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A multiscale mechanistic model
of human dendritic cells for in-
silico investigation of immune
responses and novel
therapeutics discovery

Sara Sadat Aghamiri , Bhanwar Lal Puniya, Rada Amin*

and Tomáš Helikar*

Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the

unique ability to mediate inflammatory responses of the immune system. Given

the critical role of DCs in shaping immunity, they present an attractive avenue as

a therapeutic target to program the immune system and reverse immune disease

disorders. To ensure appropriate immune response, DCs utilize intricate and

complex molecular and cellular interactions that converge into a seamless

phenotype. Computational models open novel frontiers in research by

integrating large-scale interaction to interrogate the influence of complex

biological behavior across scales. The ability to model large biological

networks will likely pave the way to understanding any complex system in

more approachable ways. We developed a logical and predictive model of DC

function that integrates the heterogeneity of DCs population, APC function, and

cell-cell interaction, spanning molecular to population levels. Our logical model

consists of 281 components that connect environmental stimuli with various

layers of the cell compartments, including the plasma membrane, cytoplasm,

and nucleus to represent the dynamic processes within and outside the DC, such

as signaling pathways and cell-cell interactions. We also provided three sample

use cases to apply themodel in the context of studying cell dynamics and disease

environments. First, we characterized the DC response to Sars-CoV-2 and

influenza co-infection by in-silico experiments and analyzed the activity level

of 107 molecules that play a role in this co-infection. The second example

presents simulations to predict the crosstalk between DCs and T cells in a cancer

microenvironment. Finally, for the third example, we used the Kyoto

Encyclopedia of Genes and Genomes enrichment analysis against the model’s

components to identify 45 diseases and 24 molecular pathways that the DC
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model can address. This study presents a resource to decode the complex

dynamics underlying DC-derived APC communication and provides a platform

for researchers to perform in-silico experiments on human DC for vaccine

design, drug discovery, and immunotherapies.
KEYWORDS

systems immunology, predictive modeling, In-Silico experiments, antigen-presenting
cell, dendritic cell, immunology highlights
Highlights
• The predictive model of the human Dendritic Cell (DC)

bridges the gap between experimental data and the in-silico

simulations.

• Constructing the first large-scale logical model of Dendritic

Cell

• Applications of the DC model in human immunology
Introduction

Dendritic cells (DCs) comprise a diverse set of antigen-

presenting cells that are responsible for the recognition of foreign

and self-antigens and the subsequent regulation and initiation of

specialized adaptive and innate immune responses (1, 2). Via

pattern recognition receptors, DCs can sense a wide range of

epitopes expressed by pathogens and damaged cells (3). The

sophisticated ontogeny of DCs enables them to maintain

tolerance in the presence of foreign and self-antigens or to initiate

an inflammatory response (4–6). Striking the right balance to

antigen response puts DCs in a critical pathway for disease

management (7, 8). An insufficient immune response to an

antigen can suppress downstream cell differentiation leading to an

increased risk of infection and malignancy (9, 10). An over-reactive

or chronic immune response, however, can lead to auto-immune

diseases, allergies, and chronic inflammation (11, 12).

DCs mediate adaptive responses through cel l-cel l

interactions (e.g. , antigen presentation via the major

histocompatibility complex (MHC) classes), the increase of co-

stimulatory immune checkpoint ligands/receptors, and through

the secretion of pro-and anti-inflammatory interleukins, growth

factors, and chemokines (13, 14). Antigen recognition triggers a

cascade of signaling pathways that switch the DC cellular state

from tolerant (immature) to inflammatory (mature) (15, 16).

DCs compr i s e th r e e ma j o r sub t ype s w i th d i s t i n c t

immunogenicity and plasticity: conventional DCs (cDC1 and

cDC2), plasmacytoid DCs (pDCs), and monocyte-derived DCs

(MoDCs). As mature DCs, they can prime effectors and

suppressors cells (e.g., lymphocyte T and B cells) to stimulate a

wide range of immune responses (17, 18).
02
The significance of DCs in identifying and initiating an adaptive

response to foreign and self-antigens has stimulated interest in

isolating DCs as a potential therapeutic tool to program specific

immune responses to pathogens and malignant cells (19–21). For

example, in 2010, a DC-based vaccine was approved for the

prevention of prostate cancer (22). DC-based vaccine

development for other diseases has not been as successful;

achieving full maturation of DCs and a limited ability for DCs to

activate T cells are some of the challenges that have been

encountered (23). Improved methods for characterizing and

perturbing the complex mechanisms underlying DC maturation

in the context of the broader immune system may help translate

biological knowledge to clinical applications. Computational

models, for example, have been gaining traction as a means to

study the dynamics of immune responses in the context of

homeostasis and diseased states (24–26) by utilizing a variety

of mathematical frameworks (27–29) to represent multiple levels

of biological regulation (e.g., genome-scale metabolic network

regulation, signal transduction, cell-to-cell communication, etc.).

Despite previous modeling efforts of immune-related biological

diseases, a large-scale model of major DC functions and its

communication with other immune cells is still lacking.

Multiscale models have the potential to uncover the underlying

mechanisms behind emergent behaviors at various scales such as

intracellular, cellular, and systemic levels. Such models can consider

various temporal and organizational scales including signal

transduction, gene regulation, metabolism, cellular behaviors, and

cytokine transport (25). Different multiscale models have been

developed to study the dynamic response of DC under different

extracellular environments. For example, Klinke II DJ. developed a

multiscale model to investigate the impact of the lung

microenvironment on the education of DC for optimal T cell

polarization. The model considered DC trafficking and education

in the lung while taking into consideration the time, maturation,

spatial distribution and IL12 response (30). Mei Y. and colleagues

created a multiscale platform, the ENteric Immune Simulator

(ENISI), to study the mucosal immune response during colonic

inflammation. The multiscale tool has the advantage of connecting

three different scales - intracellular, cellular, and tissular - using

different mathematical languages (31). Lai et al. developed a

multiscale model of DC-based vaccine by considering the

signaling pathways underlying DC maturation, the bio-

distribution of DCs in multiple organs, and the DC-T-cell
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response to identify optimal targets for enhancing anti-cancer DC

vaccination in the context of melanoma (28). Although those

multiscale models included a tissue scale to study the dynamic

distribution of DC in different organs, so far, these models have only

focused on DC functionality under specific disease conditions or

specific signaling pathways. However, DC functions involve

complex intracellular and cellular networks that are critical for

regulating cell activation and initiating immune responses.

Logical modeling formalism has emerged as a particularly

effective approach to modeling large-scale biological systems due

to scalability and independence of kinetic parameters that are

largely unknown (32–35). Logical models of different scales and

complexity (a few to hundreds of components) have been applied to

study various biological and translational questions (36), such as

studying cellular crosstalk (37) and predicting cellular phenotypes

(24, 38) and drug targets (39).

Here, we present a multiscale mechanistic model of human DCs

that captures the complex interplay of intracellular molecular

signaling to intercellular cell-cell communications. DC model

enables researchers to easily modify, expand and test new

hypotheses of the immune system. Our aim is to provide the

researchers with computational tools to gain insight into DC

mechanisms and disease pathology. The mechanistic model uses

the logical mathematical framework (40) and focuses on signal

transduction networks responsible for regulating DCs’ antigen-

presenting cellular function, cellular interactions, maturation

process, and immune cell population dynamics. It captures the

dynamic biological events in response to diverse stimuli (pathogens,

malignancy) and the downstream biological coordination between

surface molecules (receptors, integrins, lectins), signal transduction

(kinases, enzymes, transcription factors), and secretory factors

(cytokines, chemokines). Two diseases are highlighted to

demonstrate the utility of the model under diverse conditions.

Lastly, receptor-ligand interactions between DCs and four

immune cell types that DCs commonly interact with (T cells, B

cells, natural killer (NK) cells, and neutrophils) have also been

represented. The results of in-silico simulations of the model under

various environmental conditions and network perturbations were

validated using peer-reviewed published literature.
Methods

Model construction

The computational model is a mechanistic, logic-based model.

Each component of the model can assume an active (1) or inactive

(0) state at any time t. The activity state of the model’s internal

components is determined by the regulatory mechanisms of other

directly interacting components. These regulatory mechanisms are

described with Boolean functions comprised of AND, OR, NOT

operators (40).

To gain a comprehensive understanding of the molecular

pathways involved in dendritic cells and antigen-presenting cells, we

conducted a systematic search of the literature using PubMed. Our

search was specifically focused on exploring the molecular pathways
Frontiers in Immunology 03
involved in each DC subtype: pDC, cDC1, cDC2, andMoDC. To limit

the search results, we utilized a combination of search terms,

including: “dendritic cells AND antigen-presenting cell AND MoDC

AND molecular pathway,” “dendritic cells AND antigen-presenting

cell AND pDC AND molecular pathway,” “dendritic cells AND

antigen-presenting cell AND cDC1 AND molecular pathway,” and

“dendritic cells AND antigen-presenting cell AND cDC2 AND

molecular pathway.” This comprehensive search allowed us to

obtain a wealth of information related to the molecular pathways

involved in each DC subtype, providing a foundation for our

investigation into the function and activation of these important

immune cells. In the development of our model, we followed strict

data inclusion criteria, limiting our selection to original research

articles focused on healthy human subjects. Studies using mice and

clinical trials were excluded from our manual literature mining

process. The first draft of the model was constructed using the

information obtained from the manual literature mining of the

original studies. Upon reviewing the initial draft, we conducted a

supplementary search of the literature utilizing both review and

original studies to obtain well-established biological information

related to regulators of the unconnected components. This thorough

and systematic approach allowed us to develop a comprehensive

model using 92 publications (83 original and 9 reviews) that

represents the molecular pathways involved in dendritic cells. We

defined subtype-specific markers to differentiate between pDC, cDC1,

cDC2, MoDC (Results and Supplemental Figure S1A).

To validate the model, we collected literature reporting specific

DC response to different extracellular conditions and simulated

emergent behaviors that were not directly programmed into the

model (41). Because logical models are of qualitative nature, model

validations focus on the ability of the model to reproduce qualitative

behaviors seen in wet-lab experiments (e.g., change in activity level

of a component(s) under specific extracellular conditions) - a

standard process for logical models (24, 41–43).

From the publications, we retrieved information related to DC-

specific stimuli, the effect of the studied environment, and

comprehensive signaling pathways (receptors, kinases, transcription

factors). The model consists of 281 components. These components

are categorized into various classifications and compartments. There

are 178 proteins, 87 RNAs, and 16 components representing

phenotypes and cells. The proteins are organized in cell membrane

(64 components), cytoplasm (40 components), nucleus (22

components), extracellular space (52 components). Figure 1

Created with BioRender.com.

To standardize the naming convention of the components in the

model, we used protein and gene names from the HUGO Gene

Nomenclature Committee (HGNC) (44). The model was built in the

web-based modeling and analysis platform, Cell Collective, and

manually curated using the aforementioned literature (45). All

components used to build the regulatory mechanisms have been

annotated in Cell Collective with the exact quote from the reference

literature. The model is publicly available in Cell Collective (under

Published Models) where it can be simulated as well as downloaded

(and other logical models published by the community) in several file

formats (such as SBML-qual, text file of logical functions, and truth

tables) (46, 47).
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Model simulations and analyses

Cell Collective was used to perform all computational

simulations and analyses of the model. Cell Collective uses

discrete mathematics to construct the model, but the simulated

output values are semi-continuous, ranging from 0 to 100% activity

levels (48, 49). The activity levels of external components are

unitless and defined as a percent chance (probability * 100) of the

component being active in a specific time t (24). Depending on the

desired experiment, the activity levels of external components can

be set by the user to specific values, or they can be set to ranges from

which values during each simulation are selected randomly (e.g., to

simulate dose-response experiments).

We used Cell Collective for two types of analyses: real-time and

dose-response using asynchronous updates such that all genes take

different times to make a transition, which is closer to biological

phenomena (50). The initial condition of the model was set to

immature cellular phenotype as 1 (active) and all other components

were set to zero since DCs are considered immature under the

resting condition and before stimuli activation (51). The immature

DCs are recruited to the inflamed site by pathogen signals, capture

foreign antigens and undergo maturation to DC subtypes (52).

While simulating the model in Cell Collective, the user can define

the activity levels of external components to a specific point or

provide ranges (e.g., varying between 0% to 100%). When a range is

defined for external components, their activity levels are selected

randomly in each simulation. In the real-time simulation, we

showed the activity of components at different times (steps),

which was presented using the mean activity level of multiple

simulations. For dose-response analysis, we conducted each

simulation consisting of 800 steps. The activity levels output

components are fractions of ones over the last 300 iterations (500

to 800 steps) that describe the model’s steady behavior as described

by (48, 49). Under each environment set for a biological scenario,

we used 1,000 simulations.
Global sensitivity analysis

We used sensitivity analysis in Cell Collective to determine

the association between external components (e.g., in-vitro

inducers) and internal components (such as TLRs, cells,

cytokines, and phenotypes). We used probabilistic global

sensitivity analysis based on standardized regression coefficient

(SRC) using the “sensitivity” package in R (24, 53) on input and

output data of Cell Collective. In a single-input setting, we used

SRC, which measures the strength of association between

dependent and independent variables (53). We performed Cell

Collective simulations under input activity levels ranging from 0

to 100%. The activity levels of inputs and outputs were

independent and dependent variables in the statistical model.

A higher SRC value represents a higher strength of association

between input and output variables. We used SRC and k-means

clustering algorithms (900 samples, specified three clusters for

low, medium, and high activity levels) methods to visualize the

simulation results.
Frontiers in Immunology 04
Kyoto Encyclopedia of Genes and
Genomes pathways analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway (54) enrichment analysis was conducted using the

DAVID Bioinformatics Resources (2021 Update) (55) to explore

the model components at the functional level. DAVID is a gene

functional classification tool in which we used a p-value <0.05 with

a false discovery rate (< 5%) as the cutoff criterion for KEGG

pathway enrichment. We used the ggplot2 R package to visualize

the fold enrichment and P-values of the top 20 enriched

KEGG pathways.
Results

A large-scale multicellular, mechanistic
model of signal transduction regulation of
dendritic cell immune responses

We constructed a mechanistic multiscale model of signal

transduction networks governing the proper function of human

DCs, spanning biological scales from molecular to cell-to-cell

communication. The model comprises 281 components and 702

interactions between these components that regulate the DC

responses. The multiscale nature of our model is based on the

intercellular and intracellular communication dynamics between

DCs and four other immune cell types, serving as a bridge between

innate and adaptive immunity (56).

To facilitate the model’s utility, its architecture across various

biological scales is first depicted in a biological illustration of the

pathways, communication molecules, cell markers, and receptors

involved in regulating DCs from immature cells to mature

phenotypes (Figure 1).

Further, the model’s architecture is depicted in Figure 2. Herein,

the organization follows communication from the DC ’s

extracellular space to the plasma membrane (ligand-receptors,

markers), to the cytoplasm (kinases and signaling cascades), to

the nucleus (transcription factors and gene regulations) and to the

secretory compartments that communicate with various DC

phenotypes and other immune cell types that interact with DCs
FIGURE 1

Schematic representation summarizing the main components of the
model and the connection between each biological layer of the system.
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(Figure 2; Table S1). The model is freely available in the Cell

Collective modeling software and repository (45, 57) (DC model

Link and workflow to Cell Collective environment in Supplemental

Figure S2). Each component and interaction of the model have been

fully annotated to facilitate data transparency and reusability. In

Cell Collective, the community can also directly simulate and

analyze the model, further improve it, or download it as an SBML

file (46).

The model includes main signaling pathways, immune

checkpoints, cytokines, and DC response mechanisms, and is able

to represent the DC antigen presentation and maturation functions.

The intra-cellular scale includes receptors that can sense the cellular

environment and the downstream pathways that regulate DC

responses that result in different cellular phenotypes. A diverse

group of pattern recognition receptors (PRRs) is included in the

model, including toll-like receptors (TLRs; TLR1, 2, 3, 4, 7, 8, and

9), C-type lectin receptors (CLRs; CLEC4C, CLEC7A, CLEC9A,

CLEC10A, CD209), nucleotide-binding domain/leucine-rich

repeat-containing receptors (NLRs; NOD2). The model also

contains regulatory proteins (NF-kB, PYCARD, NLRP3, SYK,

LILRA4, ISG20, ADAR, BST2, DDIT3, ATF4, PPP1R15A),

maturation molecules (CD80, CD83, CD86, CD40, HLA-DR),

and cytokines (IL6, TNF, IL12, IFNA1, IL12A, IL1B, IL12B,

IL23A, IL10, IFNB1) (58).

In our study, we differentiated between various DC subtypes

using a combination of subtype-specific markers. For pDCs, we

employed CLEC4C (C-type lectin domain family 4 member C), and

NRP1 (neuropilin 1) (59–61). For cDC1, we utilized CLEC9A

(Dendritic cell C-type lectin receptor 9A), XCR1 (XC chemokine

receptor 1), and THBD (thrombomodulin) (59, 60, 62–64). cDC2

was characterized using CLEC10A (C-type lectin domain

containing 10A), and CD163 (CD163 molecule) (59, 60, 65). For

MoDCs, we applied MRC1 (mannose receptor C-type 1), and

CD1A (CD1a molecule) (59, 60, 66).
Frontiers in Immunology 05
The intracellular molecular cascades stimulate interaction with

other immune cells, including effector and exhausted T cells, B cells,

NK cells, and neutrophils. For example, DCs capture and display

antigen protein fragments on their plasma membrane through the

antigen presentation process (67) then antigenic peptides are bound

to appropriate molecules of the MHC, also known in humans as the

human leukocyte antigen (HLA). T cells can recognize the antigens

at the T cell-APC interface. DCs’ highly stimulatory and versatile

APC function produces cytokines, interferons (IFNB), and tumor

necrosis factor superfamily (TNF) to stimulate naive T cells to

differentiate into effector subsets (68). As such, cytokines (IL1, IL6,

IL10, IL12, IL23) and IFNB are also included in the model. DCs

increase the expression of the MHC, the adhesion molecules, and

the co-stimulators upon maturation, further stimulating T-cell

proliferation and cytokine release (69). DC immune checkpoints

are also included in the model (ICOS-LG, TNFSF9, TNFSF4, CD70,

PVR, Nectin-2, BTLA, and PD-L1); the checkpoints regulate

stimulatory and inhibitory pathways capable of maintaining self-

tolerance and facilitating the immune response (70).
In-silico model validation

To validate the mechanistic model of DC functions, we collected

experimental data from 30 different studies (Supplemental Data,

Table S2, Figure S1) and reproduced them via in-silico experiments.

Below we describe four in-silico experiments that showcase how the

model was used to validate well-known (extensively published) in-

vitro experiments spanning intracellular communication dynamics,

intercellular communication dynamics, and both inter and

intracellular communication dynamics.

The first experiment assessed the model’s ability to reproduce the

behavior of TLRs. Namely, Grandclaudon (26) studied a range of DC

molecular states expressing various patterns of communication

signals. The authors present that DCs were treated for 24 hours

with lipopolysaccharide (LPS), which activated TLR4 signaling

pathways and induced DC communication molecules, including

IL1b, IL6, TNF-a, and IL12 cytokines. Similar studies (58, 71, 72)

present the LPS-induced secretion of DC cytokines as a non-trivial

test to investigate the TLR4 cooperation in response to infections. A

better understanding of the mechanisms of host resistance can

provide a basis for the development of more effective adjuvants and

immunotherapeutic regimens.

To validate the ability of the model to reproduce TLR behavior,

we first validated that the model contained all components and

regulatory pathways to support this experiment. Next, we ran 1,000

dose-response simulations while defining three activity levels of LPS

(0, 50, and 100). We then evaluated and compared the secretion of

inflammatory cytokines – IL1b, IL6, IL12, IFN-a, and TNF – upon

activation by LPS at each of the three different dose responses

against well-established cytokine responses. Figure 3A displays the

secretion level for each of the five cytokines at LPS doses 0, 50, and

100. As expected, there was no cytokine secretion at dose 0

and subsequent secretion and elevated secretion at doses 50 and

100, respectively.
FIGURE 2

Visualization of the large-scale DC model in Cell Collective. The
network view of the model. Dots represent signaling molecules;
edges represent interactions between the model components. Red
edges represent the inhibitions, while green and gray edges show
activatory interactions. External (stimuli) and internal components
are colored yellow and gray, respectively.
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The second experiment assessed the model’s ability to mount an

appropriate immune response to the presence (and initiation) of the

human immunodeficiency virus (HIV) infection. HIV initiates viral

transcription through TLR8 and promotes the maturation of DCs

(from immature (imDC) to mature plasmacytoid (pDC)) as defined

by the expression of CD83 and CCR7 surface markers and the

production of IFN-a and TNF (73, 74). We used Cell Collective’s

global sensitivity analysis (refer to the “Methods” section, “Global

sensitivity analysis”) as a method to determine the association

between HIV and each of the internal components. Figure 3B

displays the correlation of activity for imDC, pDC, CD83, CCR7,

IFN-a, and TNF in the presence of HIV infection. As expected,

immature DCs (imDC) exhibit a negative correlation in the

presence of HIV, which shows HIV-bearing immature DCs can

differentiate into mature DCs in response to the infection,
Frontiers in Immunology 06
presenting HIV antigens to T cells and initiating viral immune

responses. Further, mature DCs (pDC), as well as surface markers

CD83 and CCR7, and IFN-a and TNF exhibit a positive standard

regression coefficient (SRC), which means an increase in HIV load

results in increased activity of these components. The simulation

results are consistent with biological experiments that describe

pDCs exposed to HIV strongly upregulating the expression of

CD83 and functional CCR7 maturation markers, IFN-a, and
TNF cytokines (73).

The third experiment assessed the model’s ability to simulate

known intercellular dynamic crosstalk between DCs and other

immune cells in tandem with intracellular communication

dynamics. Gerosa (75) showed that human peripheral pDC and

MoDCs are necessary to induce NK cell function depending on the

type of microbial stimulus. In this experiment, pDCs and MoDCs
A B

D

E

C

FIGURE 3

In-silico model validations. (A) Inflammatory cytokine activity level in response to LPS using dose-response analysis. (B) Standard regression
coefficient of main factors activated in the HIV infection environment. (C) Activity level of IL2, IFN-a and NK under CpG-containing oligonucleotides
and poly(I:C) stimulation. (D) Markers of maturation at different time points in the presence of neutrophils. (E) Time course distribution of DC
immature (im-DC) and mature (mDC) states with (+) or without (-) neutrophils.
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were stimulated in response to CpG-containing oligonucleotides

(CpG) and poly(I:C), and evaluated the mean activity level for NK

cells, IL2, IFN-a, as a result of (CpG)/poly(I:C)-induced release of

IL2 and IFN-a and subsequent activation of NK cells. Figure 3C

displays the expected activity of IL2 and IFN-a as well as NK cells

when CpG/poly(I:C) is inactive compared to an active state.

Last, we validated intercellular communication dynamics

between imDCs and neutrophils. Neutrophils stimulate imDCs to

become competent antigen-presenting cells. This maturation

phenotype is characterized by the expression of specific surface

markers (e.g., HLA-DR, CD86, and CD40) and the secretion of IL12

in response to DC-neutrophil interactions (76–78). Figure 3D

displays the activity of model components IL12, CD209, CD40,

CD86, and HLA-DR in response to the presence of neutrophils over

time, demonstrating the pathways responsible for neutrophil-

induced DC maturation. Figure 3E shows the activity level of

immature and mature DCs in the presence and absence of

neutrophils. On the left, when neutrophils are absent, immature

DCs continue to increase in activity over time, whereas mature DCs

do not become active. On the right, as neutrophils become present,

immature DC activity tapers, and mature DC activity increases.

The aforementioned experiments illustrate the ability of the

model to reproduce major experiments spanning complex inter-

and intracellular communication dynamics.
Case studies

To aid researchers in identifying how to use this model, we

showcase three case studies by presenting a brief application

background, the method we used to apply the model in this

context, and model results.
Case 1: Intracellular communication
dynamics. Characterization of DC response
to a combinatorial COVID-19 and Influenza
infection environment.

In this case study, we integrated Covid-19 and Influenza

pathogens into the model to characterize the molecular response

of DC under single and co-infection conditions. Coronavirus

disease 2019 (COVID-19) and Influenza respiratory disease,

caused by Sars-CoV-2 and influenza virus, respectively, share

similarities in seasonal manifestations, viral transmission method,

symptoms, and immunopathogenesis (79, 80). Co-infection with

Sars-CoV-2 and influenza virus increases disease severity and

impairs neutralizing antibody and CD4+ T cell responses (81).

Patients can develop both infections, and in some cases, co-

infection leads to a poor prognosis (82–84). Despite the

comprehensive investigation of DC behavior in single infections

with Sars-CoV-2 or influenza, the comparative understanding of

DC programming under co-infection is not fully explored due to

limited patient cohorts and case studies (85–88).

Thus, the purpose of this model-based study was to investigate

the molecular behavior of DCs in three infectious states: infection
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with i) Influenza type A virus (IAV), ii) Sars-CoV-2, and ii) co-

infection with IAV and Sars-CoV-2. We ran 900 dose-response

simulations and identified three molecular patterns (Figure 4A,

Table S3) based on similarity in activity levels of DCs molecular

components. Each pattern presents a list of molecules that play a

role in the co-infection. We reported the mean activity level of DC

model molecules ranging from low activity (green) to fully activated

(red) molecular state in single infection and co-infection

cellular environments.

In the first pattern (Figure 4A – Pattern 1 and 4B), we identified

molecular signatures with similar activities in single infection and

co-infection. Figure 4B presents molecular signatures following this

pattern, including markers of DC differentiation (CD86, CD1A,

CD40, CD83, ITGAM), PRRs (TLR8), immune checkpoint

molecules (PVR, Nectin2), chemokines/chemokine receptor

(CCR7, CCL19, CXCL8), cytokines (IL6, TNF, IL12, IL1B, IL12A,

IL12B, IL23, IL10, IFNA1, IFNB1), signaling molecules (NF-kB,
PYCARD, NLRP3, SYK, LILRA4, ISG20, ADAR, BST2, DDIT3,

ATF4, PPP1R15A), and CLRs (CLEC4C, CLEC10A).

Several of these signatures are expressed during the single

infection studies on human samples (89–91). For example,

separate studies on Sars-CoV-2 and influenza virus infections

show expression of IL1B, IL10, TNF, CD86, CCR7, IL6, CXCL8,

IFN (79, 89, 92, 93).

In the second pattern (Figure 4A – Pattern 2), the molecular

signature characterizes the similarity between IAV single infection

and co-infection. Previous studies indicated that immune

checkpoints are increased in influenza single infection (94) but

not in Sars-CoV-2 single infection (89, 95, 96). Thus this

experiment focuses on the significance of the immune

checkpoint signatures. The immune checkpoints (TNFSF4,

CD70, ICOSLG, PDCD1LG2), followed by cytokines (IL2,

IFNL2, CXCL10), markers of DC differentiation (CD80, CD86),

and signaling signature (SEMAD4), are upregulated in both co-

infection and single IAV but downregulated under Sars-CoV-2

infection. As an example, Figure 4C shows the activity level of the

ICOSLG immune checkpoint in 300 simulations per each

infection condition (single and co-infection), which is higher in

the presence of both viruses.

In the third pattern (Figure 4A – Pattern 3), the molecular

signatures of Sars-CoV-2 and co-infection were similar. The major

signature includes a decreased expression of signaling and

decreased expression of transcription factors in both Sars-CoV-2

and co-infection, suggesting a disruption of the signaling network

associated with Sars-CoV-2 infection. Neuropilin-1 (NRP1), the

only signaling protein to be highly expressed in the third pattern,

was previously shown to facilitate Sars-CoV-2 entry by interacting

with spike protein (97, 98). Additional signatures are related to the

decrease of pathogen sensors and maturation marker expressions,

such as TLRs (TLR1, TLR7, MYD88), CLRs (CLEC9A, CLEC7A,

CD209), and MHC class signatures (HLA-DQA, HLADPB1, HLA-

DM, HLA-DRB1, HLA-DR, HLA-DQB1), suggesting the loss of DC

function to sense and present antigen to other immune cells

properly. For example, Figure 4D presents the simulation results

of the C-type lectin domain containing 9A (CLEC9A) with a low

activity level in co-infection.
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Several studies indicated that DCs displayed a defect in

maturation and are depleted in COVID-19 patients, and as our

in-silico simulations predicted, one of the mechanisms might be due

to the defect of the signaling compartment and pathogen sensors

(85, 86, 99). Nevertheless, further experimental investigations are

needed to explore these hypotheses.
Case 2: Intercellular communication
dynamics. Crosstalk between DCs and T
cells in a cancer microenvironment.

DCs play a crucial role in initiating a protective anti-tumoral

response by presenting tumor antigens and providing co-stimulatory

immune checkpoint to T cells (100). However, tumor

microenvironments sustain DCs in an immature/tolerant

phenotype, thereby altering antigen presentation, co-stimulatory

signals, and thus the ability to effectively activate T cells. Therefore,

T-cells become exhausted due to continuous exposure to antigens and
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increase in multiple inhibitory immune checkpoints that further

benefit the mechanism of resistance to immunotherapies (101).

Several factors with immunoregulatory properties are involved in

DC-T cell interplay. For example, the cytokine HMGB1 released by

cancer cells contributes to cancer development by promoting

tolerogenic DC differentiation and the suppression of anti-tumoral T

cells (102–104). Moreover, a study conducted in-vivo reported the role

of HMGB1 in promoting T-cell exhaustion in the condition of trauma

(105). However, the role of cancer-derived HMGB1 in promoting

exhaustion through the modulation of immune checkpoint expression

has not been investigated. Modern immunotherapy approaches aim to

reverse T cell exhaustion by blocking inhibitory immune checkpoint

receptors (106). Combinatorial treatments using approved inhibitors of

PD-L1 immune checkpoint and two receptors PD-1 and CTLA-4,

showed promising results. Additional immune checkpoint inhibitors

are under clinical trial investigations (107). However, not all cancer

types respond equally, and patients can acquire resistance to immune

checkpoint inhibitors (ICI) (108, 109). Because many experimental

studies have investigated the role of immune checkpoints individually,
A B

DC

FIGURE 4

In-silico predictions of molecular activity across the whole DC model comparing Sars-CoV-2 and Influenza A virus (IAV) co-infection to the single
infection. (A) The differential molecule expressions are grouped into three main patterns in response to each environmental setting. The first pattern
grouped molecules that are regulated similarly in all three conditions. The second pattern is related to similar regulation between Influenza and co-
infection, and the third one grouped similar behavior between Sars-CoV-2 and co-infection conditions. The scale represented the activity level
ranging between 0 to 100%, 100 being the highest activity level. (B) The molecular signatures in pattern 1 in single and co-infection cellular
environments. (C) An example of the second pattern shows that under different activity levels of Sars-CoV-2 (green, low; yellow, medium; purple,
high), ICOSLG is inactive while it is upregulated in both co-infection and single IAV. (D) CLEC9A is categorized as the third pattern, and for both
Sars-CoV-2 and co-infection, it has low activity levels compared to the IAV single infection.
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a computational approach can help to better understand the dynamic

distribution of inhibitory and stimulatory immune checkpoints that

can aid in identifying ideal checkpoint candidates and facilitate

combinatorial therapeutic strategies.

In this case study, we examined the impact of cancer-derived

HMGB1 on the DC-T cell synapse interaction. We included the

cancerous cytokine HMGB1 as environmental (cancer) stimulus. The

DC model includes two groups of immune checkpoints: stimulatory

and inhibitory ligands/receptors that are enable us to study the

impact of HMGB1 on DC-T immune checkpoints. The ligands are

expressed on DCs, while receptors are particularly expressed by T

cells. In the model’s plasma membrane compartment (Figure 5A,

Table S1) are included six stimulatory ligands (e.g., ICOS-LG,

TNFSF9, TNFSF4, CD70), two inhibitory molecules (PD-L1,
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BTLA) and three molecules with a dual function depending on the

receptors they are binding (CD80-CD86, PVR, and Nectin-2). From

the T cell side, we included six stimulatory receptors (CD28, ICOS,

TNFRSF9, TNFRSF4, CD27, CD226) to define effector T cells and

three inhibitory receptors (PD-1, TNFRSF14, CTLA-4) that define

exhausted T cells. Figure 5C showed the interaction between ligands

with their respective receptors. Of note, CD80-CD86, used as main

maturation markers, binds two different immune checkpoint

receptors with opposite functions (the stimulatory receptor CD28

and the inhibitory receptor CTLA4), and the two ligands PVR and

Nectin-2 share the same stimulatory receptor CD226 (Figure 5A).

We compared the model’s simulation results under the

HMGB1/cancer environment with published experimental data

(110). Messmer D. et al. showed that HMGB1 promotes the
A B

D

E

C

FIGURE 5

Investigation of DCs-T cells crosstalk under an HMGB1 tumor environment. (A) The table indicates the immune checkpoint pairing between ligands
and associated receptors along with the type of functions (stimulatory or inhibitory). (B) Assessment of IL6, IL8, IL12, and TNF cytokine expression
under HMGB1 environment. (C) The activity level of MHC classes I and II are between 0 and 10, with the time 100 added at the final expression of
both classes. (D) Standardized regression coefficient (SRC) between ligands and associated receptors on DC and T cells with HMGB1 environment.
High and low SRC presented with yellow and purple, respectively. Arrows link the ligands to their respective receptors. (E) Time course of effector T
and exhausted T cells activity level expression at a probability of activation at time steps 0, 1, 10, and 100 in HMGB1 simulation.
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secretion of inflammatory cytokines (IL6, IL12, IL8, TNFa) and our
in-silico simulation is consistent with the experimental data

(Figure 5B). Then, in the HMGB1 environment, we evaluated: i)

the activation of MHC Class I and II, ii) the distribution of ligands/

receptors for co-stimulatory and inhibitory immune checkpoints

expressed at the DC-T cell interface, and iii) the dynamic

distribution of effector and exhausted T cells.

We evaluated the distribution of the mean percentage activity

level of MHC class I and II in five in-silico experiments at time steps

0, 1, 10, and 100. The mean activity level started from 0, and at time

step 10 reaches 32.74% for class I and 61.8% for class II. MHC class I

and II increase to maximum activity level at step 100 (Figure 5C).

Our simulation indicated that MHC class I and II expression

increased in response to HMGB1 simulation. Because our model

does not include specific tumor antigens that can be presented by

MHC to TCR, we cannot conclude that the increase of MHC

expression is due to antigen overload, however, our simulation

indicates an increase of MHC classes under HMGB1 simulation.

Next, we investigated the dynamics of immune checkpoint pairs

under HMGB1 environmental stimulation using dose-response and

sensitivity analyses (Figure 5D). Our in-silico results showed that

the stimulatory molecules such as CD27 (receptor for CD70), ICOS

(receptor for ICOS-LG), TNFRSF4 (receptor for TNFSF4), and

TNFRSF9 (receptor of TNFSF9) showed no significant correlation

with HMGB1 stimulation and shared similar distribution with their

receptors expressed by T cells. The PVR and Nectin-2 displayed

high correlation as well as their receptor CD226. CD80-CD86

showed no significant correlation in response to HMGB1

stimulation (Figure 5D). Regarding the dual receptors of CD80-

CD86, the stimulatory CD28 receptor, and the inhibitory receptor

CTLA-4 showed no correlation under HMGB1 stimuli. The

inhibitory pairing PD-L1 ligand with its receptor PD-1, the main

target for immune checkpoint inhibitors, is highly represented.

Moreover, the additional inhibitory receptor TNFRSF14 and its

ligand BTLA ligand don’t show a significant distribution in

response to HMGB1 stimulation (Figure 5D).

We simulated the model under HMGB1 environment, and we

evaluated the mean activity level of effector and exhausted T cells at

time 0’, 1’, 10’, and 100’ from five in-silico experiments (Figure 5E).

The exhausted T cell activity level is faster than the effector T cells at

10’ (Figure 5E). At the maximum time of the simulation, both T cell

phenotypes do reach maximum accumulation (activity). The results

demonstrate HMGB1 promotes both effectors and exhausted T cells

and exhausted phenotype accumulated faster than effector.

Immune checkpoint immunomodulatory functions are initiated

by ligand-receptor interaction that can either promote or suppress

T cell function (111). CD226 is important in generating an anti-

tumor response. While CD226 expression is required as a co-

stimulatory factor for T cells during antigen presentation by

APCs, the loss of CD226 can lead to impaired effector T

activation and increased susceptibility to tumor development

(112–114). Hence, in our model, the activity of CD226-PVR/

Nectin2 contributed to the increase of effector T cells and is

associated with the MHC expression. Among inhibitor pairs, only

PD-L1-PD-1 displays a high correlation with an HMGB1

simulation. The interaction between PD-L1 and PD-1 drives T-
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cell dysfunction and exhaustion to prevent an efficient anti-tumor

T-cell response (115, 116). Previous studies indicated that HMGB1

increases PD-L1 expression in cancer cells; however, the

modulation of PD-L1-PD-1 by HMGB1 in immune cells remains

unknown. Our in-silico simulation suggests that HMGB1 can also

promote PD-L1-PD-1 expression at the DC-T cell interface, thereby

explaining the increase of exhausted T cells.

In summary, using the example of analysis of multiple ligand/

receptor-mediated cellular programming at the time, our in-silico

experiments illustrated the capacity of the model to provide

complex and dynamic insight into biological processes at the

molecular and cellular scales.
Case 3: The scope of the DC models offers
potential applications in several immune-
related diseases.

The crosstalk between the disease environment and DCs highly

contributes to the organization of the immune response (11, 12,

117–119). Because each disease environment is unique and

complex, a multiscale model can be an effective tool to investigate

the complexities underlying multiscale, systemic diseases.

Given the DCs’ role in initiating both innate and adaptive

immune responses, we sought to explore the links between the DC

model’s core disease pathways we identified for IAV, Sars-CoV-2,

and tumor microenvironment and additional diseases to identify

the extensibility of our model. To do this, we performed a Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis

against the model’s components (refer to “Methods” section,

“Kyoto Encyclopedia of Genes and Genomes KEGG pathways

analysis”). Using a cut-off p-value of <0.05, we identified 69

enriched pathways (Table S4) for the top 20 diseases (Figure 6).

The fold enrichment analysis of the top 20 diseases revealed

multiple categories, such as autoimmune disease, infection,

and transplantation.
FIGURE 6

The top 20 human diseases and signaling pathways associated with
the DC model. P-values and fold enrichment of KEGG pathways in
DC. -log 10 of P-values was used for visualization. Thus, larger dot
sizes correspond to lower P-values. The cutoffs P-value < 0.05 and
a false discovery rate (FDR) < 5% were set for significant enrichment.
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The two highest scores are represented by inflammatory bowel

disease and tuberculosis infection. The enrichment for those two

diseases can be explained by the presence of TLRs, lectins, and

cytokines in supporting pathology (120). For example, in the

context of tuberculosis, TLRs and lectins can recognize different

motifs of Mycobacterium tuberculosis, which in turn can trigger

pro- or anti-inflammatory cytokine response (121).

The DC model can be utilized to identify pathways related to

many diseases, including infections, cancer, and autoimmune

diseases. The high fidelity of the model predictions will depend

on the extension of the pathways related to the diseases of study.
Discussion

We have developed a mechanistic multiscale model of human

DCs that spans biological scales from molecular interactions to cell-

cell communication. We included biological events that occur

between DCs’ environmental stimuli and their receptors, followed

by activation of signal transduction in response to each signal.

Moreover, we constructed the molecular network that links the

downstream signal transduction of kinases and transcription factors

to secreted cytokines/chemokines and growth factors. We extended

the model further by integrating a cellular compartment that

includes the communication between DCs and several innate/

adaptive immune cells through direct (ligand-receptor) and

indirect (cytokine, chemokines releases) interactions. Our model

can be used to study DC maturation, differentiation to each subset,

APCs function, and the bidirectional crosstalk between DCs and

other immune cells. Because the model incorporates pathways that

regulate and facilitate many key functions of DCs, it can be applied

to study several diseases as well as the basic mechanism of

DCs’ functions.

The presented DC model leverages the widely used logical

modeling formalism (40). The advantages of this modeling

approach include its scalability (efficient simulations) as

evidenced by the fact that some of the largest computational

models have been constructed using this formalism (e.g (122–

125). Another advantage is that logical models do not rely on

kinetic parameters that are mostly unknown (40, 126). On the other

hand, if one is interested in modeling relatively small and well-

studied pathways (with known parameters), a kinetic modeling

approach may be more appropriate. The model is limited by the

missing data in the literature about any unknown interactions. Our

model includes major pathways involved in DC immunobiology.

Nevertheless, the model is limited in scope as it does not include all

known DC signaling and cell-cell communication. The model is

being provided in a readily exchangeable format (SBML) and easy-

to-use modeling software (Cell Collective), making it relatively easy

for the community to build on the model and continue to expand as

needed by different applications. For example, to specifically

investigate DC-T cell communication, T cell subsets such as CD4

and CD8 can be integrated by adding molecular and cellular

components of the immunological synapse. We previously

published a logical model of signal transduction networks

governing CD4+ T cell differentiation in response to various
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cytokines (24). Those same cytokines are also included in our DC

model, creating the possibility of integrating both systems to study

how DCs might influence CD4+ T cell fate and plasticity.

As another example, HMGB1 interacts with several TLRs (e.g.,

TLR2, TLR4, and TLR9), which have been included in the DC

model. HMGB1 also interacts with RAGE - a receptor for advanced

glycation end-products - that is not currently included in our

model. Adding RAGE to the system would increase the complex

interplay between receptors and signaling pathways to mediate

cytokine release and immune response (127–129). The model

would then be able to simulate the different molecular

intersections during single or multiple TLRs/RAGE activation and

predict the multiple environmental conditions for efficient DCs

maturation without compromising the adaptive response (e.g., T

and B cells). Therefore, the multiscale model could be further used

to characterize APC function in response to a stochastic tumor

micro-environment with multiple components simultaneously.

In our cancer in-silico simulations, our model-generated

hypotheses suggested a list of potential immune checkpoints to

explore for studying the effect of single and multiple combinatorial

ICI on DC-T cell interaction outcome (Figure 5D). We showed the

dynamics of immune checkpoint pairs under a tumor HMGB1

environment. Recent therapeutic approaches include the

optimization of DC-based therapies by combining DC vaccines

with immune checkpoint inhibitors (ICI), such as anti-CTLA-4 and

anti-PD1/PDL1 (130, 131), or by silencing immune checkpoint

signaling pathways (132). Despite being in early clinical phases,

combinatorial therapy holds a potential to balance toxicity, safety,

and clinical outcomes (130, 131). Additional ICI to restore T cell or

APC activation is currently under investigation to expand

therapeutic options and optimize the efficacy of the immune

checkpoint targeting strategy (107, 133). Nevertheless, the

complexity of immune checkpoint ligands resides in their

capacity to bind several different receptors with opposite

functions, therefore switching between stimulatory and inhibitory

signals. As the model prediction suggested, PVR and Nectin-2

showed a high activity similar to their receptor, CD226. Of note,

PVR and Nectin-2 can trigger opposite signals whether they bind

the stimulatory receptor (CD226) or the inhibitory receptors

(TIGIT and CD96, not included in the model) (134). Moreover,

the optimal combination can depend on the ligands/receptors’

availability and the balance between stimulatory and inhibitory

expression. Our model simulations suggest that the inhibitory

receptor CTLA-4 has no activity under HMGB1 stimuli. At the

same time, PD-1 and PD-L1 are highly correlated, suggesting that

the use of anti-CTLA-4 might not be as effective as the use of anti-

PD-1 or anti-PD-L1 to restore DC-T cell function in a cancerous

HMGB1 environment (135).

The development of computational models that recapitulate

complex human disease behavior can be a resource for scientists

and clinicians to simulate thousands of possibilities for studying the

complex biological process at multiple scales. The disease

enrichment analysis highlighted the potential of our model to

incorporate additional pathological events as some disease

modules are already implemented. For example, Type I diabetes

(T1DM), an auto-immune disease characterized by immune-
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mediated destruction of insulin-producing beta cells, is enriched in

our model (136). The loss of tolerance to self-antigens and the

increase of autoreactive T cells instead of immunosuppressive T

cells are the main cause of insulin deficiency. Several studies

indicated that DCs presented self-antigen generated from

degraded b-islet to prime autoreactive T cells via dysfunctional

NF-kB and MAPK pathways (137, 138). Current therapies focus on

generating tolerant DCs and immunosuppressive T cells to target

the auto-immune disease and restore the imbalance of tolerance

(139). To address those mechanisms, incorporating tolerogenic DCs

and immunosuppressive T cell phenotype components under the

stimulation of a self-antigen input could predict molecular

conditions by which immunosuppressive cells are amplified to

respond to disease pathology (140).

In summary, we have demonstrated the potential for a

multiscale DC model to investigate the immunobiology of DCs

and identify potential targets for improving the effectiveness of DC-

based cell therapies. Lastly, the model can be further expanded to

support additional mechanistic and therapeutic questioning related

to DC ontogeny.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

SSA, RA and TH conceived the study. SSA, RA and TH

designed the study. SSA performed literature mining and

collected the data. SSA constructed the models. SSA, and RA

performed refinement of the constructed models. SSA, RA and

BLP analyzed the data, performed the experimental work and
Frontiers in Immunology 12
analyzed the experimental results. SSA, BLP, RA and TH wrote

the manuscript. RA and TH supervised the study. All authors

contributed to the article and approved the submitted version.
Funding

The work was supported by an NIH grant R35GM119770

to TH.
Conflict of interest

TH is the majority stakeholder in Discovery Collective, Inc. with

proprietary rights to Cell Collective. The remaining authors declare

that the research was conducted in the absence of any commercial

or financial relationships that could be construed as a potential

conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1112985/

full#supplementary-material
References
1. Joffre O, Nolte MA, Spörri R, Reis e Sousa C. Inflammatory signals in dendritic
cell activation and the induction of adaptive immunity. Immunol Rev (2009) 227:234–
47. doi: 10.1111/j.1600-065X.2008.00718.x

2. Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive
immunity. Microbes Infect (2004) 6:1382–7. doi: 10.1016/j.micinf.2004.08.018

3. Pandey S, Singh S, Anang V, Bhatt AN, Natarajan K, Dwarakanath BS. Pattern
recognition receptors in cancer progression and metastasis. Cancer Growth Metastasis
(2015) 8:25–34. doi: 10.4137/CGM.S24314

4. de Jong JMH, Schuurhuis DH, Ioan-Facsinay A, Welling MM, Camps MGM, van
der Voort EIH, et al. Dendritic cells, but not macrophages or b cells, activate major
histocompatibility complex class II-restricted CD4+ T cells upon immune-complex
uptake. vivo Immunol (2006) 119:499–506. doi: 10.1111/j.1365-2567.2006.02464.x

5. Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting
cells: can anything replace a dendritic cell? Nat Rev Immunol (2014) 14:719–30.
doi: 10.1038/nri3754

6. Figdor CG, de Vries IJM, Lesterhuis WJ, Melief CJM. Dendritic cell
immunotherapy: mapping the way. Nat Med (2004) 10:475–80. doi: 10.1038/nm1039

7. Fricke I, Gabrilovich DI. Dendritic cells and tumor microenvironment: a
dangerous liaison. Immunol Invest (2006) 35:459–83. doi: 10.1080/08820130600803429
8. Sesti-Costa R, de Moraes-Vieira PMM, Cervantes-Barragan L. Dendritic cells:
immune response in infectious diseases and autoimmunity. Mediators Inflammation
(2020) 2020:2948525. doi: 10.1155/2020/2948525

9. Audiger C, Rahman MJ, Yun TJ, Tarbell KV, Lesage S. The importance of
dendritic cells in maintaining immune tolerance. J Immunol (2017) 198:2223–31.
doi: 10.4049/jimmunol.1601629

10. Domogalla MP, Rostan PV, Raker VK, Steinbrink K. Tolerance through
education: How tolerogenic dendritic cells shape immunity. Front Immunol (2017)
8:1764. doi: 10.3389/fimmu.2017.01764

11. Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in
autoimmunity. Nat Rev Immunol (2013) 13:566–77. doi: 10.1038/nri3477

12. Chow TG, Gill MA. Regulation of allergic inflammation by dendritic
cells. Curr Opin Allergy Clin Immunol (2020) 20:56–63. doi: 10.1097/ACI.
0000000000000603

13. Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell
(2001) 106:263–6. doi: 10.1016/s0092-8674(01)00455-x

14. Thaiss CA, Semmling V, Franken L, Wagner H, Kurts C. Chemokines: a new
dendritic cell signal for T cell activation. Front Immunol (2011) 2:31. doi: 10.3389/
fimmu.2011.00031
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1112985/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1112985/full#supplementary-material
https://doi.org/10.1111/j.1600-065X.2008.00718.x
https://doi.org/10.1016/j.micinf.2004.08.018
https://doi.org/10.4137/CGM.S24314
https://doi.org/10.1111/j.1365-2567.2006.02464.x
https://doi.org/10.1038/nri3754
https://doi.org/10.1038/nm1039
https://doi.org/10.1080/08820130600803429
https://doi.org/10.1155/2020/2948525
https://doi.org/10.4049/jimmunol.1601629
https://doi.org/10.3389/fimmu.2017.01764
https://doi.org/10.1038/nri3477
https://doi.org/10.1097/ACI.0000000000000603
https://doi.org/10.1097/ACI.0000000000000603
https://doi.org/10.1016/s0092-8674(01)00455-x
https://doi.org/10.3389/fimmu.2011.00031
https://doi.org/10.3389/fimmu.2011.00031
https://doi.org/10.3389/fimmu.2023.1112985
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Aghamiri et al. 10.3389/fimmu.2023.1112985
15. Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F,
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