
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jialin Gao,
First Affiliated Hospital of Wannan Medical
College, China

REVIEWED BY

Xiaosong Qin,
China Medical University, China
Xing Niu,
China Medical University, China

*CORRESPONDENCE

Yonghong Shi

yonghongshi@163.com

SPECIALTY SECTION

This article was submitted to
Inflammation,
a section of the journal
Frontiers in Immunology

RECEIVED 01 December 2022
ACCEPTED 22 February 2023

PUBLISHED 08 March 2023

CITATION

Zhou H, Mu L, Yang Z and Shi Y (2023)
Identification of a novel immune landscape
signature as effective diagnostic markers
related to immune cell infiltration in
diabetic nephropathy.
Front. Immunol. 14:1113212.
doi: 10.3389/fimmu.2023.1113212

COPYRIGHT

© 2023 Zhou, Mu, Yang and Shi. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 08 March 2023

DOI 10.3389/fimmu.2023.1113212
Identification of a novel immune
landscape signature as effective
diagnostic markers related to
immune cell infiltration in
diabetic nephropathy

Huandi Zhou1,2,3, Lin Mu1,2,4, Zhifen Yang1,2,5

and Yonghong Shi1,2*

1Department of Pathology, Hebei Medical University, Shijiazhuang, China, 2Hebei Key Laboratory of
Kidney Disease, Hebei Medical University, Shijiazhuang, Hebei, China, 3Department of Radiotherapy,
The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China, 4Department of
Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,
5Gynecology and Obstetrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang,
Hebei, China
Background: The study aimed to identify core biomarkers related to diagnosis

and immune microenvironment regulation and explore the immune molecular

mechanism of diabetic nephropathy (DN) through bioinformatics analysis.

Methods: GSE30529, GSE99325, and GSE104954 were merged with removing

batch effects, and different expression genes (DEGs) were screened at a criterion

|log2FC| >0.5 and adjusted P <0.05. KEGG, GO, and GSEA analyses were

performed. Hub genes were screened by conducting PPI networks and

calculating node genes using five algorithms with CytoHubba, followed by

LASSO and ROC analysis to accurately identify diagnostic biomarkers. In

addition, two different GEO datasets, GSE175759 and GSE47184, and an

experiment cohort with 30 controls and 40 DN patients detected by IHC, were

used to validate the biomarkers. Moreover, ssGSEA was performed to analyze the

immune microenvironment in DN. Wilcoxon test and LASSO regression were

used to determine the core immune signatures. The correlation between

biomarkers and crucial immune signatures was calculated by Spearman

analysis. Finally, cMap was used to explore potential drugs treating renal tubule

injury in DN patients.

Results: A total of 509 DEGs, including 338 upregulated and 171 downregulated

genes, were screened out. “chemokine signaling pathway” and “cell adhesion

molecules” were enriched in both GSEA and KEGG analysis. CCR2, CX3CR1, and

SELP, especially for the combination model of the three genes, were identified as

core biomarkers with high diagnostic capabilities with striking AUC, sensitivity,

and specificity in both merged and validated datasets and IHC validation.

Immune infiltration analysis showed a notable infiltration advantage for APC

co-stimulation, CD8+ T cells, checkpoint, cytolytic activity, macrophages, MHC

class I, and parainflammation in the DN group. In addition, the correlation

analysis showed that CCR2, CX3CR1, and SELP were strongly and positively
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correlated with checkpoint, cytolytic activity, macrophages, MHC class I, and

parainflammation in the DN group. Finally, dilazep was screened out as an

underlying compound for DN analyzed by CMap.

Conclusions: CCR2, CX3CR1, and SELP are underlying diagnostic biomarkers for

DN, especially in their combination. APC co-stimulation, CD8+ T cells,

checkpoint, cytolytic activity, macrophages, MHC class I, and parainflammation

may participate in the occurrence and development of DN. At last, dilazep may

be a promising drug for treating DN.
KEYWORDS

diabetic nephropathy, renal tubulointerstitial injury, diagnose biomarker, immune cells
infiltration, CCR2, CX3CR1, SELP
1 Introduction

Diabetic nephropathy (DN), which accounts for about 20%–

40% of diabetes mellitus (DM), represents the most frequent and

devastating microvascular complications caused by DM and is the

leading cause of end-stage renal disease (ESRD) worldwide,

especially in developing countries (1). It is characterized by injury

to both the renal tubules and glomeruli. DN at the early stage can be

reversed after treatment, while DN at the late stage will develop into

ESRD. Early diagnosis and intervention might maximize the delay

of disease progression, which is particularly important for clinical

treatment. Traditionally, DN’s diagnosis depended on the presence

of microalbuminuria. But growing evidence shows that many of the

DN patients with microalbuminuria can return to normal urine,

and only a few patients progress to proteinuria. In addition, in

nearly one-third of DN patients with a normal range of

albuminuria, a progressive decline in renal function like the

glomerular filtration rate (GFR) was found. These indicate that it

is not enough to detect proteinuria alone to monitor the incidence

and progression of DN (2). Besides, the decline in GFR without

microalbuminuria was caused by renal tubular injury (3). Unlike

tradition, some studies have shown that the injury of renal tubules

and renal interstitiummay exist in the early stage of DN and play an

important role in disease progression. In the past decade, our

understanding of the pathogenesis of DN has expanded from

glomerular to tubular pathobiology. Renal tubular injury has been

increasingly recognized as an early characteristic of DN. Therefore,

the study of relevant biomarkers targeting diabetic tubular injury

can reveal the renal structure and dysfunction of patients with

diabetes earlier, better monitor the progress of DN, and judge the

prognosis (4, 5).

As an inflammation and immune-related disease, immune cells

in renal tissues with DN, including resident and infiltrating

immune-related cells and types, play a vital role in the occurrence

and development of DN. Evidence accumulated from experimental

and clinical studies indicates that renal inflammation plays a key

role in determining whether renal injury progresses during diabetes.

Increasing research reveals that many macrophages, lymphocytes,
02
and mast cells exist in the kidney tissue of DN patients (6), which

secrete many inflammatory mediators, cytokines, and oxygen free

radicals that can directly or indirectly induce kidney tissue damage

and accelerate the process of renal fibrosis. Predominantly,

macrophages are one of the main infiltrating leucocytes found in

diabetic kidneys and are associated with declining renal function in

patients with DN (7). There are high correlations between the

aggregation of macrophages and the degree of glomerulosclerosis,

proteinuria, SCR, and the presence of renal interstitial fibrosis (8).

Following this, T cell recruitment to kidney tissues in diabetic

patients was correlated with the development and progression of

DN at a degree of function second only to macrophages (9). In

addition, there was also growing evidence that even in the early

stages of DN, B cells, neutrophils, and DCs accumulated in the

glomeruli and interstitium, which played a remarkable regulatory

role in the pathogenesis of DN. Significantly, it is of great value to

evaluate the contribution of immune cells and explore key genes

related to immune cells for clarifying the molecular mechanism

underlying DN and developing novel and promising

immunotherapeutic targets (9–11).

In this study, gene expression data information from the GEO

public database, GSE30529, GSE33925, and GSE104954, was

merged to seek DEGs. Two datasets, GSE175759 and GSE47184,

were used as validation datasets. After merging, functional analysis

was conducted by GO, KEGG, and GSEA, and hub genes were

identified by PPI and LASSO regression. Following this, ROC was

performed to screen efficient diagnostic biomarkers in DN with a

cut-off criterion of AUC >0.8 used both sensitivity and specificity

>75%. Next, ROC logistic regression was conducted to explore the

predictive value of a combination of screened core biomarkers.

Moreover, IHC was used to detect the expression levels of core

biomarkers in 30 paracarinoma kidney tissues and 40 kidney tissues

of patients with DN. Besides, CMap was used to seek promising

compounds for treating renal tubulointerstitial injury in DN

patients based on the enriched genes from functional analysis.

Furthermore, ssGSEA was performed to calculate the immune-

related contribution using three merged microarray datasets. Two

algorithms, the Wilcoxon test and LASSO regression, were further
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applied to determine significant immune signatures with different

infiltrates. Together, Spearman’s correlation was also used to

analyze the correlation between biomarkers and significantly

different infiltrates of immune cells. The findings will provide a

new view of diagnostic signatures and immune therapeutic targets

for DN.
2 Material and methods

2.1 Data collection, preprocessing, and
differential expression gene screening

The flow chart of the study is presented in Figure 1. For

screening DEGs related to tubulointerstitial injury in patients

with DN, three datasets, GSE30529, GSE9325, and GSE104954,

were retrieved from the Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/) database. In addition, GSE175759 and

GSE47184 were also downloaded from GEO for validation. The

details are shown in Table S1.

After the three test microarray datasets were downloaded from

GEO, the probe expression matrixes were converted to gene expression

matrixes using the platform annotation file. The values of probe IDs

were averaged when genes with ≥1 probe and probes with multiple

gene symbols were removed. Then, the three datasets were merged by

the “inSilicoMerging” package and batch effects were removed using

the method of Johnson et al. (12). After performing batch

normalization, the R package “limma” was used to screen DEGs
Frontiers in Immunology 03
between controls and renal tubulointerstium tissues of DN patients

based on |log2FC| >0.5 and adjusted P <0.05. The heat map of DEGs

was calculated and mapped using the “Pheatmap” R package.
2.2 Gene ontology and kyoto encyclopedia
of genes and genomes pathway analysis

The R package “clusterProfiler” was used to perform GO and

KEGG enrichment analyses on DEGs, respectively. R software

“org.Hs.eg.db” was used for gene ID conversion, and the “goplot”

package was used for calculating the Z score. The results were

visualized by the R package “ggplot2.” P <0.05 and p.adjust <0.05

were statistically significant.
2.3 Gene set enrichment analysis

GSEAwas conducted to explore the differentially activated biological

pathways between the control and DN groups. The 82 samples in the

merged datasets, which belonged to two groups of 37 control samples

and 45 DN samples, underwent enrichment analysis using GSEA

software (GSEA_4.2.3) on the Java version 8.0 platform. The reference

set, gene set c2.cp.kegg.v7.5.symbols.gmt, was obtained from the GSEA

official website (http://www.gsea-msigdb.org/gsea/index.jsp) to calculate

the enrichment score (ES). It was set at 1,000 permutations, and the gene

size was from 5 to 500. A normalized P <0.05 and a false discovery rate

(FDR) <0.25 were set as significant thresholds.
FIGURE 1

The flow diagram of this study. DEGs, differentially expressed genes; GSEA, gene set enrichment analysis; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PPI, protein–protein interaction; ROC, receiver operating characteristic.
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2.4 Connectivity map analysis

The intersection genes from the intersected pathways between

KEGG-DEGs and GSEA-KEGG analysis were uploaded to the

query tool of the Cmap online platform (https://clue.io/query) to

predict promising compounds that may improve tubulointerstitial

lesions in DN patients.
2.5 Screening hub genes

The STRING platform (http://string-db.org) was used to

conduct a protein–protein interaction (PPI) network with

medium confidence (score >0.4). Then, the interaction file

downloaded from the STRING platform was further analyzed

using Cytoscape version 3.9.1 software. The CytoHubba

[“CytoHubba: identifying hub objects and subnetworks from

complex interactome,” BMC Systems Biology], a Cytoscape

software plugin, was used to calculate the node genes using the

top five algorithms: MCC, DMNC, MNC, Degree, and EPC.

Subsequently, hub genes were screened based on the intersection

among the top 60 node genes of each algorithm.
2.6 Receiver operating characteristic curve

In public data, ROC analysis was performed by MedCalc

software for Windows 20.1.0. The area under the curve (AUC)

value >0.8 and both sensitivity and specificity >75% were

considered to have better diagnostic effectiveness.
2.7 Immunohistochemical staining

A total of 40 patients’ paraffin-embedded samples that were

histopathologically and clinically diagnosed as DN were collected at

the Second Hospital of Hebei Medical University. A total of 30

samples of paracancerous tissues from normoglycemic renal cancer

patients without a history of DN were obtained as normal controls.

For the study, patients’ informed consent and approval were

obtained from the Ethics Committee of the Second Hospital of

Hebei Medical University. The expression of three biomarkers was

detected by the IHC method as described in the instructions of

ZSGB-BIO (PV-9000, Beijing, China). The immunohistochemical

staining score was based on previously published articles (13, 14).

The staining estimation was assessed by the ImageJ software

(National Institutes of Health).
2.8 Single-sample gene set enrichment

A total of 29 immune-related cells and types, representing

immune cell species, immune function, and immune-related

pathways, were obtained (15). Then a ssGSEA was performed to

analyze the enrichment of 29 immune signatures in each sample in
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the expression file of the merged dataset using the “GSVA”

R package.
2.9 Screen significant differential
immune cells

Based on the infiltration of 22 immune cells in control and DN

samples calculated by the CIBERSORT algorithm, two methods, the

Wilcoxon test and the least absolute shrinkage and selection

operator (LASSO) logistic regression, were performed to screen

the differential immune signatures. LASSO was conducted with the

“glmnet” package.
2.10 Correlation analysis between
biomarkers and significant differential
immune signatures

The analysis of correlations between biomarkers and significant

differential immune signatures was conducted with spearman

analysis using the Sangerbox platform, an online tool (http://

www.sangerbox.com/tool) (16).
2.11 Statistical analysis

Statistical analyses were conducted with R and GraphPad Prism

8.0 (GraphPad Software, Inc.). The correlation between three

biomarkers and clinical indicators was performed by GraphPad

Prism software (8.0) using Pearson or Spearman analysis based on

whether they satisfied the normal distribution or not. The unpaired

t test or Mann–Whitney U test was used to evaluate the differences

between two groups. ROC was done by MedCalc software (20.1.0)

to detect the diagnostic efficiency of biomarkers along with

calculated AUCs to evaluate the efficacy of core genes in

diagnosing DN. All tests were two-tailed, and the definition of

statistical significance is p <0.05.
3 Results

3.1 Identifying the DEGs involved in
tubulointerstitial injury between control
and DN samples

According to the research flow chart (Figure 1), three datasets,

GSE30529, GSE9325, and GSE104954 were downloaded from GEO,

and a total of 82 samples (37 controls and 45 DN samples, including

12 controls and 10 DN samples from GSE30529, four controls and

18 DN samples from GSE99325, and 21 controls and 17 DN

samples from GSE104954, respectively) containing 10,635 genes

(Figure 2) were merged to screen DEGs. The PCA (Figure 2),

density (Figure 2), and boxplot (Figure 2) diagrams showed that the

batch effect of the merged data was better removed. After that,
frontiersin.org
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differential expression genes (DEGs) between control samples and

DN samples were calculated and screened using the “limma” R

package with adjusted P <0.05 and |log2FC| >0.5. A total of 509

DEGs were obtained, which included 338 upregulated genes and

171 downregulated genes. The result was visualized by a volcano

map (Figure 2), and the top 20 upregulated and top 20

downregulated DEGs were shown in the heatmap (Figure 2).
Frontiers in Immunology 05
3.2 Functional analysis

To explore the mechanism related to tubulointerstitial injury in

DN patients, after being converted into gene ID, 509 DEGs were

analyzed using GO analysis containing BP (biology process), MF

(molecular function), CC (cellular component), and KEGG

analysis. GO annotation analysis showed a significant correlation
A B

D

E F

C

FIGURE 2

Data preprocessing and DEG screening. (A) Upset graph was conducted to obtain the intersection genes in the merge of GSE30529, GSE99325, and
GSE104954. Three datasets showed an overlap of 10,635 genes. (B–D) The PCA (B), density (C), and box plot (D) figures before or after removing
batch. (E) The final DEGs were visualized by the volcano map, Log2FC >0.5, and adj.P <0.05. (F) The top 20 upregulated and top 20 downregulated
DEGs were visualized by the heatmap. Red, upregulated differential genes; blue, downregulated differential genes.
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with the biological activity of immune cells, for example, “leukocyte

cell–cell adhesion,” “T-cell activation,” “neutrophil activation

involved in immune response” in BP, “MHC protein complex,”

“MHC class II protein complex” in CC, “integrin binding,”

“chemokine receptor binding,” “cytokine binding” in MF, and so

on (Figures 3A). Coincidentally, KEGG analysis of DEGs showed an
Frontiers in Immunology 06
apparent correlation with immune system and immune disease-

related signaling pathways, for example, “complement and

coagulation cascades,” “rheumatoid arthritis,” “chemokine

signaling pathway,” “autoimmune thyroid disease,” “antigen

processing and presentation,” and so on (Figures 3B). Moreover,

based on the expression profiles of 37 controls and 45 DN samples,
A

B D

E F

C

FIGURE 3

Functional analysis. (A, B) The bubble graph (A) and circle graph (B) of GO analysis for BP, CC, and MF, respectively, based on DEGs. (C, D) The bar
plot (C) and circle charts (D) of KEGG analysis based on DEGs. (E) Multi-GSEA plot showing the intersection pathways between KEGG analysis of
DEGs and GSEA-KEGG-enriched gene sets in the DN group. (F) The circle chart shows the correlation of intersection genes between KEGG analysis
of DEGs and GSEA–KEGG analysis.
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GSEA was further employed to explore the gene pathways enriched

in different control and DN groups using an annotated gene set

(c2.cp.kegg. v7.5.1. symbols) and revealed two intersected pathways

with KEGG-DEGs: “chemokine signaling pathway” (NES = 1.48,

P = 0.048, FDR = 0.230), and “cell adhesion molecules” (NES = 1.48,

P = 0.038, FDR = 0.233), which is shown in Figure 3. Subsequently,

the intersection genes from the two intersected pathways both in

KEGG-DEGs and GSEA-KEGG were calculated, and the

correlation of each gene was visualized in the circle graph

(Figure 3). It was shown that 36 intersection genes had a

conspicuous positive correlation.
3.3 Identification of hub genes related to
renal tubulointerstitial injury in DN group

To identify the hub genes from DEGs, a PPI network was

carried out, and the node relationship among genes was obtained

from the STRING tool. Then, the score of each node gene was

calculated depending on the top five algorithms (MCC, DMNC,

MNC, Degree, and EPC) in CytoHubba, a plug-in of Cytoscape

software. The top 60 node genes of each algorithm were intersected

to screen hub genes, of which a total of 16 genes were selected, such

as LCP2, CXCL1, CD53, CXCL12, VCAM1, TLR1, CD1C, CSF1R,

FCER1G, FCGR2B, CD48, LY86, SELP, CCR2, CX3CR1, and

IL10RA (Figures 4A). Furthermore, LASSO regression was

conducted to determine the hub genes, and then six genes were

screened, such as CCR2, CX3CR1, CXCL1, CXCL12, SELP, and

TLR1 (Figures 4C). Comparing with control samples, all six genes

were upregulated in the DN group in the merged dataset, as shown

in the violin chart (Figure 4) and the heatmap (Figure 4).
3.4 Diagnostic effectiveness of six hub
genes and validation of screened
core genes

To validate the diagnostic of six hub genes, ROC was conducted

to calculate the AUC, specificity, and sensitivity. As shown in

Figure 5, all six hub genes had an efficient diagnostic value with

an AUC >0.75. Especially for CCR2, CX3CR1, and SELP, the three

core genes were screened as biomarkers of DN with AUC >0.8, and

both sensitivity and specificity >75.00%. Amazingly and

meaningfully, the combined AUC of CCR2, CX3CR1, and SELP

reached an incredible 1.000 (95% CI 0.956–1.000), with sensitivity =

100% and specificity = 100% (Figures 5B). To identify the diagnostic

effectiveness of the three biomarkers and their combination, two

datasets, GSE175759 and GSE47184, were used to conduct external

validation. As shown in Figures 5D, each of the three core

biomarkers had significantly upregulated expression in DN

samples compared to controls in both GSE175759 and GSE47184

(Figures 5D). As shown in Figures 5E, the AUC values of CCR2,

CX3CR1, SELP, and the combination in GSE175759 were 0.939

(95% CI 0.766–0.996), 0.939 (95% CI 0.766–0.996), 0.909 (95% CI

0.725–0.986), and 1.000 (95% CI 0.863–1.000), and the AUC values

of CCR2, CX3CR1, SELP, and the combination in GSE47184 were
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0.931 (95% CI 0.737–0.995), 0.917 (95% CI 0.718–0.991), 0.931

(95% CI 0.737–0.995), and 1.000 (95% CI 0.846–1.000),

respectively (Figures 5E).

In addition, to further explore the role of three core biomarkers

in DN, protein expression levels detected by IHC were performed

on 30 renal cancer paracancerous tissues and 40 DN patients’

biopsy tissues. The clinical characteristics of DN patients are

summarized in Table 1. According to the degree of 24 h-

proteinuria, DN patients were divided into two groups based on

the degree of overt proteinuria (n = 16, <3.5 g/24 h) and heavy

proteinuria (n =14, >3.5 g/24 h). There was no difference in diabetes

history, age, BMI, FBG, SBP, DBP, urea nitrogen, HbA1c, UA, TC,

or LDL levels among the two groups. Additionally, the values of 24-

h urinary protein, Scr, and TG in the heavy proteinuria group were

significantly higher than those in the overt proteinuria group. In

contrast, Hb, Alb, and eGFR levels in the heavy proteinuria group

were dramatically decreased compared with overt proteinuria

(p <0.05) (Table 1). As a result, CCR2, CX3CR1, and SELP were

strongly stained by IHC in the DN group, especially in the renal

tubules (Figures 5H). The further ROC confirmed the efficient

diagnostic capabilities of all three biomarkers, CCR2, CX3CR1,

and SELP. Similarly, the combination model showed the highest

diagnostic efficiency for DN (AUC = 1.000, 95% CI 0.949–1.000,

sensitivity = 100.00%, specificity = 100.0%, p <0.0001) (Figure 5).

Furthermore, there were remarkable positive correlations among

CCR2, CX3CR1, and SELP (CCR2 vs CX3CR1, R = 0.5208, p =

0.0006; CCR2 vs SELP, R = 0.3354, p = 0.0344; CCR2 vs CX3CR1,

R = 0.8678, p <0.0001) in the DN group (Figure 5). As shown in

Figure 5, according to information on clinical parameters, 30 out of

40 DN patients were used to further analyze the correlation. There

were substantial positive connections between CCR2 and age (R =

0.4731, p = 0.0083), or Scr (R = 0.3647, p = 0.0475), and a significant

negative correlation between CCR2 and Hb (R = −0.4774, p =

0.0076), or Alb (R = −0.3896, p = 0.0333), or eGFR (R = −0.4350,

p = 0.0163). We also found that CX3CR1 positively correlated with

urea nitrogen (R = 0.4176, p = 0.0217), 24-h urinary protein (R =

0.3762, p = 0.0405), or Scr (R = 0.5158, P = 0.0035), negatively

correlated with Hb (R = −0.4587, p = 0.0108), or eGFR (R =

−0.5525, p = 0.0015). SELP had a confirmed positive correlation

with Scr (R = 0.4052, p = 0.0263) and a negative connection with

eGFR (R = −0.3788, p = 0.0390) (Figure 5). Therefore, CCR2,

CX3CR1, SELP, and their combination were capable of diagnosing

control and DN with excellent specificity and sensitivity, especially

for the combination.
3.5 Immune-related cells and type
infiltration difference in renal
tubulointerstitial tissues between
control and DN tissues

Since KEGG and GO analysis of DEGs were both enriched to be

related to immune cells, the ssGSEA algorithm was applied to

evaluate the immune signature infiltration difference so that we

could explore the immune microenvironment of DN and further

clarify immune signatures closely related to renal tubular injury in
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patients with diabetes nephropathy. Three datasets, including 37

control and 45 DN samples, were selected to conduct a single-

sample gene set enrichment analysis based on a gene set including

29 immune-related cells and types. As shown in Figure 6, the

heatmap revealed that there was more evident immune infiltration

in renal tubular tissue in the DN group than in controls (Figure 6).

Following this, the correlation of 29 immune-related cells and types
Frontiers in Immunology 08
was estimated. Preeminently, general positive correlations were

observed among immune signatures (Figure 6). Especially for

some immune-related cells and types, including CCR, checkpoint,

cytolytic activity, HLA, inflammation-promoting, macrophages,

MHC class I, parainflammation, pDCs, T-cell co-inhibition, T-cell

co-stimulation, and TIL, highly positive correlations with a

correlation coefficient (cor) >0.8 were found. For example, CCR
A B

D

E

F

C

FIGURE 4

Identification of hub genes related to renal tubulointerstitial injury in DN. (A, B) Five algorithms in CytoHubba, a plug-in of Cytoscape software, to
screen hub genes. The Venn diagram (A) and the Upset graph (B) of intersected genes were analyzed by five algorithms: MCC, DMNC, MNC,
Degree, and EPC. A total of 16 genes were screened, such as LCP2, CXCL1, CD53, CXCL12, VCAM1, TLR1, CD1C, CSF1R, FCER1G, FCGR2B, CD48,
LY86, SELP, CCR2, CX3CR1, and IL10RA. (C, D) LASSO regression was conducted to screen further the hub genes, and six genes were screened,
such as CCR2, CX3CR1, CXCL1, CXCL12, SELP, and TLR1. (E) Wilcoxon test of six hub genes in control and DN samples. (F) Six hub genes were
visualized by the heatmap.
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had a strongly positive correlation with checkpoint, cytolytic

activity, HLA, inflammation-promoting, MHC class I,

neutrophils, parainflammation, pDCs, T-cell co-stimulation, TIL,

type I IFN response, and type II IFN response. Checkpoints were
Frontiers in Immunology 09
significantly positively related to cytolytic activity, HLA,

inflammation-promoting, MHC class I, parainflammation, pDCs,

T-cell co-stimulation, TIL, type I IFN response, and type II IFN

response. There were positive correlations between cytolytic activity
A
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FIGURE 5

ROC analyze the diagnostic value of six hub genes and external validation of screened biomarkers. (A) ROC analyzing the diagnostic value of six hub
genes, three core genes of which were screened as biomarkers of DN based on the AUC >0.8, and both sensitivity and specificity >75.00% in
merged datasets. (B) ROC analysis of the combination model based on three core genes in merged datasets. (C) ROC analysis comparing the
diagnostic effectiveness among three core genes and the combination model in merged datasets. (D, E) The expression validation (D) and ROC
analysis validation (E) of core genes in GSE175759. (F, G) The expression validation (F) and ROC analysis validation (G) of core genes in GSE47184.
(H) IHC staining examined the expression of three core biomarkers in 30 paracarinoma kidney tissues (right) and 40 kidney tissues of patients with
DN (left), (scale bar, 100 mm). (I) Expression statistics of IHC staining in 30 paracarinoma kidney tissues and 40 kidney tissues of patients with DN,
***p <0.001 vs control. (J) ROC analysis comparing the values of three core genes and the combination model in 30 paracarinoma kidney tissues
and 40 kidney tissues of patients with DN. (K) The correlation among CCR2, CX3CR1, and SELP in 40 kidney tissues of DN patients. (L) The
correlation between three biomarkers and clinical indicators in 30 kidney tissues of DN patients.
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and HLA, or inflammation-promoting, or MHC class I, or

parainflammation, or pDCs, or TIL. HLA had positive

correlations with inflammation-promoting, parainflammation,

pDCs, T-cell co-stimulation, TIL, type I IFN response, and type II

IFN response. There were positive correlations between

inflammation-promoting MHC class I, parainflammation, pDCs,

T-cell co-stimulation, TIL, type I IFN response, and type II IFN

response. Macrophages were positively correlated with TIL. MHC

class I had a positive correlation with parainflammation, pDCs, TIL,

and type I IFN responses. Parainflammation was positively

correlated with pDCs, T-cell co-stimulation, TIL, type I IFN

response, and type II IFN response. There were positive

correlations between pDCs and T-cell co-stimulation, TIL, type I

IFN response, and type II IFN response. T-cell co-stimulation was

positively correlated with TIL, and T-cell co-inhibition. TIL was

positively correlated with type I IFN response, and type II IFN

response (Figure 6). In sharp contrast, there were declines or reverse

correlations among the 29 immune-related cells and types in the

control group (Figure S1).

Furthermore, two kinds of algorithms, the Wilcoxon test and

LASSO regression, were applied to identify the most related

immune signatures. As shown in Figure 7, 20 kinds of immune-

related cells and types, namely APC co-stimulation, CCR, CD8+ T

cells, checkpoint, cytolytic activity, HLA, inflammation-promoting,

macrophages, MHC class I, neutrophils, parainflammation,

pDCs, T-cell co-stimulation, Tfh, Th1 cells, Th2 cells, TIL, Treg,
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type I IFN response, and type II IFN response, differed significantly

between DN and control group based on the Wilcoxon test

(Figure 7). In addition, the results from LASSO regression with

lambda. min = 0.02789 presented 10 types of immune signatures

with p <0.05, such as aDCs, APC co-stimulation, CD8+ T cells,

checkpoint, cytolytic activity, iDCs, macrophages, mast cells, MHC

class I, and parainflammation (Figure 7). After being intersected,

seven significantly different types of immune signatures were

extracted, namely APC co-stimulation, CD8+ T cells, checkpoint,

cytolytic activity, macrophages, MHC class I, and parainflammation

(Figure 7). Compared with the control group, there were

higher infiltrations of APC co-stimulation, CD8+ T cells,

checkpoint, cytolytic activity, macrophages, MHC class I, and

parainflammation in DN tissues.
3.6 Correlation between biomarkers and
differential immune signatures in
DN patients

The correlation between three core biomarkers (CCR2, CX3CR1,

and SELP) and seven differential immune-related signatures (APC

co-stimulation, CD8+ T cells, checkpoint, cytolytic activity,

macrophages, MHC class I, and parainflammation) was analyzed

by Spearman. There were general positive correlations between three

biomarkers and seven immune signatures in the DN group
TABLE 1 Clinical characteristics of the patients with DN.

Parameter Overt proteinuria (n = 16) Heavy proteinuria (n = 14) P-value

Diabetes history (years) 7.00 ± 3.95 8.71 ± 6.74 0.3954

Age 47.69 ± 8.48 51.50 ± 11.69 0.3110

BMI (kg/m2) 27.08 ± 4.23 27.23 ± 3.52 0.9391

FBG (nmol/L) 8.20 ± 3.48 10.17 ± 5.61 0.2617

SBP (mmHg) 143.56 ± 22.46 152.57 ± 23.58 0.2934

DBP (mmHg) 91.44 ± 13.76 92.36 ± 17.52 0.8733

Urea nitrogen (mmol/L) 7.71 ± 2.42 9.69 ± 4.36 0.1070

24-h urinary protein 3.27 ± 4.61 6.87 ± 1.83 0.0002

HbA1c (%) 8.20 ± 1.86 9.53 ± 2.58 0.1131

Hb (g/L) 126.13 ± 20.82 103.86 ± 26.04 0.0147

Alb (g/L) 36.81 ± 6.97 28.23 ± 6.64 0.0121

Scr (mmol/L) 129.00 ± 113.20 185.86 ± 141.16 0.0393

eGFR (ml/min/1.73 m2) 66.81 ± 26.15 41.81 ± 18.62 0.0060

UA (mmol/L) 387.38 ± 95.61 406.14 ± 90.01 0.5859

TC (mmol/L) 4.71 ± 1.52 5.78 ± 1.59 0.0698

TG (mmol/L) 1.79 ± 0.55 2.70 ± 1.37 0.0198

LDL (mmol/L) 3.2 ± 1.37 3.86 ± 1.75 0.2627
fron
m, male; f, female; kg, kilogram; BMI, Body Mass Index; FBG, fasting blood glucose; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA1c, glycosylated hemoglobin; Alb, serum
albumin; Scr, serum creatinine; eGFR: estimated glomerular filtration rate; UA, uric acid; TC, total cholesterol; TG, total triglyceride; LDL, low-density lipoprotein.
Bold values represent P <0.05.
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(Figure 8), and weakened or opposite correlations among them in

controls (Figure 8). Besides, a strong positive correlation among these

three biomarkers was also observed. CCR2 was positively correlated

with CX3CR1 (cor = 0.83, p <0.0001) and SELP (cor = 0.54,

p <0.0001), and CX3CR1 had a positive correlation with SELP

(cor = 0.59, p <0.0001) (Figure 8). It was resulting that CCR2 had

a significantly positive correlation with all of these seven types of

immune signatures, especially for checkpoint (cor = 0.80, p <0.0001),

cytolytic activity (cor = 0.76, p <0.0001), macrophages (cor = 0.72,

p <0.0001), MHC class I (cor = 0.73, p <0.0001), and

parainflammation (cor = 0.81, p <0.0001) (Figure 8). CX3CR1

significantly and positively correlated with five out of these seven

types of immune signatures, such as checkpoint (cor = 0.75,

p <0.0001), cytolytic activity (cor = 0.80, p <0.0001), macrophages

(cor = 0.64, p <0.0001), MHC class I (cor = 0.71, p <0.0001), and

parainflammation (cor = 0.74, p <0.0001) (Figure 8). SELP had
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significant positive correlations with six out of these seven kinds of

immune-related cells and types, especially checkpoint (cor = 0.67,

p <0.0001), cytolytic activity (cor = 0.67, p <0.0001), MHC class I

(cor = 0.62, p <0.0001), and parainflammation (cor = 0.68, p <0.0001)

with high correlations (Figure 8).
3.7 Exploration of potential compounds to
improve diabetic tubulointerstitial injury by
CMap analysis

To research the promising drugs for treat ing the

tubulointerstitial injury in DN patients, 36 intersected genes from

two intersected pathways were uploaded to CMap, which showed

the top 20 negative correlation compounds based on median score

in Figure 9, indicating that these could be reversing the gene
A

B

FIGURE 6

Immune-related cells and types of infiltration difference in renal tubulointerstitial tissues between control and DN tissues. (A) The heatmap of the
composition of immune signatures in control and DN samples. (B) Correlation analyses among the immune signatures calculated by ssGSEA in the
DN group: red, positive correlation; blue, negative correlation. *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001.
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alterations in different cell lines (Figure 9). As shown in the

heatmap, tetrabenazine (vesicular monoamine transporter

inhibitor), dilazep (adenosine reuptake inhibitor, calcium channel

antagonist, platelet aggregation inhibitor), tomelukast (leukotriene

receptor antagonist), KIN001-220 (Aurora kinase inhibitor),

azacytidine (DNA methyltransferase inhibitor, antimetabolite,
Frontiers in Immunology 12
DNA methylase inhibitor, DNA synthesis inhibitor, RNA

synthesis inhibitor), umbelliferone (carbonic anhydrase inhibitor,

cyclooxygenase inhibitor), lysylphenylalanyl-tyrosine (heparin

activation inhibitor), memantine (glutamate receptor antagonist,

glutamate release inhibitor), phensuximide (anticonvulsant), and

BIBU-1361 (EGFR inhibitor) ranked in the top 10.
A
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C

FIGURE 7

Identifying the significantly different infiltrates of immune-related cells and types related to renal tubulointerstitial injury in DN. (A) The violin diagram
of 20 types of significant differential immune signatures analyzed by the Wilcoxon test. (B) The LASSO regression of immune signatures in control
and DN samples. (C) The Upset diagram about intersected immune cells between Wilcoxon and LASSO, which showed seven kinds of immune
signatures, such as APC co-stimulation, CD8+ T cell, checkpoint, cytolytic activity, macrophages, MHC class I, and proinflammation, were
significantly different between control and DN samples. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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FIGURE 8

Correlation between biomarkers and differential immune signatures in DN patients. (A) Spearman analysis of three core biomarkers and seven
significant differential immune signatures in the DN group. (B) Spearman analysis of three core biomarkers and seven significant differential immune
signatures in the control group. (C) The correlation among CCR2, CX3CR1, and SELP in the DN group. (D–F) Significant and strong positive
correlation between biomarkers and immune signatures. R >0.6 & P <0.05. DN, diabetic nephropathy; *P <0.05, **P< 0.01 ***p <0.001.
FIGURE 9

The promising compounds for tubulointerstitial injury in DN analyzed by CMap. The 36 intersection genes in two intersected pathways between
KEGG-DEGs and GSEA-KEGG analyses were analyzed as potential compounds by the Query tool from the Cmap online platform (https://clue.io/
query). The top 20 negative compounds were shown in the heat.
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4 Discussion

Diabetes mellitus (DM) is an endocrine and metabolic disease

that can lead to dysfunction of all organs in the body, of which DN

is a highly prevalent and serious chronic microvascular

complication in patients with diabetes. About 20%–40% of

diabetes can progress to DN (1). It is a leading contributor of DN

to kidney failure in developed countries (17, 18). Therefore, early

diagnosis and intervention in DN are particularly important. At

present, renal biopsy histopathology is still the gold standard for

diagnosing DN, but it is traumatic and limited in clinical

application. Urinary microalbumin (UmAlb) is a widely used

indicator for diagnosing DN. However, about 30%–45% of type 2

diabetes patients were observed to have reduced GFR with no

increase in UmAlb (>30 mg/g) (19). In addition, the common

comorbidities of T2DM, such as hypertension or obesity, may also

damage the glomerular filtration barrier, leading to an increase in

UmAlb, suggesting that the sensitivity and specificity of UmAlb in

diagnosing DN are insufficient. So far, it has been hard for us to

accurately predict which one with diabetes will develop DN.

Consequently, searching for novel and capable biomarkers for

diagnosing DN is of great significance for early treatment and

improving the prognosis of patients. In the development of DN,

tubulointerstitial injury plays a pivotal role, even prior to

glomerular injury. It is characterized by renal tubular atrophy and

tubulointerstitial fibrosis, which are considered the main

pathological features of renal dysfunction in patients with DN.

Tubulointerstitial injuries are more appropriate and useful in

predicting renal disease status in DN patients than glomerular or

vascular damage. Momentously, more attention should be given to

the biomarkers of renal tubule lesions, which are of great value to

the diagnosis and treatment of patients in the early stages of DN.

Growing studies showed that biomarkers based on renal tubules

can early reveal the renal structure and dysfunction of diabetes

patients and better monitor the progress of DN and judge the

prognosis, such as kidney injury molecule-1(KIM-1), b2-
microglobulin (B2M), N-acetyl-b-D-glucosaminidase (NAG),

osteopontin (OPN), etc. KIM-1, a transmembrane glycoprotein of

proximal tubular epithelial cells of the kidney, cannot be detected

when the kidney is structurally or functionally normal, but it can be

significantly upregulated with tubular damage. Therefore, KIM-1

can be used as a potential biomarker for proximal tubule injury

(20). B2M is a small subunit of major histocompatibility class I

molecules that exists in all nucleated cells. B2M is fully filtered at the

glomerulus and then almost completely reabsorbed in the proximal

tubule (20). NAG is a hydrolase widely distributed in organs. NAG,

with a molecular weight of 130,000, is not easy to filter by the

glomerulus. However, when the renal convoluted tubules are

damaged, lysozyme will release a large amount of NAG, resulting

in a significant increase in NAG in urine (21). OPN, one of the

proinflammatory cytokines, was observed to be upregulated in the

kidneys of diabetic animals and patients with nephropathy (22).

The association of these biomarkers with DN has been found in
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many studies. There were different capabilities to detect DKD. One

study showed an AUC of 0.68 for KIM-1 in diagnosing moderately

increased albuminuria (23). B2M had moderate to low AUCs of

0.58 (24), 0.652 (25), and 0.792 (26) to predict early DN in three

separate studies. According to the results of two studies, NAG

exhibited modest predictive ability for assessing renal

tubulointerstitial injury with AUCs of 0.636 (24) and 0.783 (27).

OPN exhibited qualified performance with AUCs of 0.692 (28) and

0.73 (29), and did not associate with albuminuria levels, p >0.05

(30). Recently, with the development and widespread application of

the human genome project, technologies such as transcriptomics,

proteomics, and metabolomics have emerged in succession.

Bioinformatic analysis has been a new way to identify novel genes

and early diagnosis/prognosis biomarkers for many diseases (4, 31,

32). Liu et al. (33) found that LUM, ELN, and FMOD had the

potential abilities to diagnose DN with AUCs of 0.897, 0.624, and

0.983, respectively. A negative correlation with eGFR in R of −0.658,

−0.176, and −0.628, respectively, in the GSE30528 dataset. Zhou

et al. (4) identified CAV1, COL1A2, VWF, FN1, and ITGB2 as

having an advantage in assessing DN with an AUC >0.8. Many

other studies also screened a series of biomarkers that increased

expression in DN compared to controls, and there was certain

relevance between biomarkers and clinical parameters like eGFR,

ACR, and so on (34–37). All the findings lacked experimental

validation and correlation analysis with immunity.

In this article, three DN expression profile datasets from GEO

were downloaded and merged. After removing the batch effect, 509

DEGs were obtained with a cut-off standard at |log2FC| >0.5 and

adjusted P <0.05. According to the results of functional analysis,

both GO and KEGG analysis were tied to the immune system, such

as “leukocyte cell–cell adhesion,” “T-cell activation,” “MHC protein

complex,” “MHC class II protein complex,” “integrin binding,”

“chemokine receptor binding,” “rheumatoid arthritis,” “chemokine

signaling pathway,” “antigen processing and presentation,” and so

on, suggesting a high correlation between the development of renal

tubular injury in DN and the infiltration differential of immune

cells. Following this, a GSEA algorithm using an KEGG-annotated

gene set based on 37 controls and 45 DN sample expression profiles

was performed to further identify the key pathways. After

comparing with KEGG-DEGs, the two crossed pathways, namely

“chemokine signaling pathway” and “cell adhesion molecules,” were

determined, including 36 intersected genes with an obvious positive

correlation. Finally, based on PPI network analysis and strict

screening using two independent methods, LASSO regression and

ROC, three core genes, CCR2, CX3CR1, and SELP, were identified

as biomarkers with efficient diagnostic capability for DN, which also

included the above 36 intersected genes from the two crossed

pathways. No matter the training data or validated data, there

were high AUC, sensitivity, and specificity in the diagnosis of DN in

both the three independent factors and their combination.

Amazingly and surprisingly, it merits our attention that the AUC

of the combination of CCR2, CX3CR1, and SELP could reach

sensitivity = 100%, and specificity = 100.00% in both merged
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training datasets, GSE30529–GSE99325–GSE104954, two

independent validated datasets, GSE175759 and GSE47184, and

IHC detection of biopsy tissues.

CCR2, namely C–C motif chemokine receptor 2, located on

chromosome 3, is a member of the G protein-coupled receptor

(GPCR) superfamily and a receptor of monocyte chemoattractant

proteins (MCP) 1–4, which are chemical inducers of

proinflammatory response (38). CCR2 exists on the surface of a

variety of immune cells and can guide immune cells to reach

inflammatory and tumor sites. By connecting with ligands,

including MCP-1, CCR2 recruits the movement and activation of

inflammatory cells. As is well known, MCP-1, the main ligand of

CCR2 and named CCL2, has emerged as a very vital regulator of

DN and has an increasing expression in the renal tissues of diabetic

animals (39). There was strong evidence that MCP-1 is significantly

upregulated and positively correlated with the degree of

tubulointerstitial injury in patients with DN, suggesting that

MCP-1 may be involved in the development process of DN and

could be a potential diagnostic marker (40–42). As the major

receptor of MCP-1, CCR2-expressing macrophages promote renal

injury and fibrosis in DN (43). Furthermore, the knockout of CCR2

could reduce the incidence of glomerulosclerosis and secondary

tubulointerstitial damage (43). In diabetic db/db mice, inhibiting

CCR2 using a small-molecule antagonist can alleviate proteinuria,

glomerulosclerosis, and kidney failure (44). Prominently, blocking

the CCL2/CCR2 pathway in diabetics and targeting CCR2 have

been potential therapeutic interventions and hot topics to limit

progressive renal injury. Awad et al. (45) showed that both

pharmacological blockade and genetic deficiency of CCR2 could

alleviate renal tissue injury in diabetic mice by reducing

albuminuria, blood urea nitrogen (BUN), plasma creatinine,

histological changes, kidney fibronectin expression, macrophage

recruitment, and inflammatory cytokine production in Ins2Akita

and STZ-induced diabetic kidney disease. Du et al. (46) found that

DN kidney damage could be mitigated by inhibiting macrophage

infiltration and downregulating the MCP-1/CCR2 signaling

pathway in DN. In addition, two kinds of CCR2 antagonism,

rs504393 and ro5234444, could block the development of DN by

decreasing macrophage infiltration of the kidney in type 2 diabetes

mice (44, 47). A multicenter, randomized trial conducted by de

Zeeuw’s team showed that compared to 111 DN patients treated by

placebo, 221 patients with DN had a secondary decline in

albuminuria given CCX140-B, a selective inhibitor of CCR2,

based on standard care with angiotensin-converting enzyme

(ACE) inhibitors or angiotensin receptor blockers (ARBs) (48). In

our article, CCR2 was upregulated in renal tubular tissues of DN

than controls and has a high effective diagnostic ability for DN

(AUC = 0.859, sensitivity = 77.78%, specificity = 94.59% in a

merged dataset; AUC = 0.939, sensitivity = 100.00%, specificity =

90.91%; and AUC = 0.931, sensitivity = 88.89%, specificity =

100.00% in two validation datasets, respectively, GSE175759 and

GSE47184; AUC = 0.958, sensitivity = 92.5%, specificity = 96.7% in

IHC validation).

CX3CR1, C-X3-C motif chemokine receptor 1, is a specific

membrane-bound receptor of fractalkine (CX3CL1) and belongs to

the chemokine receptor superfamily. Currently, CX3CR1 is
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expressed on the membranes of natural killer cells (NK cells),

tubular cells, mast cells, platelets, dendritic cells (DCs), effector T

cells, renal cancer cells, vascular smooth cells, mesenchymal cells,

and monocytes/macrophages (49, 50). Resembling CCR2, it has

seven transmembrane G-protein coupled domains, and it is close to

the CCR gene family; it is located at 3p21-3pter (51). Both CX3CR1

and its exclusive ligand, CX3CL1, were upregulated in the kidney in

the DN group (50, 52, 53). Accompanying CX3CL1, which is

mainly located in the renal tubular epithelium, especially in

inflammatory kidney tissues, CX3CR1+ T cells and monocytes

are ubiquitously expressed in renal tissues with inflammation in

patients (54, 55). Kikuchi et al. (56) tested that CX3CR1 mRNA

expression was increased in STZ-diabetic rats at 4 weeks, and the

distribution of CX3CR1-positive cells in diabetic glomeruli was also

raised at 8 weeks. Moreover, the upregulation of fractalkine and

CX3CR1 in the early stages of DN suggested that they may play a

crucial role in the progression of DN (56). Furthermore, Song and

his colleague showed that there were no obvious changes in plasma

glucose level in diabetic CX3CR1−/− mice, while the decline in

markers of renal inflammation fibrosis and ECM, such as collagen,

fractional mesangial area, and fibronectin, was markedly observed

compared with diabetic WT mice (57). Proverbially, the CX3CL1/

CX3CR1 axis is significantly related to anti-inflammatory, anti-

fibrosis, anti-rejection, and anti-cancer activities in the treatment of

renal diseases. Once activation of the CX3CL1/CX3CR1 axis by

their combination occurs, a cascade through multiple signaling

pathways in the kidney system is initiated, including ROS/MAPKs,

Raf/MEK1/2-ERK1/2-AKT/PI3K, and NF-kB. The CX3CL1/

CX3CR1 axis directly upregulates the expansion of mesangial

cells in diabetes nephropathy through ROS and MAPK (58). So

far, no study has focused on the biomarker CX3CR1 in DN. In this

study, the results reveal that CX3CR1 expression may be a

promising and valuable diagnostic efficiency hallmark in kidney

tissues of DN patients with high diagnostic efficacy at AUC = 0.921,

sensitivity = 82.22%, specificity = 97.30% in a merged dataset, AUC

= 0.939, sensitivity = 100.00%, specificity = 90.91%, and AUC =

0.917, sensitivity = 83.33%, specificity = 100.00% in two validation

datasets, respectively, GSE175759 and GSE47184, and AUC

= 0.993, sensit ivity = 97.5%, specificity = 100.0% in

experimental validation.

SELP, also named CD62 or P-selectin, is a kind of glycoprotein

and the largest of the selectins with 140 kDa, stored in the a-
granules of platelets and in the Weibel–Palade bodies of endothelial

cells, and functions on leukocyte recruitment, leukocyte rolling, and

platelet adhesion (59). Functionally, as part of the role of cell

adhesion, P-selectin could promptly move to the plasma

membrane, interacting with its ligands during inflammation (60).

Structurally, P-selectin is composed of an extracellular region with

an N-terminal lectin domain, an epidermal growth factor motif

(EGF), and specifically nine regulatory protein repeats (SCRs), a

transmembrane section, and a short intracytoplasmic tail (60, 61).

The relationship between P-selectin and DN has been reported by

some scholars. A study reported that P-selectin in biopsy kidney

tissue of patients with DN was higher than in other glomerular

diseases (62). Wang et al. (63) found that the expression level of

plasma P-selectin in patients with type 2 diabetes was raised, and
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with DN development, accompanied by the progressive elevation of

plasma p-selectin, the highest expression levels existed in patients

with significant renal insufficiency, suggesting a positive correlation

between P-selectin and the severity of DN. Bavbek’s team also

found higher plasma levels of P-selectin in DM patients compared

with controls and in DM patients with proteinuria than without

proteinuria (64). Another study reported that P-selectin expression

in DN may be induced by NF-kB activation through P50 to

participate in the pathogenesis of DN (65). Like the above studies,

our research also found a higher expression of SELP in DN than in

the control, and the diagnostic value of SELP was assessed by ROC,

which showed high AUC, sensitivity, and specificity both in the

training dataset, two validated datasets, and biopsy tissue validation.

Proverbially, inflammatory processes with immune modulation

are dramatically involved in both the development and progression

of structural deterioration in DN. There is undoubtedly evidence

that inflammatory cell recruitment, infiltration, and activation play

a crucial role in the development and progression of DN. Once

released by scathed kidney cells, the inflammatory remodeling

progress would be triggered, and the DN progression would be

mediated by those lesion or danger signals by initiating immune

cells. Growing evidence was reported that pro-inflammatory

chemokines, cytokines, growth factors, adhesion molecules,

nuclear factors, as well as immune cells, play a major role in the

pathogenesis of DN and its complications. Infiltration of immune

cells, including lymphocyte cells, macrophages, monocyte cells, and

mast cells, into the kidney has been reported. A large amount of

evidence supports that the inflammatory components of the

tubulointerstitium, especially the proximal tubular epithelial cells,

play a central role in the pathogenesis of DN (66, 67).

Generally, the present results highly confirm those previous

studies. In this study, kidney tissues in DN had a broader and higher

infiltration of immune-related cells and types in comparison with

control tissues. Interestingly, it showed general positive correlations

among these immune signatures, especially for type I IFN response,

MHC class I, cytolytic activity, type II IFN response, pDCs, T-cell

co-stimulation, HLA, inflammation-promoting, parainflammation,

TIL, CCR, and checkpoint, among which highly positive

correlations existed. Moreover, 20 kinds of 29 immune signatures

had significant differential distributions based on the Wilcoxon rest.

More accurately, consequently, based on the intersection of

Wilcoxon test and LASSO regression, seven immune-related cells

and types, namely APC co-stimulation, CD8+ T cells, checkpoint,

cytolytic activity, macrophages, MHC class I, and parainflammation

in the DN group, exhibited a marked infiltration advantage.

Noteworthily, the upregulated infiltration of macrophages in

DN had been found from both animal models and kidney biopsy

specimens of DN patients. It was reported that macrophage

accumulation had been found in both glomeruli and interstitium

(68–70). The quantity of macrophages in the interstitium is in direct

proportion to the proteinuria level in the STZ model of type I

diabetes (69). Once recruited to the kidney, macrophages have been

proposed to mediate renal injury through a variety of mechanisms,

including the production of reactive oxygen species (ROS),
Frontiers in Immunology 16
cytokines, and proteases, which lead to tissue damage and

ultimately to fibrosis (71). Gradually, studies have shown that the

expression of ICAM-1 and MCP-1 in renal tubular cells was

elevated due to high blood glucose levels and stimulation of

advanced glycation end products, and then infiltration of

macrophages followed. Infiltrating macrophages mediate renal

injury by releasing lysosomal enzymes, nitric oxide, ROS,

transforming growth factor, vascular endothelial growth factor,

and cytokines (72, 73). Moreover, the accumulation of

macrophages in DN indicates the decline of renal function,

followed by inflammation progression in DN induced by the

macrophage-derived products. As a result, there was a close

connection between macrophage accumulation and the

development of renal lesions and the decline of renal function

(70, 74). Besides, a growing number of studies have reported that

targeting CCR2, one of three selected biomarkers in our study,

could relieve macrophage infiltration and ameliorate inflammation

to inhibit DN progression (44–47). It is consistent with our results

that CCR2 was significantly positive in macrophages in DN. As for

T cells, recent studies have suggested a momentous role for T-cell

recruitment into kidney tissue, accompanied by the recruitment of

macrophages, in diabetic nephropathy (75). Higher accumulations

of CD4+ and CD8+ T cells had been detected in the glomeruli of

diabetic NOD mice than controls (76). Moon (77) reported an

observed increase in CD4+, CD8+, and CD20+ cells in renal

interstitial tissues of Type II diabetic patients and close links

between CD4+ and CD20+ cells and proteinuria, indicating the

underlying immunopathological correlations in DN with disorderly

infiltration and the activation of T cells in renal interstitial tissues.

Another study found higher infiltration of CD4+T cells, CD8 T

cells, and macrophages in the kidney tissues of STZ-induced

diabetic rats and significantly higher expression of CD4, CD8,

MHC classes I and II, and the proinflammatory cytokines tumor

necrosis factor-a, interferon-g, and nitric oxide (NO) in diabetic

kidneys in comparison with control (69). Notably, CD8+ T cells, the

subcategory of leukocytes, have a strong pro-inflammatory effect

and are involved in mediating immunity by direct cell–cell signaling

via surface molecules and indirect signaling via cytokines in kidney

damage. It is markedly elevated in DN (69, 76–78) and has

gradually become a potential therapeutic target of DN (78, 79).

Zhang et al. (62) exhibited the therapeutic value of mesenchymal

stem cells by suppressing CD8+ T-cell proliferation and activation

mediated by CD103+ DCs in DN rats. Seo (79) and his colleagues

reported that Mycophenolate Mofetil can alleviate diabetic

nephropathy in db/db mice, followed by decreased albuminuria,

attenuated mesangial expansion, and profibrotic mRNA

expressions through downregulating the infiltrated CD4+ and

CD8+ T cells. Besides, as cytotoxic T lymphocytes, CD8+ T cells

might be responsible for the kidney damage in DN. After the

secretion of cytokines, CD8+T cells can be recruited to the

inflammatory location by interacting with MHC class I antigen,

which is commonly expressed on all nucleated cells (69, 80). It can

be a logical explanation for our study that CD8+ T cells and MHC

class I antigen were coincidentally elevated in the DN group.
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Moreover, dendritic cells, HLA, neutrophils, Th1 cells, Th2 cells,

and so on, were demonstrated to play a crucial role in the

development and process of DN (11, 76, 81–84). In view of this,

our research is consistent with previous reports and highlights the

importance of those immune-related cells and types in the

pathogenesis of DN through bioinformatic analysis.

Given the pivotal role of immune infiltrating cells and

biomarkers in DN, the relationships between three biomarkers

and seven significant immune signatures were analyzed further by

the Spearman algorithm. Meaningfully, three biomarkers are highly

and positively correlated with these immune-related cells and types,

which is highly consistent with the crucial role of pro-inflammatory

factors and immune-related cells and types in kidney damage in

patients with DN. Collectively, all of these findings provide logical

ideas about how the immune system modulates in DN. This may

lead to the discovery of earlier and more reliable biomarkers and,

hopefully, the identification of new therapeutic targets in diabetic

kidney disease.

Besides, impossible therapeutic compounds were also explored

using CMap, an online tool analyzing underlying drugs based on the

36 intersection genes in two intersected pathways between KEGG-

DEGs and GSEA-KEGG analysis in this article. The CMap database

(https://clue.io/) is a gene expression database built by researchers

from Harvard, Cambridge University, and the Massachusetts

Institute of Technology. It is a biological application database

related to distractors, gene expression, and diseases that was

established based on gene expression differences using different

distractors (including small molecules) to deal with human cells

(4). According to the correlation between genes, diseases, and drugs

established by gene expression profiles, it is helpful for researchers to

quickly use gene expression profile data to compare drugs highly

related to diseases, infer the main structure of most drug molecules,

and summarize the possible mechanism of action of drug molecules

in the field of drug research and development. In this research,

tetrabenazine, dilazep, tomelukast, KIN001-220, azacytidine,

umbell i ferone, lysylphenylalanyl-tyrosine, memantine,

phensuximide, and BIBU-1361 were the top 10 compounds with

negative correlations, which may reverse the alterations. Specifically,

dilazep, as an antiplatelet drug, is a kind of adenosine reuptake

inhibitor, calcium channel antagonist, and platelet aggregation

inhibitor. It has a vasodilator effect, and it can selectively expand

the coronary arteries and increase coronary blood flow. It has been

reported that dilazep could improve kidney function. Nakazawa et al.

(85) reported that dilazep dihydrochloride could significantly

suppress glomerulosclerosis and glomerular adhesion to Bowman’s

capsules in rats with Masugi nephritis. Dilazep dihydrochloride was

also found to improve proteinuria in patients with DN (86–88),

which suggested that platelet activation played a pivotal role in the

development and process of DN (89). Another study reported that

dilazep may be useful in preventing renal deterioration in the early

stages of type II DN (90). In a multicenter study that was researched

the clinical efficacy of dilazep dihydrochloride in the

microalbuminuria stage of DN, 37 DN patients with

microalbuminuria were given orally 300 mg/day of dilazep

dihydrochloride. Compared with before, the mean albuminuria was

noticeably lower, and the urinary NAG activity improved after
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treatment with the drug. Meanwhile, no renal function damage was

found at this stage. It appears that early administration of dilazep

dihydrochloride may contribute to improving proteinuria and

preventing renal dysfunction in patients with DN (86). In Ebihara’s

study, 22 patients with IgA nephropathy and 20 healthy controls were

recruited, and among them, 14 patients in stage II or III were treated

with dilazep dihydrochloride. In the study, the P-selectin expression

level in plasma and urine in patients with IgA nephropathy was

detected, and the relationship between the patients’ histology and

urinary protein excretion was analyzed. Therefore, plasma P-selectin

is a helpful biomarker for the activity of IgA nephropathy, and dilazep

dihydrochloride is an efficacious drug for reducing plasma soluble P-

selectin levels in patients with IgA nephropathy (91). Interestingly

and coincidentally, P-selectin, also named SELP, as a marker

representing disease activity, cellular activation, and inflammatory

mediators, is one of three selected biomarkers related to DN in our

study. Dilazep is a potential therapeutic agent for the treatment of DN

patients, as analyzed by CMap in our study. The high similarity with

Ebihara’s study confirms the reliability and accuracy of the results,

which suggest that P-selectin is a very promising biomarker for DN

and that dilazep is a prospective drug to improve renal function in

DN with the decline of p-selectin.
5 Conclusion

Conclusively, the present article identified three core and

prospective biomarke<rs implicated in diabetic tubulointerstitial

lesions, which had close links with immune cells and types and

would be a future underlying target for the diagnosis and

immunotherapy of DN. Besides, dilazep, a small molecular agent,

was found to be promising therapeutic drug in diabetic renal

disease. However, the present study also had some limitations. As

biomarkers, plasma levels detection in clinic and deeper basic

mechanism studies in vitro and in vivo are needed to validate the

feasibility of transformation applied to diabetic tubule lesions. Most

importantly, the analysis of the relationship between immune cell

infiltration and diabetes tubulointerstitial injury provides a novel

potential approach and strategy for immunotherapy to improve

diabetic tubulointerstitial injury in DN patients.
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