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Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
The chemokine network is comprised of a family of signal proteins that encode

messages for cells displaying chemokine G-protein coupled receptors (GPCRs).

The diversity of effects on cellular functions, particularly directed migration of

different cell types to sites of inflammation, is enabled by different combinations

of chemokines activating signal transduction cascades on cells displaying a

combination of receptors. These signals can contribute to autoimmune

disease or be hijacked in cancer to stimulate cancer progression and

metastatic migration. Thus far, three chemokine receptor-targeting drugs have

been approved for clinical use: Maraviroc for HIV, Plerixafor for hematopoietic

stem cell mobilization, and Mogalizumab for cutaneous T-cell lymphoma.

Numerous compounds have been developed to inhibit specific chemokine

GPCRs, but the complexity of the chemokine network has precluded more

widespread clinical implementation, particularly as anti-neoplastic and anti-

metastatic agents. Drugs that block a single signaling axis may be rendered

ineffective or cause adverse reactions because each chemokine and receptor

often have multiple context-specific functions. The chemokine network is tightly

regulated at multiple levels, including by atypical chemokine receptors (ACKRs)

that control chemokine gradients independently of G-proteins. ACKRs have

numerous functions linked to chemokine immobilization, movement through

and within cells, and recruitment of alternate effectors like b-arrestins. Atypical
chemokine receptor 1 (ACKR1), previously known as the Duffy antigen receptor

for chemokines (DARC), is a key regulator that binds chemokines involved in

inflammatory responses and cancer proliferation, angiogenesis, and metastasis.

Understanding more about ACKR1 in different diseases and populations may

contribute to the development of therapeutic strategies targeting the

chemokine network.

KEYWORDS
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Introduction

Chemokine receptors (CKRs) are specialized seven-transmembrane domain surface

receptors in the class A subfamily of the G-protein coupled receptor (GPCR) superfamily.

Chemokine ligands are small, structurally-conserved proteins categorized by the

configuration of a cysteine motif (CXC, CC, CX3C, C) in the N-terminus (1). The
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classical function of chemokine GPCRs is to activate leukocyte

migration along increasing chemokine concentration gradients

towards their source, with different tissues producing distinct

combinations of chemokines to attract specific cell types.

Chemokine messages elicit complex, multicellular responses

encoded in the combinatorial diversity of overlapping ligand-

receptor specificities and dynamic membrane interactions.

Receptor stimulation recruits b-arrestins, an intracellular effector

that decreases activation of heterotrimeric G-proteins, scaffolds

cytoskeletal adaptors that internalize surface receptors, and

signals through distinct pathways (2). The chemokine network is

tightly regulated with overlapping mechanisms to amplify, diversify,

and resolve cellular signals (3). One arm of chemokine control is

exerted through expression of atypical chemokine receptors

(ACKRs), dedicated chemokine receptors uncoupled from G-

protein cascades that regulate chemokine patterning and GPCR

sensitivity (4). CKRs and ACKRs have complementary roles in

exerting and modulating chemokine function. ACKRs have an

independent role to bind, scavenge, and traffic chemokine ligands

and maintain gradients so that cells are directed to their functional

compartments (5). ACKRs can also directly regulate GPCR

signaling through ligand depletion or resolution of activated

intracellular cascades.

Chemokine signals are crucial for immune cell recruitment,

embryonic development, and retention of discrete cellular niches.

Consequently, dysregulation of the chemokine network can

contribute to a multitude of disease and CKRs are appealing

therapeutic drug targets. GPCRs are the target of a third or more

of all drugs, but chemokine GPCRs present unique challenges to drug

design that prevent compounds from progressing to approved

therapeutics (6, 7). Inhibitors of individual GPCRs can have

deleterious side effects by perturbing the balance of these signal

pathways and interfering in unrelated physiological functions that

involve the target GPCR. A druggable chemokine network becomes

more achievable when the interplay of signaling and regulatory

components in the system is well-understood. Here we discuss the

role of ACKR1/DARC in disease and potential therapeutic strategies.
The atypical chemokine
receptor family

The four known atypical chemokine receptors, ACKR1-4, exhibit

distinct expression patterns, chemokine-binding profiles, and cellular

effects. The chemokine ligands of the atypical receptors are shown in

Figure 1. ACKR1 is a promiscuous receptor for chemokines involved in

diverse functions including angiogenesis, chemotaxis, and cellular

retention signals. Expression is restricted to erythroid cells, cerebellar

Purkinje neurons and the endothelial cell lining of capillary-draining

venules, where ACKR1 binds and transports chemokines. ACKR2

binds the second-most chemokines and was thought to be restricted to

binding CC-class chemokines until recent reports have described

interactions with CXCL10 and CXCL14 (8–10). ACKR2 is primarily
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found in the lymphatic, not vascular, endothelium but it is also

expressed in certain B-lymphocytes, myeloid immune cells, and

developing trophoblasts (11–13). ACKR2 serves as a chemokine

scavenger that constitutively recycles from membrane to endosome

through a pathway involving b-arrestin (14). ACKR3 is a high affinity

receptor for several proteins including endogenous opioid peptides and

viral chemokine vCCL2/vMIP-II, but only binds two human

chemokines, CXCL11 and CXCL12 (15, 16). ACKR3 expression has

been described in a diversity of cell types with increasing evidence of

ligand-specific, b-arrestin-mediated signaling pathways and multiple

internalization mechanisms (17–19). ACKR4 binds CCL19, CCL20,

CCL21, CCL22 and CCL25, a subset of chemokines associated with

spatial organization of T-cells and dendritic cells (20). Knowledge of

ACKR4 expression is incomplete, but it has been characterized as a

component of endothelial barriers in tissues including the skin, spleen,

and lymphatic vasculature and as a scavenger on fibroblasts in the

dermis and intestinal submucosa (21–23). ACKR4 scavenging uses a

similar internalization mechanism to ACKR2 involving b-arrestin
recruitment, but without the downstream ERK1/2, Akt, or Src kinase

activation attributed to ACKR3 (24). Candidate members of the ACKR

family include CC chemokine receptor-like 2 (CCRL2/ACKR5) as a

receptor for the chemotactic protein chemerin, and membrane-

associated phosphatidylinositol transfer protein 3 (PITPNM3/

ACKR6) as a receptor for CCL18 (25, 26). Overall, ACKRs bind the

majority of CC and CXC chemokines and expression is spatially

organized in tissues to maintain functional chemokine gradients and

regulate GPCR signaling. ACKR1 has several advantages as a potential

drug target because it is promiscuous and encompasses multiple

important chemokine-induced pathways, while being uncoupled

from direct signal transduction and exhibiting restricted

tissue expression.
FIGURE 1

ACKR1-4 chemokine interaction network Chemokine ligands described
for atypical chemokine receptors ACKR1, ACKR2, ACKR3, and ACKR4.
*Chemokines are described as weak binders to ACKR1.
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ACKR1 genetics

ACKR1 expression in humans was initially described as the

“Duffy” or “Fy” blood group after a hemophiliac patient who

developed hemolytic reactions from mismatched blood (27). The

recognition sites of the “Fy-reactive” antibodies were mapped to

distinct erythrocyte surface antigens, later revealed to correspond to

regions of ACKR1. These include a conformational epitope (Fy3)

capturing the extracellular loops, a linear pentapeptide sequence in

the N-terminus (Fy6), and allelic N-terminal single nucleotide

polymorphism (SNP) variants (FyA and FyB). Multiple ACKR1

phenotypes arise from SNPs in the upstream promoter and coding

sequence of the ACKR1 gene (28). The major isoform of ACKR1 is a

336 amino acid protein with two common alleles FyA (42Gly), FyB

(42Asp), and the less common FyX, most associated with

R89C (29).

A unique selective pressure from malaria parasites contributes

to distinct population-specific and geographic patterns of ACKR1

expression (30). The N-terminus of ACKR1 is a recognition site

for Plasmodium vivax and P. knowlesi, which invade erythrocytes

during blood infection (31). Malarial resistance is conferred by the

“Duffy-negative” or “erythrocyte silent” (FyES) single nucleotide

polymorphism (SNP), that alters the GATA1 transcription factor

binding site in the ACKR1 promoter, ceasing erythroid, but not

endothelial, expression (32). The coevolutionary history of
Frontiers in Immunology 03
Plasmodia parasites and FyES phenotype is complex, but the

current evidence indicates that African P. vivax selected the

“erythroid silent” polymorphism in the FyB allele in endemic

regions. FyBES is now the prevalent phenotype of people in Africa,

regions within the Arabian Peninsula, and with African ancestry

(33, 34). The ancestral form of ACKR1 may have been FyB, which

then adapted through the FyA variation (42G) conferring

diminished susceptibility to P. vivax or the silencing

polymorphism FyBES (rs2814778) (35, 36). The FyX variant is

linked to both R89C and A100T mutations and decreases

detection of ACKR1 expression (37). This effect may arise from

a disruption in the first intracellular loop between the first and

second transmembrane domains, and may interrupt trafficking to

the membrane, impede protein folding, or cause formation of

destabilizing inter/intra-molecular disulfide bonds (38, 39). The

amino acid sequence of ACKR1 is depicted in Figure 2. Current

understanding is that the primary drivers of differentiation of

ACKR1 expression and the molecular basis of the Duffy blood

group are the FyA/FyB alleles encoding Gly42 or Asp42 in the N-

terminus and the FyES SNP, which determines if ACKR1 is

present on erythrocyte surfaces to display epitopes like Fy3 or

Fy6. These genetic variations that alter ACKR1 expression and N-

terminal sequence may have a significant impact on disease by

changing the abundance and distribution of ACKR1 ligands

(40, 41).
FIGURE 2

ACKR1 snake plot Atypical chemokine receptor 1 has seven transmembrane domains and multiple binding sites in the extracellular N-terminus.
Residue 42 is depicted as aspartic acid corresponding to FyB variant. DBP, Duffy Binding Protein; LukE, Leukocidin E.
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ACKR1 structure and function

Chemokine receptors are activated after binding ligands in a

multi-step interaction using the receptor N-terminus that extends

from the first a-helical transmembrane domain. The chemokine

binding pocket is formed within the transmembrane helices and the

extracellular connecting loop regions. Engagement of a typical

chemokine receptor triggers conserved microswitches and

conformational changes in the transmembrane helices followed

by activation of intracellular secondary messengers (42). G-

protein coupling occurs at a conserved “DRYLAIV” sequence

motif found at the intracellular end of transmembrane helix 3.

However, atypical receptors have sequence modifications at this

position that prevent G-protein mediated signaling. While ACKR1

has no homologous motifs at this position, ACKR2 has DKYLEIV,

ACKR3 has DRYLSIT, and ACKR4 DRYVAVT. Another common

feature of GPCRs is a feedback inhibition mechanism wherein

sustained receptor activation leads to phosphorylation of the C-

terminus by G-protein coupled receptor kinases (GRKs). GRK

activity supports association with b-arrestins, causing receptor

internalization and alternative signaling. Both CKRs and ACKRs

have serine and threonine-rich sequences in the intracellular C-

terminal domain that are substrates for GRK-mediated

phosphorylation. b-arrestin recruitment has been described for

ACKR2-4, but while ACKR1 has analogous sites encoded in the

C-terminus, investigation of GRK interactions has yet to be

thoroughly explored (43). Thus, ACKR1 with the lowest sequence

similarity to the other chemokine receptors, seems to have a distinct

activation mechanism and network of intracellular interactions that

is distinct from other ACKRs (44–46).

Solved structures of chemokine receptors are limited in the

resolution of receptor N-terminal interactions, but studies support

the importance of this domain for atypical chemokine receptor

function (47). The ACKR2 N-terminus is selective for CC-type

chemokines, and a protein derived from the critical domains has

been proposed as an anti-inflammatory chemokine sink (48). The

N-terminus of ACKR1 is among the longest of any chemokine

receptors and contains extended regions of amino acids modeled to

form electrostatic interactions with the basic and positively charged
Frontiers in Immunology 04
surfaces characteristic of chemokines (49). A distinguishing feature

of ACKR1 is the capacity to bind multiple CXC and CC class

chemokines, and the flexibility of this mostly disordered region

allows for variable configurations to dock many different ligands

(50). The binding interactions at the N-termini of ACKRs are

shown in Table 1. Discrete ACKR1 N-terminal residues

determine ligand affinity and different segments have been

successfully engaged by antibodies or antibody-derived fragments

to prohibit ligand binding (51, 52). A chimeric construct with the

N-terminus of ACKR1 and the transmembrane domains and

extracellular loops of CXCR2 retained the binding profile of full-

length ACKR1, with high affinity for non-CXCR2 ligands CCL5 and

N-terminally modified CXCL1 (53). The independence of the N-

terminus for certain ligands also suggests utility of a soluble

platform with the binding affinity of ACKR1, for example as

a decoy for pathogens targeting erythrocytes. Additional

detailed structural data describing interactions between the

ACKR1 N-terminus and different chemokine ligands will

contribute to understanding conserved and chemokine-specific

binding mechanisms.

Initial surveys of ACKR1 functions suggested a binding

preference for chemokines containing the sequence motif “ELR”

in the N-terminus, a subgroup of CXC chemokines distinguished

for its capacity for angiogenesis and inflammatory signaling

through neutrophil receptors CXCR1 and CXCR2 (54, 55). One

of the first reported angiogenic chemokines was CXCL8, and a

model of neovascularization emerged with ELR+ CXCR2 ligands

stimulating endothelial migration and tube formation countered by

ELR- CXCR3 ligands. Angiogenic effects have since been ascribed to

non ELR+ CXCL12 and other CC chemokines, particularly CCL2,

suggesting a multifactorial system of CXC and CC chemokine

receptors on endothelial cells and other immune cell types (56,

57). Evidence for the anti-angiogenic properties of ACKR1 was

initially shown in a mouse by overexpressing ACKR1, decreasing

CXCR2-mediated corneal angiogenesis in response to CXCL2

stimulation (58). Further investigation using radioligand

displacement supported strong binding of ACKR1 to ELR+

chemokines like CXCL5 and CXCL8 that signal through CXCR2,

but highest binding affinities were calculated for CCL5, CCL7, and
TABLE 1 Ligands of atypical chemokine receptors 1-4.

CC CXC non-CK

ACKR1
CCL2, CCL7, CCL11, CCL13, CCL14, CCL17

Weak*: CCL1, CCL8, CCL18

CXCL1, CXCL2, CXCL3, CXCL5,
CXCL6, CXCL8, CXCL11, CXCL12,
Weak*: CXCL9, CXCL10, CXCL13

LukE, HlgA, PvDBP, PkDBP

ACKR2
CCL2, CCL3, CCL3L1, CCL4, CCL4L1, CCL5, CCL7, CCL8,

CCL11, CCL12, CCL13, CCL14, CCL17, CCL22
CXCL10 HIV gp120, Staphopain A

ACKR3 vCCL2 CXCL11, CXCL12
Adrenomedullin, Adrenorphin, BAM18/22,

Dynorphin A/B, MIF, Nociceptin NH2, Peptide E

ACKR4 CCL19, CCL20, CCL21, CCL22, CCL25 – –
Atypical chemokine receptors bind chemokines of CC and CXC classes and have non-chemokine ligands. ACKR1 is targeted by Plasmodium vivax and Plasmodium knowlesi Duffy Binding
Proteins (PvDBP and PkDBP) and by Staphylococcus aureus toxin proteins Leukocidin E (LukE) and g-hemolysin A (HlgA). *Chemokines demonstrated weak binding affinity to ACKR1 in
competition assays and their physiological relevance is uncertain. ACKR2 has been reported to bind HIV envelope glycoprotein gp120 and is a substrate for S. aureus cysteine protease Staphopain
A. ACKR3 binds numerous peptides, the peptide hormone adrenomedullin, endogenous opioid peptides in the dynorphin, enkephalin, and nociceptin families, and macrophage migration
inhibition factor (MIF).
-, none reported.
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non-ELR+ CXCL11 (59). The next functional categorization was

regulation of “inflammatory” chemokines over “homeostatic”

chemokines since chemokines CXCL12 and CCL21 showed weak

ability to displace CXCL8 bound to ACKR1 (59). However, studies

have since described many roles for both chemokines in

inflammation and binding interactions have been reported

between ACKR1 and CXCL12 (60, 61). ACKR1 binds most

chemokines including the ELR+ CXC subfamily, and chemokines

CXCL10, CXCL13, and CCL1 that were reported as non-binders

were found to have weak but sub-micromolar affinities for ACKR1

on human erythrocytes (59). ACKR1 does not bind every

chemokine, for example CXCL4 and several lymphoid CC

chemokines have been shown not to bind ACKR1-expressing cells

(59, 62).

The binding profile of ACKR1 has been primarily surveyed

using radioligand displacement assays with pre-bound, high-affinity

ligands and erythrocyte ACKR1 that may underrepresent lower-

affinity interactions with chemokines or the influence of other

mediators on endothelial surfaces like glycosaminoglycans. This

selectivity was reported to play a role in filtering chemokines at high

endothelial venules (HEVs), where ACKR1 may restrict

inflammatory chemokines from entering secondary lymphoid

organs and interfering with chemokine sensitivity (62).

While ACKR1 is most readily detected on mature erythrocytes,

ACKR1 expression is highest in the bone marrow on progenitor

nucleated erythroid cells (NECs), where key cell contacts are made

with hematopoietic stem cells (HSCs) (63). The erythroid silent

variant (FyES), though providing malarial protection, loses this

developmental cue, resulting in a neutrophil phenotype with altered

surface markers and increased propensity to leave circulation (64,

65). The observed neutropenia, historically called “benign ethnic

neutropenia” and now more accurately “Duffy-associated

neutrophil count” (DANC), does not eliminate effective

inflammatory immune responses and is hypothesized to be

asymptomatic in otherwise-healthy patients (66–68).

Outside of the erythroid lineage, ACKR1 is expressed on

endothelial cells of post-capillary venules, where affinity for

certain chemokines results in immobilized gradients that direct

cell migration (69–71). A hallmark of tissue inflammation is

increased chemokine production, but chemokines must be

concentrated and displayed in the vascular compartment with a

coordinated gradient to effectively direct immune responses.

Endothelial ACKR1 function involves a combination of

chemokine retention, presentation to circulating leukocytes, and

trafficking from tissues to the luminal surface (72). ACKR1 is

distinguished from the other ACKRs by ligand-triggered

chemokine transcytosis through venular endothelial cells. ACKR1

has been shown to transport chemokines from basolateral to

luminal sides of endothelial cells and retain chemokines on the

apical surface promoting signaling through GPCRs (73–76). One

demonstration of this function is neutrophil diapedesis, where

ACKR1 concentrated at endothelial junctions binds and

exchanges CXCL1 and CXCL2 chemokines to direct neutrophils

and prevent reverse migration (77). These functions at the

endothelium have been shown to modulate neuroinflammation as

well, by trafficking chemokines and immune cells across the blood-
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brain barrier (78, 79). ACKR expression is detected in the brain on

cerebellar Purkinje cells, where it may regulate cellular excitation for

smooth motor control (53, 80). Further studies of ACKR1 in

different tissues, including neurons, and with non-chemokine

ligands may reveal additional complexity and specialized functions.
ACKR1 and infectious disease

The extracellular domain of ACKR1 is a potential target to

inhibit pathogenicity mechanisms of atypical malaria, S. aureus, and

HIV. Plasmodia malarial parasites replicate and mature inside

human reticulocytes and erythrocytes, and the “atypical” P. vivax

and P. knowlesi parasites identify these targets by secreting Duffy

Binding Protein (DBP), which binds to and oligomerizes around the

N-terminal domain of ACKR1 (81). While P. falciparum secretes

multiple soluble factors, atypical malaria invasion can be avoided

with the erythroid silent polymorphism or by blocking the DBP-

ACKR1 binding interface with inhibitory chemokines or antibodies

(51, 82, 83). Crystal structures have been solved showing a dimer of

PvDBP dimers binding a peptide corresponding to ACKR1 residues

14-43. The receptor peptide could be resolved between residues 19-

30 as an amphipathic a-helix structure with Y30 oriented towards a

positively charged pocket (84). An ACKR1 mimetic was designed

from this N-terminal helix, with the DBP-binding residues grafted

onto a stable scaffold (85). The engineered protein could

successfully inhibit DBP dimerization and binding to

erythrocytes. Non-falciparum malaria, particularly from P. vivax,

is an increasingly widespread disease that can cause severe or fatal

illness, and the dependence on ACKR1-mediated invasion provides

a prime therapeutic target (86).

A role for ACKR1 has been proposed in HIV pathogenesis,

however the potential mechanisms of interaction are unclear. HIV

uses chemokine receptors CXCR4 or CCR5 as co-receptors for

targeting leukocytes, and the CCR5 inhibitor Maraviroc can

successfully prevent binding by viral glycoproteins (87). Some

studies have proposed ACKR1 is involved in HIV interactions with

erythrocytes that promote infection of other blood cells or maintain a

viral reservoir (88–90). However, the FyES phenotype was not

confirmed to alter HIV susceptibility or disease progression (91, 92).

ACKR1 is also a target for Staphylococcus aureus toxins LukED

and HlgAB (93). S. aureus bacteremia is particularly dangerous

because these pore-forming, bicomponent toxin systems cause

hemolysis and vascular leakage when they engage ACKR1 on red

blood cells and endothelial junctions (94, 95). A crystal structure of

the LukE toxin protein and the ACKR1 N-terminus resolved

residues 34-46 of the receptor with Y41 stabilized in a lysine and

arginine-enriched viral pocket, similar to the mechanism of

interaction observed in the crystal structure of PvDBP and

ACKR1 (96). Further analysis using time-resolved mass

spectrometry and resonance energy transfer from a C-terminal

bioluminescent tag suggests toxin binding may modulate receptor

conformation to form ACKR1 homodimers and even alter

interactions with intracellular Gai1 subunits (97). Structure-

guided strategies targeting ACKR1 could be useful to address

pathogenicity mechanisms of significant infectious agents.
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ACKR1 and pathoinflammation

Immune dysregulation involves an excess of chemokines and

other soluble inflammatory mediators and can incur tissue damage

from resultant immune cell infiltrates. Modulation of the

chemokine network to treat autoimmune disease has yielded

promising leads, but few have shown clinical effectiveness

and safety (98, 99). Currently trials are ongoing for a CCR9

antagonist for Crohn’s disease and a CCR1 antagonist for

rheumatoid arthritis (100, 101). Reparixin, an allosteric CXCR1

and CXCR2 blocker, did not progress past a phase 3 trial as a

drug adjuvant for pancreatic islet allotransplantation to treat

type 1 diabetes, but it is still a candidate for ongoing trials for

metastatic breast cancer and COVID-19 related acute lung injury

(102–104). Alternatively, blocking chemokines may decrease

autoinflammation, and an antibody drug bertilimumab targeting

CCL11 was designed to prevent eosinophil-mediated autoimmune

damage in bullous pemphigoid skin disorder and inflammatory

bowel disease (105, 106). Administration of anti-CXCL10 antibody

was a promising strategy to limit cytotoxic T-cell liver damage, but

clinical utility was hindered by continuous CXCL10 secretion and

retention on endothelial cells (107, 108).

Controlling chemokine concentrations via ACKR1 could

contribute to the success of these drug strategies or offer new

avenues for regulating immune responses. ACKR1 regulation may

contribute to resolution of chemokine-driven inflammation.

ACKR1 binds chemokines at the inflamed synovial endothelium,

and diminished expression of ACKR1 may be associated with

rheumatoid arthritis (109). People with the FyES phenotype that

decreases erythrocyte ACKR1 were observed to have increased IgE

in serum samples and higher susceptibility for asthma (110).

Knocking out all ACKR1 expression in an endotoxin-induced

mouse model of inflammation was shown to increase lung and

liver damage from granulocytic infiltrates (111). These studies

support a protective role for ACKR1 by decreasing circulating

chemokine levels, particularly through expression on erythrocytes.

However, ACKR1 on the endothelial surface may have

separate functions in chemokine retention and has been

observed to increase leukocyte recruitment and activity (112).

Endothelial ACKR1 expression may potentiate respiratory

distress, as seen in patients with suppurative pneumonia, and

require balance from erythrocyte ACKR1 to avoid acute lung

injury (113, 114). This finding has been reinforced in mouse

models of lung inflammation, where studies show that ACKR1

knockout mice are protected from neutrophil-mediated tissue

damage (115, 116). ACKR1 receptors supporting chemokine-

mediated leukocyte infiltration have also been reported to

contribute to patient lesions of giant cell/temporal arteritis and

nephrotoxicity in a mouse model of renal failure (117, 118).

ACKR1 can also facilitate neutrophil reverse transendothelial

migration and indirectly cause systemic inflammation (119). Using

aged mice subjected to IL-1 stimulation, ACKR1 was shown to

concentrate mast cell derived CXCL1 at endothelial junctions,

causing desensitization of CXCR2 on circulating neutrophils and

dysregulated chemotaxis. Without tight regulation of chemokine
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patterns, the activated neutrophils migrated to the lung leading to

vascular leakage, which could be a targetable mechanism for aging-

related inflammation or acute lung injury such as COVID-19

pneumonia (120, 121). An increase in ACKR1 expression was

also detected in humoral and cellular rejection of renal allografts,

but it remains unclear if upregulation is induced by an

inflammatory program, or which component of graft rejection

would be influenced (122, 123).

Chemokines are also important mediators of chronic

inflammatory damage in cardiovascular disease, including

atherosclerosis, where chemokine concentrations, combinations,

and oligomerization all contribute to initiation and progression of

vascular lesions (124). ACKR1 involvement and targeting to treat

atherosclerosis was initially proposed because endothelial

dysfunction and chemokines like CXCL8 immobilized on

erythrocyte membranes contribute to plaque formation and

coronary artery disease (125, 126). In an atherosclerosis mouse

model, knocking out ACKR1 led to diminished plaque formation,

cellular infiltrate in the vessel walls, and activation of macrophages

(127). As the chemokine network is further studied in the context of

cardiovascular diseases, ACKR1 binding inflammatory chemokines

may become a relevant drug target. More detailed investigation is

required to discern the role of ACKR1 in acute and chronic phases

of inflammation and what changes in cellular immune responses

may be feasible by targeting ACKR1.
Cancer angiogenesis,
metastasis, prognostics

Therapeutic cancer interventions include drugs to attack

primary tumors or alter pro-metastatic signals and biomarkers for

prognostic screening. Chemokine patterning and chemokine

receptor signaling are integral to the proliferation and spread of

tumor cells (128). A challenge to targeting CKRs in cancer is that

the same chemokines that stimulate tumor growth and

neovascularization can also activate and direct tumor-killing

immune cells. For example, CCL5 signaling through CCR5

supports recruitment of anti-tumor natural killer cells and

cytotoxic T cells, but also stimulates pro-tumor, tissue-resident

myeloid cells and lymphocytes (129). Nevertheless, the chemokine

receptor drugs that have demonstrated promising anti-cancer

activity in clinical trials, particularly antagonizing CCR2, CCR4,

CXCR2, and CXCR4, emphasizes the importance of studying

chemokine regulation and receptor mechanisms (130).

Neovascularization of an emerging tumor is an essential process

to tumor growth and vascular access that involves distorting the

balance of pro and anti-angiogenic chemokines (131). Angiogenesis

is difficult to target because it can be triggered by tumor cells

through an increase in CXCR2 agonism, or by a change in the

cellular tumor infiltrate that favor tumor-associated macrophages

(132). The mechanism of ACKR1 regulating pro-cancer chemokine

signaling involves interplay between endothelial cells and

erythrocytes that influences the activation of GPCRs CXCR2 and

CXCR3. ACKR1 and the ACKR subfamily may balance chemokine
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abundance and patterning to benefit host immune cell recruitment

that is lost in unregulated, aggressive cancer types (133, 134).

Studies show that when ACKR1 is expressed on malignant cells

it is protective against tumor angiogenesis and subsequent

metastasis. Proposed contributions of ACKR1 are shown in

Figure 3. When transgenic ACKR1+ non-small cell lung cancer

cells were implanted in SCID mice, the resulting tumors had

decreased vascularization, and metastatic potential (135).

Immunoassay for chemokines secreted by ACKR1+ tumor cells

showed a decrease in CXCL5 and CXCL8, and chemokine detection

suggested the chemokines were bound by ACKR1 and internalized

or immobilized on the cell surface rather than removed from the

tumor microenvironment. Another study injected mice with

different cancer cell lines that expressed high or low levels of

ACKR1 levels to show that cancer invasiveness was inversely

related to ACKR1 activity (136). MDA-MB-231 breast

adenocarcinoma cells were used to represent aggressive breast

cancer with low endogenous ACKR1 expression, and MDA-MB-

435 melanoma cells were used to model an ACKR1-expressing

tumor (137, 138). Testing in either cell culture or the tumor
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xenografts showed that ACKR1 expression could prevent the

spike of CCL2 and CXCL8 released into the growth media or

tumor microenvironment. These findings were correlated with a

breast cancer clinical cohort, where patients with higher levels of

detectable ACKR1 had less invasive cancers and lower mortality

rates. Altering the global ACKR1 expression also changes the tumor

microenvironment. ACKR1 global knockout in a spontaneous

murine prostate cancer model resulted in less dense, more

necrotic tumors with increased intratumor concentrations of

CXCL1 and CXCL2 (139). Overexpression of the endothelial

ACKR1 in mice implanted with melanoma tumors demonstrated

inhibition of tumor growth and vascularity and showed an increase

in CD4+ and CD8+ T-cell and macrophage infiltration (140).

Angiogenesis is a continual process in healthy tissue that

involves migration, proliferation, and differentiation and ACKR1

could influence feedback mechanisms triggered by CXCR2

signaling pathways. A study investigated how ACKR1 expression

on non-malignant endothelial cells could decrease capillary

formation and detected an upregulation of senescence biomarkers

(141). In pancreatic cancer cells lines, co-expression of ACKR1 in
FIGURE 3

ACKR1 and tumor microenvironment Chemokine signaling in the tumor microenvironment is regulated by ACKR1 expression. Left panel describes
chemokine effects that promote tumor phenotypes. ACKR1 (black) expression can be diminished on tumor cells or by the FyES polymorphism.
Angiogenesis can be triggered by chemokines secreted from TAMs, stromal cells, or by cancer cells themselves via activation of endothelial CXCR2
(red). Cancer cells release numerous chemokines, including CCL2, CCL5, CXCL8, and others that can act to suppress anti-tumor immunity. Various
cancer types express a panel of CKRs (blue) including CCR1, CCR2, CXCR2, CXCR4, and others that support tumor proliferation and metastasis.
Primary tumors can silence expression of chemokines like CXCL12 and increase expression of CKRs like CXCR4 to promote metastasis. Right panel
shows proposed mechanisms of ACKR1 regulation. ACKR1 receptors on erythrocytes can act as a sink to buffer chemokine levels and may have
interactions with ACKR1 expressed on endothelial cells. ACKR1 enrichment at endothelial junctions promotes neutrophil diapedesis via CXCL1 and
CXCL2 exchange, and increased endothelial ACKR1 improves recruitment of macrophages, CD4+ and CD8+ T-cells. Expression of ACKR1 in cancer
models or patient tumor samples has been shown to modulate CCL2 and CXCL8, ligands of CCR2, CCR4, and CXCR2. ACKR1 modulates many
chemokines and regulation of multiple CKRs may contribute to the improved clinical outcomes observed. TAM, Tumor associated macrophage;
MDSC, Myeloid-derived suppressor cell; FyES RBC, “Erythroid-silent” erythrocyte; CKR, chemokine receptor.
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CXCR2+ tumors was sufficient to inhibit CXCL8-triggered

activation of STAT3 and mediators of epithelial-mesenchymal

transition (142, 143). Blocking these oncogenic pathways is an

important strategy to induce cellular senescence and restore the

anti-tumor effects of immune defenses (144, 145). CXCR2 has a

complex role in tumor progression, as receptor overstimulation and

autocrine activation may also trigger and sustain a p53-mediated

cellular senescence (146). Furthermore, it is possible ACKR1 could

contribute cell cycle regulation through other interactions including

the tumor suppressor CD82/KAI1, a multifunctional surface

tetraspanin. A study found that CD82+ cancer cells have

increased adherence to ACKR1+ vascular endothelial cells and

suggested that a direct interaction leads to p21 cyclin-dependent

kinase inhibition and prevention of metastatic escape (147). A

follow-up study also detected p21 upregulation connected to

CD82 and potentially ACKR1, and implied that CD82 opposes

CXCL8 effects by downregulating secretion from tumors and

displacing CXCL8 from endothelial ACKR1 (148). The data

interpretation from these reports is limited without testing

CXCR2 signaling or reliable antibody detection of ACKR1.

Another important target of anti-cancer therapeutics is

metastasis, the major cause of cancer mortality (149). Blocking

chemokine signaling is an appealing strategy because metastatic

invasion of susceptible cellular niches is inefficient without

chemokine-directed migration and often characterized by

chemotactic GPCR overexpression (150). ACKR1 may play a role

in fine-tuning the complex chemokine patterns that are hijacked by

migrating cancer cells. Many of the studies that observed an inverse

correlation between the proliferative potential of primary tumors

and ACKR1 expression also reported a decrease in metastatic

phenotype. Another possible mechanism is alteration of the

chemokine oligomeric equilibrium. Chemokine dimers elicit

distinct signaling from monomeric chemokines, potentially

representing feedback inhibition that could be used as an

antimetastatic cue (5, 151, 152). Multiple factors increase the

propensity of chemokine dimerization, including GAGs and

interactions with the N-termini of GPCRs (153, 154). ACKR1

also shows similar activity by binding preferentially to the dimeric

form of CXCL12 (155). Improved quantitation of chemokine

concentrations in different cellular compartments and the relation

between dimerization and chemotaxis are needed to predict the

effects of ACKR1 preferentially binding certain chemokines

as dimers.

Testing ACKR1 genotype and expression in tumor biopsies may

be a clinically useful cancer biomarker. Multiple studies have

indicated that higher ACKR1 expression levels in breast cancer

tumors improve relapse-free patient survival, while loss of ACKR1

expression, frequently in patients with African ancestry, is an

indicator of increased tumor aggressiveness, metastatic

propensity, and mortality (156–162). Detailed analysis is

warranted for different cancer types, since comparing prostate

cancer incidence within patient groups did not detect a strong

correlation between the FyES polymorphism and increased cancer

risk (163, 164). Additionally, blood typing to discern ACKR1

phenotype could be an effective, low-cost way to inform cancer
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treatment. ACKR1-mediated DANC neutropenia affects patient

care by impeding administration of drugs like clozapine or

azathioprine and leading to potentially unwarranted bone marrow

biopsies (165–167). Patients with FyES phenotype are at increased

risk of side effects from chemotherapy but using the same

neutropenic cutoff values may unnecessarily delay initiation and

prolong duration of cancer treatment (168–172). Adapting standard

of care for patients with DANC could provide an opportunity to

address disparate treatment outcomes with a precision medicine

approach. Overall, a cancer-protective role for ACKR1 is supported

by cell culture, mouse models, and genetic associations, and

independent anti-angiogenic properties for endothelial, erythroid,

and tumor ACKR1 expression can contribute to improved

patient outcomes.
Discussion

ACKR1 exhibits favorable structural features, expression

profile, and biological activity for development of therapeutic

interventions. More investigation is needed to determine the

extent of control over chemokine scaffolding by ACKR1 that can

be attained by different classes of molecules. Antibodies binding to

different ACKR1 epitopes do not uniformly inhibit chemokine

binding, suggesting some capacity to alter ACKR1 specificity.

Development of screening readouts for binding that can

supplement competition assays will facilitate identification of

small molecules. The independence of chemokine-binding and

DBP recognition sites located in the extended N-terminus

indicates that this domain could be isolated to provide an

effective ACKR1 decoy, similar to a strategy proposed for the

ACKR2 N-terminus. The positioning and functions of ACKR1

receptors in the hematopoietic compartment, on the surface of

erythrocytes, and at the junctions of endothelial regions specialized

for cell trafficking provide an opportunity to control immune cell

migration into tissues. Additionally, further exploration of the

impact of ACKR1 expressed at the blood-brain barrier and on

different neuronal cell types may reveal a targetable role in

regulating neuroinflammation. Still, the mechanisms of ACKR1

retaining or sequestering different chemokines have yet to be

elucidated in detail, particularly in the context of the tumor

microenvironment. Assigning ACKR1 expression to specific cell

types within and around tumors of different origins will be needed

to understand the correlation observed in experimental models

between ACKR1 expression and decreased malignant phenotypes.

Targeting ACKR1 is an appealing approach for new compounds

that modulate chemokine biology without interfering with the

chemokine sensitivity and signaling functions of immune cell

CKRs. ACKR1 in circulation is only reliably found in post-

capillary venules and erythrocytes rather than myeloid or

lymphoid cells, suggesting targeting ACKR1 would not directly

impact immune effector function. While some studies report

ACKR1 detection on other cells like bone marrow macrophages,

these reports use a polyclonal antibody which has been shown to

recognize non-ACKR1 surface markers (173, 174). Furthermore,
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unlike the other ACKRs, ACKR1 functions seem independent of G-

protein or b-arrestin signaling pathways (175). The restricted tissue

and signaling capabilities suggest side effects of ACKR1 inhibition

may be modest compared to the signaling GPCRs or other ACKRs.

As ACKR1 biology and molecular pharmacology are examined in

greater detail, development of new ligands to alter its function will

be useful as research tools and may enable amelioration of specific

disease pathologies.

Current opportunities for intervention should include

shielding extracellular ACKR1 residues from virulence factors of

important human pathogens. This approach may have multiple

benefits, including preventing erythrocytic replication of

Plasmodia and maintaining the integrity of endothelial junctions

during S. aureus infections. Additionally, animal models, cancer

cell experiments, ACKR1 biochemistry, and meta-analysis of

clinical cohorts all indicate ACKR1 activity impedes cancer

progression. This underscores the importance of elucidating

ACKR1 chemokine-binding mechanisms and the impact on

immune cell responses to tumors to take steps towards

enhancement or reconstitution of ACKR1-mediated protection

in cancer therapy. Until then, ACKR1 may be used as a prognostic

indicator for the aggressiveness of different cancer types and may

be inform treatment regimens for patients with different patterns

of ACKR1 expression. The next steps include detailing the binding

interactions of different chemokines to ACKR1 and the

mechanisms that alter receptor expression and enable

chemokine trafficking through cells. Future development and

implementation of therapeutics that target the chemokine

network should consider the role of ACKR1 in patient

physiology and the possibility of targeting ACKR1 itself.
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