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patients with pancreatic
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1Department of General Practice, Shanghai East Hospital, Tongji University School of Medicine,
Shanghai, China, 2Department of Geriatrics, Shanghai East Hospital, Tongji University School of
Medicine, Shanghai, China, 3Department of General Surgery, The Second Affiliated Hospital of
Nanchang University, Nanchang, China, 4Department of Pathology, Hunan Provincial People’s Hospital,
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Background: Treatment of cancer with pyroptosis is an emerging strategy.

Molecular subtypes based on pyroptosis-related genes(PRGs) seem to be

considered more conducive to individualized therapy. It is meaningful to

construct a pyroptosis molecular subtypes-related prognostic signature

(PMSRPS) to predict the overall survival (OS) of patients with pancreatic

adenocarcinoma(PAAD) and guide treatment.

Methods: Based on the transcriptome data of 23 PRGs, consensus clustering was

applied to divide the TCGA and GSE102238 combined cohort into three

PRGclusters. Prognosis-related differentially expressed genes(DEGs) among

PRGclusters were subjected to LASSO Cox regression analysis to determine a

PMSRPS. External cohort and in vitro experiments were conducted to verify this

PMSRPS. The CIBERSORT algorithm, the ESTIMATE algorithm and the

Immunophenoscore (IPS) were used to analyze the infiltrating abundance of

immune cells, the tumor microenvironment (TME), and the response to

immunotherapy, respectively. Wilcoxon analysis was used to compare tumor

mutational burden (TMB) and RNA stemness scores (RNAss) between groups.

RT-qPCR and in vitro functional experiments were used for evaluating the

expression and function of SFTA2.

Results: Based on three PRGclusters, 828 DEGs were obtained and a PMSRPS was

subsequently constructed. In internal and external validation, patients in the high-

risk group had significantly lower OS than those in the low-risk group and PMSRPS

was confirmed to be an independent prognostic risk factor for patients with PAAD

with good predictive performance. Immune cell infiltration abundance and TME

scores indicate patients in the high-risk group have typical immunosuppressive

microenvironment characteristics. Analysis of IPS suggests patients in the high-risk

group responded better to novel immune checkpoint inhibitors (ICIs) than PD1/

CTLA4. The high-risk group had higher TMB and RNAss. In addition, 10 potential
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small-molecule compounds were screened out. Finally, we found that the mRNA

expression of SFTA2 gene with the highest risk coefficient in PMSRPS was

significantly higher in PAAD than in paracancerous tissues, and knockdown of it

significantly delayed the progression of PAAD.

Conclusions: PMSRPS can well predict the prognosis, TME and immunotherapy

response of patients with PAAD, identify potential drugs, and provide treatment

guidance based on individual needs.
KEYWORDS

pancreatic cancer, pyroptosis molecular subtypes, prognostic signature, tumor immune
microenvironment, tumor stemness, chemotherapeutic drug sensitivity, small

molecule compounds
1 Introduction

Pancreatic adenocarcinoma (PAAD) is one of the most lethal

malignancies, with a 5-year survival rate of only 11% after diagnosis,

and is expected to become the second leading cause of cancer death in

the United States over the next few decades (1, 2). PAAD is difficult to

detect in the early stage, and metastatic spread often occurs when it is

detected. It is estimated that only about 15-20% of patients with

PAAD currently have the chance to have a radical cure through

surgery, and the majority of patients’ prognoses are improved by

adjuvant systemic chemotherapy (1). Despite this, patients with

PAAD who receive a combination of surgery, chemotherapy, and

radiotherapy benefit only in a small percentage of cases (3). In

addition, four major immune defects also prevent the majority of

patients with PAAD from responding optimally to emerging

immunotherapies, and they are the absence of effective intratumoral

T cells, heterogeneous dense stroma, immunosuppressive tumor

microenvironment, and a lack of tumor-killing T cells (4). In short,

the poor efficacy and prognosis of patients with PAAD make it

particularly important to construct a new prognostic signature and

guide individual treatment plans.

Pyroptosis is a new form of programmed cell death, which

manifests as swelling of cells until their membrane ruptures,

activating a strong inflammatory response by releasing cellular

contents. It is biochemically characterized by inflammasome

formation, activation of the caspase family and gasdermin,

formation of membrane pores, and release of numerous

proinflammatory cytokines, such as IL-1b and IL-18 (5–8).

Pyroptosis-induced inflammatory responses can protect the host

from microbial infection through classical or non-classical pathways

(9). In addition to infectious diseases, more and more studies have

recently confirmed the role of pyroptosis in malignant tumors’ s

occurrence and development (10, 11). Chen et al. reported that the

combination of ruthenium (II) polypyridyl complex D-Ru1 and Taxol
enhance the anti-cancer effect on Taxol-resistant cancer cells through

Caspase-1/GSDMD-mediated pyroptosis (12). Zhang et al. showed

that injecting intratumorally with DM-aKG significantly inhibited

tumor growth and metastasis through caspase-8-mediated GSDMC-

dependent pyroptosis (13) . Moreover , commonly used
02
chemotherapeutic drugs, such as cisplatin and paclitaxel, are also

effective at inhibiting tumor proliferation and metastasis by inducing

pyroptosis (14, 15).

In recent years, gene expression signatures based on pyroptosis-

related genes(PRGs) have been reported to predict the prognosis of

many cancers, including bladder cancer (16), hepatocellular

carcinoma (17), uveal melanoma (18), PAAD (19) among others.

However, identification of molecular subtypes on the basis of gene

expression seems to be a promising new approach as it helps to

rapidly identify cancer features and derive the most appropriate

treatment strategies (20). A high quality review also confirmed that

the classification of pancreatic tumors based on their molecular

characteristics is important to improve the accuracy of clinical

treatment decisions (21).

The intervention of pyroptosis identifies a new area of research

for the prognosis and treatment of patients with PAAD. Therefore, we

established a novel prognostic signature based on the pyroptosis

molecular subtype to predict OS and better guide treatment in

patients with PAAD.
2 Materials and methods

2.1 Collection of data

The RNA expression data and clinical data of four independent

PAAD cohorts(TCGA-PAAD, n = 182 [178 tumors, 4 normal];

GSE102238, n = 100 [50 tumors, 50 normal]; GSE57495, n=63[63

tumors]; ICGC-PACA-CA, n = 262 [262 tumors]) were downloaded

from the following public databases: The Cancer Genome Atlas

(TCGA) (https://portal.gdc.cancer.gov/), the Gene Expression

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and the

International Cancer Genomics Consortium (ICGC) (https://dcc.

icgc.org/). Cell lines gene expression matrices for primary PAAD

were obtained from the Cancer Cell Line Encyclopedia(CCLE) dataset

(https://portals.broadinstitute.org/ccle/about). TCGA and

GSE102238 cohorts are used to build the signature, and the ICGC

and GSE57495 cohorts are used to externally verify the signature. To

merge TCGA with the GSE102238 cohort, we proceeded as follows.
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First, we converted the fragments per kilobase of transcript per

million value of the RNA expression data of the TCGA cohort to

transcripts per kilobase million value. Then, the intersection genes of

TCGA and GSE102238 cohorts were extracted, and the

corresponding expression data were matched. Next, we removed

normal samples of the TCGA and GSE102238 cohorts, converted

the TCGA TPM data to log2(TPM+1) data, and normalized the data

from the GSE102238 cohort. Finally, we merged the processed TCGA

with the GSE102238 cohort into a cohort, and used the ComBat

function of the “SVA” package to remove batch effects on the merged

data(n=227) (22). To reduce the probability of non-cancer death, we

excluded patients with PAAD with a survival time of<30 days.
2.2 Establishment of molecular subtypes
based on PRGs expression and screening of
differentially expressed genes

52 PRGs (Supplementary Table 1) were from previous researches

(23–25). The TCGA and GSE102238 cohorts were combined into one

cohort (n=227), and the expression data of 23 PRGs were obtained

after matching with 52 PRGs. k-means clustering algorithm was used

to obtain the different molecular subtypes associated with PRGs

expression. Every molecular subtype was named pyroptosis-related

gene cluster (PRGcluster). Single sample gene set enrichment analysis

algorithm (ssGSEA) and Normalized enrichment score (NES) were

used to quantify the infiltrating abundance of 23 immune cells in

different PRGclusters (26). Principal component analysis (PCA) can

determine whether the three PRGclusters can be separated. Gene set

variation analysis (GSVA) enrichment analysis was used to discover

the underlying biological functions between PRGclusters. |log2FC|

>0.585 and false discovery rate (FDR)<0.05 were considered as the

criteria for screening differentially expressed genes (DEGs) among the

three PRGclusters (27).
2.3 Gene enrichment analysis

The Gene Ontology(GO) and Kyoto Encyclopedia of Genes and

Genomes(KEGG) gene enrichment analysis was used to explore the

relevant cytological functions and pathways of DEGs. q-value<0.05

was the cutoff criterion for determining whether a gene is

significantly enriched.
2.4 Establishment and identification of
prognostic signature

Univariate Cox regression analysis helped screen prognosis-

related differentially expressed genes (PRDEGs). The TCGA

+GSE102238 cohort composed of transcriptome data of PRDEGs

and the corresponding survival information were randomly divided

into the training cohort and testing cohort. The least absolute

shrinkage and selection operator (LASSO) Cox regression analysis

was performed on PRDEGs in the training cohort to construct a

refined prognostic signature (28). Here is the formula for the risk

score:
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Risk score =o
n

i=1
coef (Xi)� exp(Xi)

“Coef(Xi)”, “exp(Xi)”, and “n” represent the gene coefficient,

expression level, and number of genes, respectively. The median

risk score of the training cohort divided patients in the training

cohort and validation cohorts into the low- and high-risk groups.

Kaplan-Meier survival curves and time-dependent ROC were used to

evaluate the prognostic predictive performance of pyroptosis

molecular subtypes-related prognostic signature (PMSRPS). To

analyze PMSRPS’ independent prognostic performance, univariate

and multivariate Cox regression analyses were performed.
2.5 Immune and mutant landscapes
between different risk groups

The Cell-type Identification By Estimating Relative Subsets Of

RNA Transcripts (CIBERSORT) algorithm was used to quantify

immune cell infiltration. Based on the Estimation of STromal and

Immune cells in Malignant Tumours using the Expression data

(ESTIMATE) algorithm (29), we calculated the stromal score,

immune score, ESTIMATE score (sum of Stromal and immune

scores) for each sample to quantify tumors Microenvironment.

Potential immune checkpoint molecules refer to published papers

(30, 31) (n=40, Supplementary Table 2). Immunophenoscore (IPS)

was downloaded from The Cancer Immune Atlas (TCIA) (https://

www.tcia.at/home) to compare responses to immune checkpoint

inhibitors(ICIs) across different risk groups. TMB, the number of

gene mutations, and the type of gene mutation were derived from the

somatic mutation data(n=182) of the TCGA database. The gene copy

number (n=185) was downloaded from the specific website(https://

xena.ucsc.edu) to observe the copy number variation of PRGs. The

RNA stemness scores (RNAss) were downloaded from the Pan-

Cancer Atlas Hub (https://pancanatlas.xenahubs.net) (32).
2.6 Chemotherapeutic drug sensitivity and
Identification of small-molecule compounds

Half maximal inhibitory concentration (IC50) was using for

predicting the sensitivity of chemotherapy drugs in the high- and

low-risk groups. |log2FC|>0.585 and FDR<0.05 were the screening

criteria for DEGs between high- and low-risk groups. After uploading

the up-regulated genome (log2FC>0) and down-regulated genome

(log2FC<0) to the L1000FWD website (https://maayanlab.cloud/

L1000FWD), a table including drug name, similarity score, and q-

value among others will be obtained. Furthermore, 2D and 3D images

of small molecule compounds were obtained from the PubChem

website (https://pubchem.ncbi.nlm.nih.gov/).
2.7 Cell culture and transfection

The human PAAD cell line CFPAC-1 was derived from Procell

(CL-0059, Wuhan, China) and was cultured in a special medium

(Procell, CM-0059) in a 37°C, 5% CO2 incubator. CFPAC-1 cells have
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been identified by short tandem repeat (STR) sequences. The SFTA2-

specific siRNA and negative control used in this study were from

GenePharma (Shanghai, China). The sequences of the siRNAs are

shown in Supplementary Table 3. CFPAC-1 cells were transfected

using Lipofectamine 3000 reagent (Invitrogen, Waltham, USA)

according to standard guidelines.
2.8 Samples and real-time quantitative PCR

The tumor tissue and paired adjacent tissue of PAAD diagnosed

after operation were collected and stored at -80°C. Ethical approval

was obtained from the Medical Research Ethics Committee of the

Second Affiliated Hospital of Nanchang University. Consistent with a

previous study (33), total RNA was extracted from tissues and

transfected cells, respectively, and reverse transcription and real-

time PCR were performed. The following primers used in the

experiments are also shown in Supplementary Table 3.
2.9 In vitro functional experiments

2.9.1 Cell counting kit-8
Cells in each group were seeded into 96-well plates at 5 × 103 cells

per well. After the cells were attached, adding 10 ml of CCK-8 reagent
(GlpBio, GK10001, USA) to each well at 0, 24, 48 and 72 hours,

respectively. After culturing for two hours, the absorbance value of

each well was detected using a microplate reader at a wavelength of

450 nm.

2.9.2 5-ethynyl-2’-deoxyuridine assay
Cells in each group were seeded into 96-well plates at 1.5 × 104

cells per well. The next day, EdU staining was performed using an

EdU kit (RiboBio, C10310-2, China) according to the manufacturer’s

instructions. The percentage of EdU positive cells was calculated by

the following formula: EdU positive rate=number of EdU positive

cells/number of DAPI positive cells×100%.
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2.9.3 Transwell migration assay
Cells in each group were seeded into transwell chambers

(Corning, 3422, USA) at 5 × 104 cells per well. After 24 h, cells

were fixed with 4% formaldehyde solution for 20 min, and then

stained with 0.4% crystal violet solution for 20 min. The cells inside

the cell were wiped with a moist cotton swab and allowed to dry, and

the migrated cells outside the transwell chambers were counted using

an inverted microscope.
2.10 Statistical analysis

This study used R software version 4.1.1 to analyze data. Log-rank

test was used for survival analysis. Spearman correlation was used to

analyze the correlation of risk scores with immune cell infiltration

abundance, TMB, and ssRNA. Wilcoxon rank-sum test and chi-

square test were used to judge the significant difference(P<0.05)

between two or more groups.
3 Results

3.1 Effects of 52 PRGs on genetic variation,
expression level and prognosis of PAAD

Figure 1 shows the overall process of the study. Because of 52

PRGs obtained in this study were derived from ovarian cancer,

esophageal adenocarcinoma and glioma studies (23–25), whether

they have an effect on PAAD is uncertain. Therefore, we decided to

conduct preliminary verification of these PRGs. Somatic mutation

and gene expression data have been reported to help infer cancer

progression (34). Beside gene mutation, about 95% of patients with

PAAD have other genetic changes such as gene amplification and

deletion (35). Therefore, we focused on analyzing the genetic

variation and expression of PRGs in PAAD. The waterfall plot

(Figure 2A) showed the frequency and type of somatic mutation of

52 PRGs in TCGA-PAAD. We found that among 158 samples, there
FIGURE 1

Rough flow chart of this study.
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are 90 mutations with a frequency of 56.96%, and TP53

demonstrated the highest mutation frequency, and most samples

had the nonsense mutation(a type of point mutation in which a

change in a base mutates a codon representing an amino acid into a

stop codon, resulting in premature termination of peptide

synthesis). The copy number variation (CNV) is an important

basis and source of genetic variation (36). Figure 2B revealed that

CNV changes occurred in all 52 PRGs. Of these, 27 PRGs(51.92%)

were dominated by copy loss, 18 PRGs(34.62%) were dominated by

copy gain, and the remaining PRGs had the same copy loss and copy

gain frequency. The CNV of these genes on the chromosome is

shown in Figure 2C. Next, we compared the expression of 52 PRGs

in PAAD and normal pancreatic tissues by combining TCGA and

the Genotype-Tissue Expression project (GTEx)(https://

xenabrowser.net/datapages/) database. The results showed that 36

PRGs were significantly overexpressed and only 11 underexpressed

in PAAD (Figure 2D). We also explored the prognostic value of

PRGs matched with survival information and found that the

expression of the majority of PRGs (16/23) correlated with the

prognosis of patients with PAAD (Supplementary Figure 1). In total,

the genetic variation, expression level and prognostic changes

presented by 52 PRGs in PAAD indicated that they may play a

role in the occurrence and development of PAAD, and it is

convincing to use them for further analysis.
Frontiers in Immunology 05
3.2 Identification of pyroptosis molecular
subtypes and extraction of DEGs

Prevalent intratumoral and intertumoral heterogeneity has been

revealed an important cause of poor prognosis of PAAD. Therefore, in

recent years, increasing evidence supports the subtyping of pancreatic

tumors based on their molecular characteristics to improve the

accuracy of clinical decision-making on treatment (21). Among

them, transcriptome subtyping has been used by more and more

people because of its unbiased classification that is robust and

reproducible. Therefore, we conducted consensus clustering and

typing of 23 PRGs that matched transcriptome data and found that

the intergroup correlations were the lowest and the intragroup

correlations were the highest when clustering variable k = 3,

indicating that the joint cohort (n = 227, merged by TCGA and

GSE102238) could be well clustered into three subtypes namely

PRGclusters A, B, and C according to the expression of the 23 PRGs

(Figure 3A). The results of PCA analysis also confirmed the rationality

of this classification (Figure 3B). The results of the Kaplan-Meier

survival analysis showed that the OS of PRGcluster C was

significantly better than that of PRGclusters A and B (Figure 3C).

The results of ssGSEA analysis showed that PRGcluster B had the

highest infiltration abundance in most immune cells, which not only

included anti-tumor immune cells , but also pro-tumor
frontiersin.or
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FIGURE 2

The genetic variation landscape of 52 pyroptosis-related genes (PRGs). (A) Somatic mutation frequency and type of PRGs. (B) Copy number variation
frequency map of PRGs. (C) Copy number circle plot. (D) Differential expression of PRGs in the tumor and normal samples(Combined TCGA and GTEx
databases). ***P< 0.001.
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immunosuppressor cells and immune cells with function of anti-tumor

and pro-tumor, followed by PRGcluster A and PRGcluster C (P<0.05,

Figure 3D). Only the infiltrate abundance of Type.17.T.helper. cell and

CD56dim.natural. killer(NK) did not differ significantly among the

three PRGclusters. Next, we tried to find the correlation between the

prognosis of different PRGclusters and immune cell infiltration and

found that PRGcluster C had the least infiltration in some

immunosuppressive cells that promoted tumors: MDSC, immature B

cell, mast cell, plasmacytoid. dendritic cell, regulatory T cell(Tregs) and

Type.2.T.helper.cell, which seem to help understand why PRGcluster C

has the best prognostic effect. However, PRGcluster B has a lower

prognosis than PRGcluster C despite having the highest invasion

abundance among most antitumor immune cells. We speculate that

this is the result of the checks and balances and interactions between

different functional immune cells in PRGclsuter. Together these results

suggest a complex association between immune cell infiltration and

prognosis of different pyroptosis molecular subtypes of PAAD. The

heatmap presents the clinicopathological features of the three

PRGclusters (Figure 3E). In addition, we performed GSVA analysis

on three PRGclusters and found that PRGcluster A was highly

expressed in apoptosis, linoleic acid metabolism, and P53 signaling

pathway; PRGcluster B was highly expressed in infection, immunity,

pyroptosis, and various tumors; and PRGcluster C was up-regulated in

olfactory transduction and glycine serine and threonine metabolism

(Figure 3F). These results indicated that different types of pyroptosis

had significantly different effects on the prognosis, immune activity, and

biological function of patients with PAAD. To highlight these
Frontiers in Immunology 06
differences, a differential analysis of the expression levels of three

PRGclusters was performed, and a total of 828 DEGs were

obtained (Figure 3G).
3.3 The potential biological function
of DEGs

To better understand the potential function of 828 DEGs extracted,

we performed GO and KEGG analyses. The GO enrichment results

showed that DEGs were significantly enriched in leukocyte mediated

immunity and lymphocyte mediated immunity (biological process),

immunoglobulin complex, and external side of the plasma membrane

(cellular component), as well as antigen binding and immunoglobulin

receptor binding (molecular function) (Figure 4A). The KEGG

enrichment results revealed that DEGs prominently enriched in

staphylococcus aureus infection and hematopoietic cell lineage

among others (Figure 4B). Therefore, DEGs may have biological

functions that are relevant to cellular immunity and pyroptosis.
3.4 Verification of stability of pyroptosis
molecular subtypes and establishment
of PMSRPS

Next, we did a univariate Cox regression analysis for the DEGs

combined with survival information and got 276 PRDEGs
A B D

E F

G IH J

C

FIGURE 3

Molecular subtypes based on the expression of 23 PRGs and identification of DEGs. (A) 227 PAAD samples were divided into three PRGclusters using the
Euclidean algorithm. (B) Principal component analysis (PCA) among three PRGclusters. (C) Kaplan-Meier survival analysis among three PRGclusters.
(D) Comparison of immune cell infiltration abundance among three PRGclusters through ssGSEA analysis. (E) Heatmap showing clinicopathological
information of three PRGclusters. (F) GSVA analyses of any two PRGclusters. (G) The Venn map of 828 differentially expressed genes (DEGs). (H) A
sample of 276 DEGs associated with prognosis was divided into three geneClusters using the Euclidean algorithm. (I) Kaplan-Meier survival analysis
among three geneClusters. (J) Differential expression of PRGs among three geneClusters. *P< 0.05, **P< 0.01, ***P< 0.001. ns, no statistical difference.
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(Supplementary Table 4). Prior to grouping and modelling PRDEGs,

it was realized that PMSRPS were established based on pyroptosis

molecular subtypes(i.e. PRGclusters), failure to confirm the stability

of subtypes inevitably affects the credibility of the signature,

prompting us to perform another consensus clustering and typing

of PRDEGs that match transcriptional data (37). The optimal cluster

number supported the existence of three distinct and robust

geneClusters in patients with PAAD (Figure 3H). Among these

three geneClusters, the significant difference in OS was strikingly

consistent with the result of PRGclusters (Figure 3I). Also, the

infiltration abundance of 23 immune cells was highly in accordance

with the differences among the PRGclusters (Figure 3J). More

interestingly, we found that the majority of the geneClusters’

patients with PAAD came from the corresponding PRGclusters. In

the survival analysis, the proportions of PRGclusters A, B and C in

geneClusters A, B and C were 76.69%, 67.12% and 91.67%,

respectively. In the immunoinfiltration analysis, the proportions of

PRGclusters A, B and C in geneClusters A, B and C was 77.54%,

67.53% and 91.67%, respectively. This may provide a reasonable

explanation for the high similarity in the survival and immune cell

infiltration’ results between two clusters. All in all, these results

suggest that pyroptosis molecular subtypes we identified are robust

and reliable.

276 PRDEGs carrying transcriptomic data were subsequently

matched with survival information to get a TCGA+GSE102238

cohort(n=218). The cohort was equally divided into a training

cohort (n = 109) and a testing cohort (n = 109), and a significant

difference was not found in proportion of clinical data and database

sources between the two cohorts (Table 1). Next, we performed a

LASSO Cox regression analysis on these PRDEGs in the training

cohort (Figure 5A) and obtained a PMSRPS with the best fitting effect.

The signature was composed of SFTA2, NCAM1, and SPRR1B.

According to the risk coefficients of these three genes, we got a
Frontiers in Immunology 07
formula: Risk score=expression (SFTA2)×0.118+expression

(NCAM1)×(-0.256)+expression(SPRR1B)×0.109. The median risk

score of the training cohort, 1.053, divided the cohort of patients

with PAAD into the high- and low-risk groups. The Venn diagram

showed the relationship between clusters and risk scores, as well as

survival status (Figure 5B). By comparison, we observed that both

PRGcluster A and geneCluster A patients had significantly higher risk

scores than other clusters (P<0.001, Figures 5C, D). In addition, the

expression of 16 PRGs was also significantly different between the

high- and low-risk groups (P<0.05, Figure 5E).
3.5 Internal validation of PMSRPS

The Kaplan-Meier survival curve showed that in the training

cohort, the OS of patients with PAAD in the high-risk group was

worse than that in the lower-risk group (P=0.001, Figure 6A). Also,

the survival rate was obviously decreased in patients with PAAD with

increasing risk scores (Figure 6A). Time-dependent ROC curves

showed that the area under the curves (AUCs) for predicting 1-, 3-,

and 5-year survival were 0.732, 0.684, and 0.606, respectively, in the

training cohort (Figure 6A). As expected, we observed highly

consistent results in the testing and TCGA+GSE102238 cohorts (all

P<0.05, Figures 6B, C). This indicated that PMSRPS had a good

predictive performance for the prognosis of patients with PAAD.

Subsequently, we verified the independence, clinical correlation

and applicability of PMSRPS in the TCGA+GSE102238 cohorts. The

results showed that risk scores could independently predict poor

outcomes in patients with PAAD (P< 0.001, Figure 6D). That is, for all

patients with PAAD, the higher the risk score, the worse the

prognosis. There was also a significant relationship between risk

scores and T stage, and we found that the risk scores of T3-4 were

significantly higher than those of T1-2(P=0.029, Figure 6E), which
A B

FIGURE 4

Potential biological functions of 828 DEGs. (A) The results of GO enrichment analysis. (B) The results of KEGG enrichment analysis. q-value<0.05 was the
cutoff criterion for significant gene enrichment.
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FIGURE 5

The establishment of PMSRPS and its relationship to molecular subtypes and PRGs. (A) Lasso regression analysis. (B) The Venn plot shows the
relationship between molecular subtypes and risk score as well as survival state. (C) Distribution of risk scores among three PRGclusters. (D) Differences
in risk scores among three geneClusters. (E) Differences in PRGs expression between the high- and low-risk groups. *P< 0.05, **P< 0.01, ***P< 0.001.
TABLE 1 Comparison of clinical data between the training and testing cohorts.

Clinical information Training cohort (n=109) Testing cohort (n=109) P

Database TCGA 85 (77.98) 86 (78.90) 1.00

GSE102238 24 (22.02) 23 (21.10)

Survival time, year <=1 39 (35.78) 37 (33.94) 0.76

>1 and<=5 67 (61.47) 67 (61.47)

>5 3 (2.75) 5 (4.59)

Living state ALIVE 43 (39.45) 55 (50.46) 0.13

DEAD 66 (60.55) 54 (49.54)

Age <=65 59 (54.13) 58 (53.21) 1.00

>65 50 (45.87) 51 (46.79)

Gender Female 46 (42.20) 51 (46.79) 0.59

Male 63 (57.80) 58 (53.21)

T stage T1-2 20 (18.35) 17 (15.60) 0.72

T3-4 88 (80.73) 91 (83.49)

Unknow 1 (0.92) 1 (0.92)

M stage M0 60 (55.05) 61 (55.96) 1.00

M1 3 (2.75) 4 (3.67)

Unknow 46 (42.20) 44 (40.37)

N stage N0 37 (33.94) 38 (34.86) 0.96

N1 70 (64.22) 68 (62.39)

Unknow 2 (1.83) 3 (2.75)
F
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P>0.05 means no significant statistical difference.
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also seemed to help explain the propensity of high risk scores for poor

prognosis. In addition, results of applicability analysis showed that the

survival rate was lower in the high-risk group than in the low-risk

group when patients with age<=65 years (P= 0.001, Figure 6F) or >65

years(P= 0.082, Figure 6G), the gender of female or male (all P< 0.01,

Figures 6H, I), and the tumor T stage of T1-2 or T3-4 (all P< 0.05,

Figures 6J, K). This showed that PMSRPS could accurately predict

and distinguish the prognosis of high- and low-risk groups at different

ages, different genders, and different T stages. Taken together, the

above results suggested that PMSRPS was an independent

predictor of poor prognosis in patients with PAAD, and has

general applicability.
3.6 External cohort verification and
performance comparison of PMSRPS

To confirm the robustness of PMSRPS, we calculated the risk

scores of patients with PAAD in the ICGC and GSE57495 cohorts

using the same formula, and divided patients into the high- and low-

risk groups based on median risk score(1.053) (Figures 7A, F).

Likewise, we observed that the number of survivors decreased with

increasing risk scores (Figures 7A, F), and patients in the high-risk

group had significantly lower OS than those in the low-risk group (all

P< 0.01, Figures 7B, G). Time-dependent ROC curves showed that

AUCs for PMSRPS to predict 1, 3 and 5-year survival rates for

patients in ICGC cohort were 0.602, 0.610 and 0.738, respectively,

while AUCs for predicting 1, 3 and 5-year survival rates for patients in

GSE57495 cohort were all >0.7 (Figures 7C, H). Cox regression

analysis revealed that risk score were independent prognostic

factors in patients with PAAD (all P< 0.01, Figures 7D, E, I, J).

Also, we verified the clinical relevance of PMSRPS in the ICGC cohort

and found that the expression of the risk gene SFTA2 was higher in
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patients with PAAD aged 65 years and younger than in patients older

than 65 years (Figure 7K). Moreover, the risk gene SPRR1B was

highly expressed in the disease state of tumor recurrence/

progression (Figure 7L).

Furthermore, to highlight the advantages of PMSRPS, we

compared the performance of PMSRPS with three PAAD

prognostic signatures recently published. The first is a pyroptosis-

related risk signature constructed by Bai et al. (38). The second is a

DNA-methylation-driven genes based prognostic signature

(GPRC5A, SOWAHC, S100A14, ARNTL2) created by Xiao et al

(39). The third is the m6A-related RNA signature(AP005233.2,

AC092171.3, AC010175.1, CASC8, TP53TG1, SNAI3.AS1, FLRT1,

AC022098.1, DCST1.AS1) constructed by Wu et al (40). The results

showed that the AUCs of PMSRPS (0.676, 0.631, 0.600) for predicting

the 1-, 3-, and 5-year overall survival of patients with PAAD were

higher than those of Bai-Sig (0.609, 0.594, 0.542), Xiao-Sig (0.623,

0.614, 0.557) and Wu-Sig (0.667, 0.630, 0.551) (Figures 7M–O). This

reveals that the predictive performance of PMSRPS is better than

some existing prognostic signatures.
3.7 Prediction of tumor immune
microenvironment and immunotherapeutic
response in patients with PAAD by PMSRPS

The TIME of dynamic evolution during tumor progression is an

important histological feature of PAAD, which makes us eager to know

whether there are TIME differences between high - and low-risk groups

with different survival outcomes. We first analyzed the infiltration of

immune cells. Results of the this study suggested that the abundance of

Tregs, NK cells activated, Macrophages M0, and Mast cells activated

infiltration was distinctly higher in the high-risk group than in the low-

risk group (all P< 0.01, Figure 8A), and with increasing risk scores, their
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FIGURE 6

Internal cohorts validation of the predicted performance of PMSRP. (A–C) Comparison of overall survival (OS) between the high- and low-risk groups,
and time-dependent ROC curves of risk scores in the training (A), the testing (B), and the TCGA+GSE102238 cohorts (C). (D) Univariate and multivariate
Cox regression analyses for independent prognostic performance assessment of PMSRPS. (E) Relationship between risk score and T stage. (F–K)The
differences in OS between the high- and low-risk groups when patients with age<=65 (F) or >65 years (G), the gender of female (H) or male (I), and the
tumor T stage of T1-2 (J) or T3-4 (K).
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infiltration abundance increased prominently (all P< 0.01, Figure 8B).

However, the abundance of T cells CD8, T cells CD4 memory resting, B

cells naïve, Monocytes, and Mast cells resting infiltration in the high-risk

group was significantly lower than that in the low-risk group (all P< 0.05,

Figure 8A), and they were less abundant with greater risk scores (all P<

0.01, Figure 8B). In addition to infiltrating immune cells, infiltrating

stromal cells are also vital components of tumor TIME, which together

perturb the tumor signal and play an important role in cancer biology

(29). Therefore, we used the ESTIMATE method to assess the

distribution of these components between the high- and low-risk

groups, and found that the stromal score, immune score, and

estimated score were significantly lower in the high-risk group than in

the low-risk group (all P<0.05, Figure 8C), which meant PMSRPS could

accurately predict and distinguish TIME in the different risk groups, and

that the high-risk group had higher tumor purity and more typical

immunosuppressive “cold” tumor microenvironment. Furthermore,

researchers found the expression of immune checkpoint molecules on

a significant percentage of tumor cells, and they have been shown to

promote epithelial-mesenchymal transformation, resistance to apoptosis

and antitumor drugs, and propensity to spread and metastasize (41). In

this study, we observed that about half (19/40) of the immune checkpoint

molecules had significant expression differences between the two groups.

Among them, a total of 12 genes, including PDCD1, BTLA, and CD28,

were significantly highly expressed in the low-risk group, while 7 genes,

including TNFRSF14, LGALS9, and CD276, were significantly highly

expressed in the high-risk group (all P< 0.05, Figure 8D). To overcome

the immunosuppressive power of checkpoint molecules, a new

immunotherapy ca l l ed ICIs works by b lock ing these

immunosuppressive molecules and reactivating effector T cells to

specifically kill tumor cells. Currently, the main ICIs used in clinical

practice are CTLA4 inhibitors, PD-1 inhibitors and PD-L1 inhibitors.We
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evaluated the response of patients with PAAD in different risk groups to

ICIs by IPS scores and found that the IPS (PD-1/PD-L1/PD-L2(-) and

CTLA-4(-)) scores of patients in the high-risk group were significantly

higher in the lower-risk group(P< 0.01, Figure 8E), rather than IPS-PD1/

PDL1/PDL2 blocker score, IPS-CTLA4 blocker score, and IPS-CTLA4

and PD1/PDL1/PDL2 blocker score (Supplementary Figure 2). This

suggested that patients with PAAD in the high-risk group might be

more suitable for novel ICIs therapy rather than PD1/CTLA4

immunotherapy. Besides PMSRPS, we were surprised to find that the

model gene had good predictive performance for the existing

immunotherapy cohort via a web server for Comprehensive Analysis

on Multi-Omics of Immunotherapy in Pan-cancerimmune checkpoint

inhibitors (CAMOIP) (http://www.camoip.net/). The results showed that

the highly expressed prognostic risk gene SPRR1B had significantly worse

OS (HR: 5.5, P=0.001, Figure 8F) in the melanoma immunotherapy

cohort of Hugo. et al. (42). And the highly expressed prognostic

protective gene NCAM1 had significantly better OS (HR: 0.35,

P=0.022, Figure 8G) in the melanoma immunotherapy cohort of

Auslander et al. (43). Taken together, the above results manifested that

PMSRPS might be a reliable tool for predicting immune activity and

immunotherapy response in patients with PAAD.
3.8 Prediction of PMSRPS on
other measures related to
immunotherapy response

Although ICIs is considered a breakthrough in cancer treatment,

the benefit to patients is limited, so it makes sense to understand the

underlying indicators that influence response to ICIs treatment.

Cancer stemness was reported to be significantly positively
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FIGURE 7

External cohort validation of the predicted performance of PMSRPS and performance comparison. (A, F) Risk grouping, survival status, and risk heatmap
between the high- and low-risk groups in the ICGC (A) and GSE57495 (F) cohorts. (B, G) Comparison of OS between the high- and low-risk groups in
the ICGC (B) and GSE57495 (G) cohorts. (C, H) Time-dependent ROC curves of PMSRPS in the ICGC (C) and GSE57495 (H) cohorts. (D, E, I, J) Results of
independent prognostic analysis of PMSRPS in the ICGC (D, E) and GSE57495 (I, J) cohorts. (K, L) Results of external clinical correlation analysis for the
high- and low-risk groups in the ICGC cohort. (M–O) Comparison of the performance of PMSRPS with Bai-Sig, Xiao-Sig and Wu-Sig in predicting 1- (M),
3- (N), 5-year (O) OS in patients with PAAD.
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associated with ICIs resistance in cancer (44). TMB predicts clinical

response to ICIs in a variety of tumors and is associated with

improved survival after receiving ICIs (45). Genomic stability was

the third proven predictor of ICIs response (46). Therefore, we

explored these indicators in the high- and low-risk groups with

different immunotherapy responses. As shown in Figures 9A, B, the

TMB and RNAss of the high-risk group were visibly higher than those

of the low-risk group (all P< 0.05), and TMB and RNAss had

distinctly increased with the increase of the risk score (all P ≤ 0.01,

Figures 9C, D). In addition, the genomic mutation rate in the high-

risk group was significantly higher than that in the low-risk group

(90.48% [76/84] vs 59.26% [32/54], P<0.001, Figures 9E, F). Among

them, gene mutation rates of the top two genes, KRAS and TP53,

increased more significantly from the low- to the high-risk groups

(KRAS: 71% [60/84] vs. 30% [16/54], P<0.001; TP53: 67% [56/84] vs

37% [20/54], P=0.001). These results suggest that high TMB, cancer

stemness, and genomic instability are characteristic of high-risk
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patients compared with low-risk patients, which can help evaluate

and predict immunotherapy effects in patients with different risk

groups from multiple perspectives.
3.9 Sensitivity analysis of chemotherapeutic
drugs and screening of small
molecule drugs

Immunotherapy has important therapeutic value for some

malignancies, but in most phase I and II trials, It has failed to show

good clinical efficacy in patients with PAAD when used alone, unless

combined with chemotherapy (47). This suggests that it is necessary

to simultaneously screen for more effective chemotherapy drugs. The

results of chemotherapeutic drug sensitivity analysis in this study

revealed that the high-risk group was more sensitive to commonly

used chemotherapy drugs for PAAD (Paclitaxel, Doxorubicin,
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FIGURE 8

Prediction of TIME and immunotherapy response by PMSRPS. (A) Comparison of immune cell infiltration in the high- and low-risk groups. (B) Correlation
of risk score with infiltrating abundance of 10 immune cells. (C) Comparison of tumor microenvironment scores in the high- and low-risk groups.
(D) Differential expression of immune checkpoint molecules in the high- and low-risk groups. (E) Comparison of IPS-PD1/PDL1/PDL2(-) and CTLA4(-)
scores between the high- and low-risk groups. (F, G) The predictive role of SPRR1B (F) and NCAM1 (G) genes in PMSRPS on existing immunotherapy
cohorts was explored via a web server for Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancerimmune checkpoint inhibitors
(CAMOIP). *P< 0.05, **P< 0.01, ***P< 0.001.
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Docetaxel among others) than the low-risk group (all P< 0.05,

Figure 10). Moreover, PMSRPS can predict chemotherapy

responses in different risk populations to other cancers

(Bicalutamide and Lenalidomide among others). (all P<

0.001, Figure 10).

In addition, to expand and search for potential small-molecule

drugs for PAAD, we extracted DEGs between the high- and low-risk

groups. Next, the up-regulated and down-regulated DEGs were

uploaded separately to the L1000FWD website and matched with

small molecule therapies. This study presented the 10 most important

potential small molecule drugs, followed by similarity scores, q-

values, and mechanism of action(Table 2). Among them, the top

three drugs with negative similarity scores were tamoxifen, ZM-

241385, and BRD-A24021119, which were expected to negatively

regulate the expression of DEGs. 2D and 3D images of these three

drugs could be seen in Supplementary Figure 3. These potential small-

molecule drugs might reverse the high expression of high-risk group

genes and guide the development of PAAD-targeted drugs. However,

the exact efficacy of these drugs needs to be further confirmed in

future prospective studies.
3.10 Expression level and functional
verification of SFTA2 gene

Finally, to further verify the reliability of the PMSRPS, we

performed expression and in vitro functional experiments on the

SFTA2 gene with the highest correlation coefficient. As shown in
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Figure 11A, we found that SFTA2 was highly expressed in PAAD

tissues compared with the corresponding paracancerous tissues

(P<0.01). Further, we selected PAAD CFPAC-1 cell lines with high

expression through CCLE database for SFTA2 gene interference

(Figure 11B). Figure 11C shows that si-SFTA2#1 and si-SFTA2#2

had more obvious inhibitory effects, which was used for further

functional experiments. Through CCK-8 experiments, we found

that interfering with the expression of SFTA2 inhibited the cell

viability of PAAD cells (Figure 11D). By EdU staining, we found

that compared with the control group, the proliferation rate of the

SFTA2-inhibited group was significantly reduced (Figure 11E).

Through transwell migration experiments, we found that interfering

with SFTA2 expression would inhibit the migration of PAAD

cells (Figure 11F).
4 Discussion

The overall prognosis for patients with PAAD has long been

disappointing (48). Authoritative cancer statistics in 2022 showed

that PAAD has become the third leading cause of cancer-related

death in both men and women (2). The poor prognosis of patients

with PAAD is associated with the limited therapeutic response, and

one possible reason for the poor therapeutic response is the ability of

PAAD cells to avoid induction of death (49). Cell death is an

important physiological process for maintaining tissue homeostasis,

which can be divided into accidental cell death and regulated cell

death (RCD) according to its occurrence rate and potential control
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FIGURE 9

Prediction of PMSRPS on other measures related to immunotherapy response. (A, B) Comparison of tumor mutational burden(TMB) (A) and RNA
stemness scores (RNAss) (B) between the high- and low-risk groups. (C, D) Correlation of risk score with TMB (C) and RNAss (D). (E, F) Changes in gene
mutation frequency and mutation type from the low-risk group (E) to the high-risk group (F).
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TABLE 2 Potential small molecule drugs screened for PAAD treatment.

Drug Similarity
score

q-
value

Z-
score

Combined
score

MOA Predicted MOA

tamoxifen -0.5294 4.67E-
08

1.59 -17.78 estrogen receptor antagonist, selective estrogen receptor
modulator (SERM)

histamine receptor
antagonist

ZM-241385 -0.5294 4.68E-
08

1.66 -18.43 adenosine receptor antagonist Aurora kinase inhibitor

BRD-
A24021119

-0.5294 4.67E-
08

1.77 -19.89 Unknown PI3K inhibitor

BRD-
K88622704

-0.5294 4.67E-
08

1.73 -19.38 Unknown MEK inhibitor

RU-24969 -0.4706 3.89E-
07

1.69 -16.52 serotonin receptor agonist histamine receptor
antagonist

BRD-
K62818989

-0.4706 3.89E-
07

1.62 -15.66 Unknown dopamine receptor
antagonist

vemurafenib -0.4706 3.89E-
07

1.79 -17.27 RAF inhibitor RAF inhibitor

gossypol -0.4706 3.89E-
07

1.84 -18.09 BCL inhibitor, MCL1 inhibitor topoisomerase inhibitor

SB-525334 -0.4118 3.67E-
06

1.67 -13.10 TGF beta receptor inhibitor cyclooxygenase inhibitor

BRD-
K90700939

-0.4118 3.86E-
06

1.64 -12.79 Unknown mTOR inhibitor
F
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MOA, Mechanism of action.
FIGURE 10

Comparison of sensitivities to commonly used chemotherapeutics for PAAD and other cancers in the high- and low-risk groups.
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(49, 50). RCD with clear mechanism of effect can be further

subclassified into apoptotic and non-apoptotic subcategories (49).

Since apoptosis is strongly resisted by cancer cells (51), targeting non-

apoptotic cell death is considered a more promising therapeutic

approach (49). Pyroptosis is a non-apoptotic death type

characterized by the release of a large number of inflammatory

factors, and its induced activation can produce powerful antitumor
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activity (52, 53). This is illustrated by the fact that wang et al. revealed

that pyroptosis of less than 15% of tumour cells was sufficient to clear

the entire 4T1 mammary tumour graftI by building a bioorthogonal

chemical system (54). Moreover, Zhang et al’ s study showed that

GSDME expression could not only enhance the phagocytosis of

tumor-related macrophages, but also strengthen the number and

function of NK cells and CD8+T cells infiltrated by tumors (55). In
A B

D

E

F

C

FIGURE 11

Expression and function of the highest-risk SFTA2 gene in PMSRPS. (A) qRT-PCR analysis of SFTA2 mRNA levels in randomly selected 16 pairs of PAAD
tissues and corresponding adjacent tissues. (B) The Cancer Cell Lines Encyclopedia (CCLE) database was searched for PAAD CFPAC-1 cell lines suitable
for SFTA2 intervention. (C) Validation of knockdown efficiency of SFTA2 interfering fragments in CFPAC-1 cells by qRT-PCR. (D) CCK-8 assay was used
to assess the effect of SFTA2 silencing on CFPAC-1 cell viability. (E) EdU staining was used to assess the effect of SFTA2 silencing on the proliferative
capacity of CFPAC-1 cells. (F) Transwell experiments were used to evaluate the effect of SFTA2 silencing on the migration ability of CFPAC-1 cells. *P<
0.05, **P< 0.01, ***P< 0.001.
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studies related to PAAD, Cui et al. demonstrated that MST1 inhibits

pancreatic cancer progression via ROS-induced pyroptosis (56). Peng

et al. showed that ICy OH produced by ICy Q could damage

mitochondrial membranes, induce intracellular inflammatory

responses, and selectively induce pancreatic cancer cell death via

the cell pyroptosis pathway (a series of enzymatic reactions leading to

the production of fragments of pyroptosis protein GSDMD-N) (57).

Considering the promise of immunotherapy, researchers recently

tested the immunotherapy effect of pyroptosis using the membrane

targeted photosensitizer TBD-3C. The results showed that pyroptosis-

aroused immunolog i ca l responses cou ld t rans f er the

immunosuppressive “cold” tumor microenvironment(TME) into an

immunogenic “hot” TME, which not only inhibited the growth of

primary PAAD, but also attacked distant tumors (58). In brief, a new

strategy to induce pyroptosis may provide more effective cancer

treatment options (59). However, estimates of disease status relying

solely on changes in gene expression are unstable (60). As a result, we

sought to establish a prognostic signature through the analysis of

pyroptosis molecular subtypes to aid in the accurate prediction of

PAAD prognosis and guidance for individualized treatment.

We performed consensus clustering and typing of patients with

PAAD based on the expression levels of 23 PRGs and obtained 828

DEGs. Through GO and KEGG enrichment analysis, we found that

the potential biological functions of these DEGs were related to the

occurrence of cellular immunity and pyroptosis. It has been reported

that immune cells macrophages and neutrophils can interact to drive

the pathogenesis of PAAD (61). Among them, M2 and a small

fraction of M1 cells are not only unable to phagocytose tumor cells,

but they also migrate to other tissues and organs without being killed

(62). The immature c-Kit+ neutrophil subsets can generate ROS by

participating in oxidative mitochondrial metabolism, thereby

inhibiting the immune function of CD4+ T cells and promoting

tumor progression (63). Furthermore, overactivation of the NLRP3

inflammasome may promote the development of hematopoietic

malignancies (64).

Subsequently, we refined Lasso Cox regression analysis on the

extracted 276 prognostic DEGs in the training cohort to obtain

PMSRPS. Internal and external validation results showed that

PMSRPS was an independent and effective prognostic tool for

PAAD. Compared with some recently published PAAD prognostic

signatures (38–40), PMSRPS had better predictive power in

predicting 1-, 3-, and 5-year survival in patients with PAAD.

PMSRPS consists of two risk prognostic genes (SFTA2 and

SPRR1B) and one protective prognostic gene (NCAM1). SFTA2 is

the gene with the highest risk factor in PMSRPS, and although it has

been reported to be associated with poor prognosis of PDAC,

experimental validation evidence is lacking (65). Therefore, this

study verified for the first time that the expression of SFTA2 in

PAAD tissues was higher than that in paired paracancer tissues in our

own samples. It was further confirmed that the vitality, growth rate

and migration ability of PAAD cells were significantly decreased after

the SFTA2 expression level was knocked down. In addition, SPRR1B

was a prognostic or diagnostic biomarker for various malignancies

such as PAAD, lung adenocarcinoma, metastatic cutaneous

melanoma, and oral squamous cell carcinoma among others (66–

69). NCAM1 was confirmed to be up-regulated mediated by miR-

141-3p and inhibited ameloblastoma cell migration (70).
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Then, we used PMSRPS to predict the TIME of different risk

groups and found that the high-risk group presented a typical tumor

immunosuppressive microenvironment. This was reflected in less T

cells CD8 and T cells CD4 memory resting as well as more Tregs and

macrophage M0 in the high-risk group. Studies have shown that

higher CD8 T cell infiltration in PDAC is strongly associated with

long-term survival (71). In contrast, Tregs are important factors in

maintaining immune tolerance, not only suppressing effector cells

within the tumor but also restricting antitumor immune responses by

interacting with stroma, vasculature, and lymphatic vessels (72). Also,

M0 macrophages can differentiate into M2 macrophages in the

presence of M-CSF, IL-4, or IL-10 and promote immune escape

through the high expression of PD-L1, IL-10, or TGFb (73). In

addition, mast cells are key regulators of inflammation and

immunosuppression (74). Besides suppressing anti-tumor immunity

by releasing anti-inflammatory cytokines such as IL-10 and TGFb,
they can provide oxygen for tumor growth by regulating angiogenesis

(75, 76). Excitingly, in this study, PMSRPS was confirmed to predict

the expression of multiple immune checkpoint molecules in different

risk groups and showed that the high-risk group had higher IPS (PD-

1/PD-1/PD-1/PD-1/PD-1) and CTLA-4(-)) scores compared with the

low-risk group. This suggests that PMSRPS may be a potential

biomarker for predicting response to novel immunotherapies

in PAAD.

Cancer stem cells with self-renewal ability can induce tumor

metastasis and recurrence and are contribute to drug resistance (77,

78). Tumor stemness leading to immunotherapy resistance can be

attributed to its restriction of the antitumor immune response by

inhibiting type I IFN signaling (79). The results of this study showed

that the RNAss of patients in the high-risk group were notably higher

than those in the low-risk group, and the RNAss were distinctly

positively correlated with the risk score, indicating that the high-risk

score might lead to enhanced tumor stem cell characteristics (26),

which may explain the poorer prognosis in the high-risk group.

Interestingly, TMB was also elevated in the high-risk group and

positively correlated with tumor stemness, whereas high TMB was

associated with better treatment response and better prognosis. One

possible reason for our analysis is that as TMB increases, so does the

neoantigens, one or more of which are more likely to be immunogenic

and trigger a T cell response that enhances the antitumor response

(80). In summary, we can take a more comprehensive view of the

immunotherapeutic effect of PAAD.

Finally, we screened several potential small-molecule drugs for

patients with PAAD, with tamoxifen in the top spot. As a selective

estrogen receptor modulator (SERM), tamoxifen is clinically used for

hormone receptor-positive breast cancer. However, in recent years,

tamoxifen may inhibit peritoneal mesothelium-mesenchymal

transition, as well as peritoneal mesenchymal cell migration,

interstitial fibrosis and neovascularization due to its ability to

quiescent the peritoneal stroma (81). This may aid in the

immunotherapy of PAADs with desmoplastic stroma. Another

SERM, bazedoxifene, was shown to have the function of inhibiting

STAT3 phosphorylation and STAT3 DNA binding, inducing

apoptosis, and suppressing tumor growth in PAAD cells with

persistent IL6/GP130/STAT3 signaling (82). In addition, a non-

selective adenosine receptor antagonist caffeine, and its analog CGS

15943 has been reported to block the proliferation in HCC and PDAC
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cell lines by inhibiting the PI3K/Akt pathway (83). However, the exact

function of above small molecule drugs remains unclear and needs to

be further confirmed by future prospective studies.

So far, pyroptosis-related prognostic models of PAAD have

mushroomed. Similar to these studies, our study also carried out

methods such as survival analysis, ROC and external cohort

validation of PMSRPS, but it still has its advantages. First, after

knowing the importance of subtyping based on molecular

characteristics of cancer for improving clinical treatment

decision-making, we did not directly use PRGs to establish a

prognostic signature as many previous studies had done (84–88),

but instead identified three stable pyroptosis molecular subtypes

based on PRGs expression levels. By analysis, we found that

different PRGclusters had different survival outcomes and

immune cell infiltration manifestations. To highlight this

difference, we extracted the DEGs between PRGclusters to

establish a PMSRPS, which made the modeling process more

rigorous. Secondly, there are only three signature genes in this

study, which is significantly less than other studies (mostly

between 5 and 8), which helps simplify the calculation of risk

scores and the risk grouping process for patients with PAAD, thus

reducing cost estimates and enabling faster prognosis assessment.

Finally, we screened new potential small-molecule drugs for

patients with PAAD based on DEGs in the high- and low-risk

groups, which provides a reference for PAAD to develop new

treatment options. For all this, there are still some shortcomings

in this study. One is that despite the combination of the TCGA

and GSE102238 cohorts in this study, the PAAD sample size used

to construct the PMSRPS is still small, mainly due to the limited

number of patients with PAAD with complete cl inical

information we obtained from current public databases.

Another shortcoming is that the transcriptional data for the

PRGs included in the merged cohort (TCGA+GSE102238) were

incomplete. This situation prevents us from comparing the

prediction performance of PMSRPS with other existing PRG

models in the TCGA+GSE102238 cohort. In short, a large

prospective multicenter study is needed in the future to further

verify the exact effect of PMSRPS on the survival and treatment of

patients with PAAD.
5 Conclusion

In conclusion, we identified a novel signature, PMSRPS for

patients with PAAD. This signature is a good predictor of

prognosis, immune microenvironment, immunotherapy effect,

genomic instability and tumor stemness in patients with PAAD.
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