DCs

vaccine has been reported to induce durable an-titumor immunity

and improve survival than monotherapy in mesothelioma mouse

models (238). As mentioned above, blockades of CD47/SIRPa
signaling play an important role in regulating macrophages and T

cells. It has also been found that anti-CD47 antibody can induce type I

interferon expression in DCs and promote antigen presentation to

CD8+ T cells (239). Though blockade of CD47/SIRPa signaling

promoted macrophages phagocytosing tumor-originated

mitochondrial DNA (mtDNA), it inhibited the phonological

function of DCs which can reduce mtDNA degradation in DCs and

activate DCs’ anti-tumor function by inducing type I interferon (240).

Similarly, the CD40 agonist antibody not only reprograms M2

macrophages into M1 macrophages, but also activates DCs (147).

Thus, TAMs-targeting therapy combined with DCs vaccines may be

an effective strategy for regulating immune responses against tumors.
5.7 Targeting TAMs and NK cells in cancer
cell therapy

Numerous studies have confirmed that CD47 is overexpressed in

several tumor types , such as myeloma, breast cancer ,

leiomyosarcoma, and acute lymphocytic cancer (187, 241–243).

Furthermore, CD47 is also an important marker for M2-type

TAMs, and anti-CD47 therapy can reprogram TAMs to

proinflammatory (M1-type) macrophages to kill tumor cells and

prevent tumor metastases in human solid tumors (187). Zhang and

colleagues first found differential phagocytosis effects of CD47-SIRPa
inhibitors on human and mouse macrophage polarization isoforms in

vitro (244). Although the polarization shift from the M2 to the M1

phenotype induced by anti-CD47 treatment was not verified in vitro,

the in vivo results revealed that the macrophage population changed

constantly and polarized towards the M1 subset with a

proinflammatory immune response in the TME. Furthermore, the

CD47/SIRPa signaling has also been shown to regulate NK cell

functions. Overexpression of CD47/SIRPa inhibits NK cell

activation and limits NK cell-mediated killing (245). Therefore,

blockade of CD47/SIRPa may not only reprogram macrophages

polarization, but also enhance the anti-tumor activity of NK cells.

IL-15 can potently enhance peripheral NK cells number and

induce NK cells and macrophages activation (246). Furthermore, the

interactions between NK cells and macrophages which can increase

NK-cell activation are important for NK cells to express FcgRIV to

exert cytotoxic effects under the stimulation of IL-15. Combination

treatment of IL-15 and rituximab showed a better therapeutic effect

which is mediated by both NK cells and macrophages to induce

optimal antibody-dependent cellular cytotoxicity (246).
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TAMs can be repolarized into the M1 phenotype via activating

Toll-like receptor (TLR) and stimulate NK cell activity through

expressing immunostimulatory cytokines IL-12 (247). Combination

therapy used anti-tumor antibody, IL-12 and anti-PD-1 can induce

macrophages repolarized into a M1 phenotype and promote NK cell

proliferation, activation and cytotoxicity (248). Reprogrammed

macrophages and NK cells trigger lymphocytes’ recruitment into

tumors via secreting IFN-g and facilitate tumor vascular

normalization which greatly improved the anti-tumor efficacy.

Thus, therapies targeting innate cell activation, such as

macrophages and NK cells, may initiate T cell-mediated anti-tumor

immune responses.
6 Perspectives and conclusions

Recently, increasing studies have revealed the role of TME in

tumorigenesis, progression, and response to treatment (194, 249).

Besides, substantial single-cell-related studies have also revealed that

TAMs are one cell subgroup of the most abundant components in

TME with important functions (7, 250). According to the current

understanding, there are mainly two sources of TAMs, including

tumor-resident macrophages and bone marrow-derived macrophages

which are regularly further polarized into M1 and M2 phenotypes.

Tumor-resident macrophages and M2-type TAMs normally play a

pro-tumor role, while M1-type TAMs inhibit tumor development

(40). Notably, interactions between TAMs and other immune cells in

TME significantly influence tumor progression. Many current

strategies for cancer treatment influence TME and the TME

changes are associated with the therapeutic efficacy. Thus, novel

strategies targeting TAMs and other immune cells and their

crosstalk will be a promising approach to block or eradicate the tumor.

Currently, CAR-T cell therapies still occupy the major position,

but cell therapy modalities that rely on other immune cells have

solidified their growth in the past year (179). Given that the important

role of TAMs in cancer progression and response to anti-cancer

treatment, TAMs-based cell therapy may also be a promising

direction. Furthermore, recent studies have revealed that regulating

TAMs can significantly inhibit cancer progression and enhance the

therapeutic effects of other treatments (186). Recently, CAR-M

therapy and targeting strategies regulating TAMs or crosstalk

between TAMs and other immune cells have been well studied and

achieved encouraging results in cancer treatment.

Conclusively, the effects of TAMs on the initiation and

progression of various cancers can be realized in multiple
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approaches. As the most abundant component in TME, TAMs had

strong associations with other immune cells and these interactions

exert important effects on cancer progression. Furthermore, targeting

TAMs and the interactions with other immune cells can exert

antitumor effects. Therefore, TAMs-related immunotherapy is a

promising approach to improve therapeutic efficacy for

cancer treatment.
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Glossary

TAMs Tumor-associated macrophages

TME tumor microenvironment

EMT epithelial–mesenchymal transition

TNF-a tumor necrosis factor-a

Arg-1 arginase 1

A2R A2 adenosine receptor

VEGF vascular endothelial growth factor

NO nitric oxide

CCL-17 Chemokine (C-C motif) ligand 17

NF-kB nuclear factor-kB

APCs antigen-presenting cells

DCs dendritic cells

TLR toll-like receptor

LPS lipopolysaccharide

IFN-g interferon-g

IL-12 interleukin-12

ROS reactive oxygen species

Th2 T-helper

TGF-b transforming growth factor-b

EGF epidermal growth factor

Fgf2 fibroblast growth factor

Igf1 insulin-like growth factor-1

RAPA rapamycin

STING Stimulator of interferon genes

DHHL Hispanolone derivative 8, 9-dehydrohispanolone-15, 16-lactol

SOCS Suppressors of cytokine signaling

CARKL Carbohydrate kinase-like protein

HIF1a Hypoxia Inducible Factor 1a

PDK1 pyruvate dehydrogenate kinase 1

PKM1 Pyruvate kinase M1

PHD2 prolyl hydroxylase domain 2

HCC hepatocellular carcinoma

MMPs matrix metalloproteinases

CHI3L1 chitinase 3-like protein 1

MAPK mitogen-activated protein kinase

3D three-dimensional

CCR2 CCL2/CC chemokine receptor 2

TF tissue factor

COX-2 cyclooxygenase-2

NK natural killer

(Continued)
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KIR immunoglobulin-like receptor

Tregs regulatory T cells

MPE malignant pleural effusion

CCL2 CC-chemokine ligand 2

PDA pancreatic ductal adenocarcinoma

CTLs CD8+ cytotoxic T lymphocytes

SIRPa signal regulatory protein-a

CpG ODN Oligodeoxynucleotides containing CpG motifs

TLR9 Toll-like receptor 9

TLRs Toll like receptors
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1113312
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression
	1 Introduction
	2 The characteristics of macrophage
	2.1 The origin of macrophage
	2.2 Macrophage polarization

	3 Macrophages regulate tumor progression
	4 Interactions between TAMs and other cell components in the TME
	4.1 TAMs and T cells
	4.2 TAMs and Tregs
	4.3 TAMs and CAFs
	4.4 TAMs and B cells
	4.5 TAMs and neutrophils
	4.6 TAMs and DCs
	4.7 TAMs and NK cells
	4.8 TAMs and NKT cells

	5 Cancer cell therapy by targeting TAMs-based communications among TME
	5.1 Targeting TAMs and T cells in cancercell therapy
	5.2 Targeting TAMs and Tregs in cancer cell therapy
	5.3 Targeting TAMs and CAFs in cancer cell therapy
	5.4 Targeting TAMs and B cells in cancer therapy
	5.5 Targeting TAMs and neutrophils in cancer cell therapy
	5.6 Targeting TAMs and DCs in cancer cell therapy
	5.7 Targeting TAMs and NK cells in cancer cell therapy

	6 Perspectives and conclusions
	Author contributions
	Fundings
	References
	Glossary


