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TRAF6 controls T cell
homeostasis by maintaining the
equilibrium of MALT1 scaffolding
and protease functions

Thomas J. O’Neill , Andreas Gewies, Thomas Seeholzer
and Daniel Krappmann*

Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and
Therapeutic Center, Helmholtz Center Munich, German Research Center for Environmental Health,
Munich, Germany
MALT1 is a core component of the CARD11-BCL10-MALT1 (CBM) signalosome, in

which it acts as a scaffold and a protease to bridge T cell receptor (TCR) ligation to

immune activation. As a scaffold, MALT1 binds to TRAF6, and T cell-specific TRAF6

ablation or destruction of MALT1-TRAF6 interaction provokes activation of

conventional T (Tconv) effector cells. In contrast, MALT1 protease activity

controls the development and suppressive function of regulatory T (Treg) cells in

a T cell-intrinsic manner. Thus, complete loss of TRAF6 or selective inactivation of

MALT1 catalytic function in mice skews the immune system towards autoimmune

inflammation, but distinct mechanisms are responsible for these immune

disorders. Here we demonstrate that TRAF6 deletion or MALT1 paracaspase

inactivation are highly interdependent in causing the distinct immune

pathologies. We crossed mice with T cell-specific TRAF6 ablation (Traf6-DT) and
mice with amutation rendering theMALT1 paracaspase dead in T cells (Malt1 PD-T)

to yield Traf6-DT;Malt1 PD-T double mutant mice. These mice reveal that the

autoimmune inflammation caused by TRAF6-ablation relies strictly on the function

of the MALT1 protease to drive the activation of Tconv cells. Vice versa, despite the

complete loss of Treg cells in Traf6-DT;Malt1 PD-T double mutant mice,

inactivation of the MALT1 protease is unable to cause autoinflammation,

because the Tconv effector cells are not activated in the absence of TRAF6.

Consequentially, combined MALT1 paracaspase inactivation and TRAF6

deficiency in T cells mirrors the immunodeficiency seen upon T cell-specific

MALT1 ablation.
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Introduction

Antigen ligation to the T cell receptor (TCR) leads to signal

transduction and NF-kB transcription factor activation, required for

cellular survival, proliferation, differentiation and function of T

lymphocytes. NF-kB signaling therefore constitutes an initial step in

activation of the adaptive immune response, and mutations affecting

NF-kB have wide-reaching consequences for T cell activation and

homeostasis, ranging from immune suppression to autoimmune

activation (1, 2). Following TCR antigen ligation, protein kinase

signaling leads to assembly of the CBM complex, composed of

caspase recruitment domain family member 11 (CARD11), B-cell

lymphoma/leukemia 10 (BCL10), and mucosa-associated lymphoid

tissue 1 (MALT1). Within the CBM complex, MALT1 plays an

intriguing dual role as both a scaffold, acting as a binding platform

for the E3 ligase tumor necrosis factor (TNF) receptor-associated

factor 6 (TRAF6), and as a paracaspase, cleaving substrates with roles

in T cell signaling, transcription and RNA stability (3).

Mouse models have revealed that MALT1 and TRAF6 play

central roles in balancing immune activation and homeostasis.

Malt1 KO mice have simultaneous severe defects in conventional T

(Tconv) and regulatory T (Treg) cells, resulting in a net outcome of

immunodeficiency (4, 5).Malt1 paracaspase dead (PD) mice, carrying

a C472A exchange in the catalytic center, display only partially

impaired Tconv effector cell responses, but strong defects in Treg

cell numbers and functions, triggering an immune imbalance that

leads to autoimmune inflammation (5–10). The essential role of

TRAF6 and its interaction with MALT1 in TCR-dependent NF-kB
signaling has been demonstrated in vitro (11–14). TRAF6 deficiency

causes embryonal or perinatal lethality in mice (15), but mice with

conditional Traf6 KO in T cells (Traf6-DT) are viable (16). Traf6-DT
mice suffer from autoimmunity associated with enhanced activation

of Tconv effector cells that are unresponsive to the suppression of

Treg cells. Importantly, Malt1 TBM-T (TRAF6-binding mutant in T

cells) mice with conditional destructive missense mutations in T cells

rendering TRAF6 incapable of interacting with MALT1 show a highly

similar autoimmune phenotype to Traf6-DT mice, demonstrating

that the interaction of MALT1 and TRAF6 in T cells is critical for

maintaining immune homeostasis (17). While loss of TRAF6 or

MALT1-TRAF6 interaction abrogates TCR-induced NF-kB
activation, the MALT1 protease is constitutively activated, leading

to continuous substrate cleavage even in resting T cells (17).

While the fatal autoinflammation caused by the destruction of

MALT1-TRAF6 binding in all cells is rescued by genetic inactivation

of MALT1 paracaspase function, it remained unclear, if the T cell

activation and autoimmunity caused by complete absence of TRAF6

in T cells is also driven by MALT1 protease activation. Treatment of

Traf6-DT mice with a potent MALT1 inhibitor ameliorated some

disease symptoms (17), but it remained elusive whether only T cells or

also other cells are targeted in such a pharmacological setting. Thus,

in order to provide evidence that loss of TRAF6 induces

autoimmunity through cell-intrinsic MALT1 protease activation, we

generated mice in which TRAF6 deletion and MALT1 protease

inactivation are combined specifically in T cells. We demonstrate

that MALT1 protease activity drives T cell activation upon loss of

TRAF6. Vice versa, TRAF6 is essential for autoimmunity upon
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MALT1 protease inactivation in T cells, emphasizing the critical

interdependency of MALT1 and TRAF6 to balance T cell activation

and homeostasis.
Materials and methods

Mice

All mouse experiments were performed in accordance with the

guidelines of the Federation of European Laboratory Animal Science

Association and were approved by the Regierung von Oberbayern

(ref. no. 55.2-2532-VET_02-17-122).

Malt1 and Traf6 floxed (fl) mice were derived from the European

Conditional Mouse Mutagenesis (EUCOMM) program with

generation described in (17). Malt1fl/fl and Traf6fl/fl mice were

crossed to generate double-floxed Malt1fl/fl;Traf6fl/fl mice. Malt1 PD

mice were provided by Rudi Beyaert (VIB, Ghent, Belgium) and

generated as described (18, 19). Double floxed mice were crossed with

Malt1PD/+;Traf6wt/fl;CD4-Cre+ to generate Traf6-DT;Malt1 PD-T

(Traf6fl/fl;Malt1PD/fl;CD4-Cre+) and Wthet (Traf6fl/+;Malt1fl/+;CD4-

Cre+), Traf6-DT (Traf6fl/fl;Malt1fl/+;CD4-Cre+) and Malt1 PD-T

(Traf6fl/+;Malt1PD/fl;CD4-Cre+) control groups.
Flow cytometry

Lymphocyte populations were analyzed from peripheral (spleen

and lymph nodes) and central (thymus) lymphoid organs. Tissue was

meshed through a 100 µm strainer and treated with red blood cell lysis

buffer (Miltenyi, 130-094-183). One million cells per staining were

transferred to a 96-well plate, washed twice with cold phosphate-

buffered saline (PBS) (350g, 5 min, 4°C) and stained with eFluor780

Live/Dead dye (eBioscience, 65-0865-18; 1:1000 in PBS, 30 min, 4°C).

Cells were washed once with FCM buffer (3% fetal bovine serum in

PBS) and treated with anti-CD16/CD32 Fc-block (eBioscience, 14-

0161-85; 1:200 in FCM buffer, 20 min, RT). Supernatant was removed,

and cells were stained with surface antibodies in FCM buffer. Staining

was performed with anti-CD3-PECy7 (1:300, 25-0031-82,

RRID: AB_469572), anti-CD45R-PerCP (1:200, Biolegend, 103234,

AB_893353), anti-CD8a-FITC (1:100, 11-0081-85, RRID:

AB_464916), anti-CD4-PE (1:300, 12-0042-85, RRID: AB_465512),

anti-CD4-PerCP-Cy5.5 (1:300, 45-0042-82, RRID: AB_1107001),

anti-CD44-PECy7 (1:400, 25-0441-82, RRID: AB_469623), anti-

CD62L-APC (1:300, BD Pharmingen, 553152, RRID : AB_398533),

anti-CD69-APC (1:200, 17-0691-82, RRID: AB_1210795), and anti-

ICOS-FITC (1:200, 11-9949-82, RRID: AB_465458). For intracellular

staining of FoxP3, cells were fixed and permeabilized using the FoxP3/

transcription factor staining buffer set (eBioscience, 00-5523-00; 1 h,

RT), washed with permeabilization buffer (eBiosciences, 00-8333-56)

and stained with anti-FoxP3-PE (12-5773-82, RRID: AB_465936) in

permeabilization buffer. Cells were washed with permeabilization

buffer, resuspended in FCM buffer, and measured using an Attune

Acoustic Focusing Cytometer (Thermo Fisher). All antibodies are from

eBiosciences except where indicated. Gating strategies for detecting the

different cell subsets are shown in Figure S1.
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Cytokine and autoantibody analysis

The cytokine TNFa and anti-double-stranded (ds)DNA

autoantibodies were measured in mouse serum via flow cytometry

using a cytometric bead array kit (562246 and 562336, BD) and anti-

dsDNA Ig’s kit (Catalog #5110, Alpha Diagnostic International)

according to manufacturer’s recommendations.
Stimulation and biochemical analyses of
purified CD4 T cells

Primary murine splenocytes were isolated from spleen and treated

with Red Blood Cell Lysis Solution (Miltenyi) and CD4+ T cells were

purified using CD4+ T cell isolation kit II (Miltenyi) according to the

manufacturer’s protocol. CD4+ T cells were cultured in primary T cell

medium (RPMI 1640, 100 U/ml penicillin, 100 µg/ml streptomycin, 10%

heat inactivated fetal calf serum, 10 mM HEPES pH 7.5, 2 mM L-

Glutamine, 1 mM Sodium-Pyruvate, MEM-NEAA (1x), 50 nM ß-

Mercaptoethanol [ll Gibco]). For stimulation, cells were treated with

Phorbol 12-Myristate 13-Acetate (PMA (P), 200 ng/ml; Merck)/

Ionomycin (Iono (I), 300 ng/ml; Calbiochem) for 30 min. For Western

blotting, cells were lysed in co-immunoprecipitation (co-IP) buffer (25

mM HEPES pH 7.5, 150 mM NaCl, 0.2% NP-40, 10% glycerol, 1 mM

DTT, 10 mMNaF, 8 mM ß-glycerophosphate, 300 µM sodium vanadate

and protease inhibitor cocktail mix (Roche)) for 20 min at 4°C. Cellular

lysis for electrophoretic mobility shift assay (EMSA) samples was

performed in high salt buffer (20 mM HEPES pH 7.9, 350 mM NaCl,

20% glycerol, 1 mMMgCl2, 0.5 mMEDTA, 0.1 mMEGTA, 1%NP-40, 1

mM DTT, 10 mM sodium fluoride, 8 mM b-glycerophosphate, 300 µM
sodium vanadate and Roche protease inhibitor cocktail mix). Western

blotting and EMSA were performed as previously described (20).

Western blot antibodies: anti-ß-Actin (C4, 1:20.000; #sc-47778; RRID:

AB_2714189), anti-CYLD (E-10; #sc-74435; RRID: AB_1122022), anti-

HOIL-1 (H-1; #sc-393754; RRID: N/A), (all Santa Cruz); anti-Regnase-1

(#MAB7875; RRID: N/A) (R&D); HRP-conjugated anti-rabbit (#711-

035-152; RRID: AB_10015282), HRP-conjugated anti-mouse (#715-035-

150; RRID: AB_2340770), (all Jackson ImmunoResearch, 1:7000); all

antibodies were used at 1:1000 dilution.
Results

The genetic disruption of MALT1 protease activity in Malt1 PD-T

mice causes autoimmunity in a T cell intrinsic manner (18). Further, T

cell-specific deletion of TRAF6 in Traf6-DT mice or loss of MALT1-

TRAF6 binding inMalt1 TBMmice induces autoimmune inflammation

(16, 17). To better understand how the interplay between MALT1

protease activity and TRAF6 balances T cell activation and

homeostasis, we combined TRAF6 deletion and expression of MALT1

PD specifically in T cells. For this, we crossed mice to yield homozygous

Traf6fl/fl and heterozygous Malt1C472A/fl together with CD4-Cre, which

inactivates the two Traf6 and one Malt1 Wt floxed alleles at the CD4/

CD8 double positive stage of T cell differentiation. Thus, the resulting

Traf6-DT;Malt1 PD-T (Traf6fl/fl;Malt1PD/fl;CD4-Cre+) mice expressed the

MALT1 paracaspase dead (PD) mutant in the absence of TRAF6. The

immune phenotype of Traf6-DT;Malt1 PD-T mice was compared to
Frontiers in Immunology 03
double heterozygous ‘wildtype’ (Wthet : Traf6fl/+;Malt1fl/+;CD4-Cre+),

Traf6-DT (Traf6fl/fl;Malt1fl/+;CD4-Cre+) and Malt1 PD-T (Traf6fl/+;

Malt1PD/fl;CD4-Cre+) littermates (Figure 1A). All genotypes were born

at approximate Mendelian ratios and showed no observable phenotypic

changes upon birth. However, Malt1 PM-T mice stopped thriving at

approximately 10 weeks of age. As previously observed,Malt1 PD-Tmice

showed hunched posture and developed ataxia (18). For animal welfare

and best comparison, phenotypic analyses of all mice were performed at

9-11 weeks of age. The four genotypic groups did not differ substantially

in body weight, spleen weight or total splenocytes (Figures S2A–C).

Relative numbers of B and T lymphocytes were unchanged except for

minor reductions in CD3+ and CD8+ T cells in Traf6-DTmice and CD4+

T cells in Malt1 PD-T mice, which were all reverted to normal in the

Traf6-DT;Malt1 PD-T (T6-DT;M1 PD-T) mice (Figures S2D, E).

We purified CD4+ T cells from two independent mice of all four

cohorts to compare the effects of the single and combined mutations in

biochemical assays. As previously observed, Traf6-DT mice display

constitutive cleavage of the MALT1 substrates and NF-kB signaling

regulators CYLD and HOIL-1, as well as the RNA-binding protein

Regnase-1 in the absence of any ex vivo T cell stimulation (Figure 1B)

(17). Constitutive substrate cleavage was prevented upon additional

inactivation of MALT activity in T6-DT;M1 PD-T mice, proving that it

was directly caused byMALT1. Next, we examinedMALT1 protease and

NF-kB activation upon stimulation with PMA/Ionomycin (P/I), which

mimics TCR/CD28 engagement. Cleavage of CYLD, HOIL-1 and

Regnase-1 was further enhanced after P/I treatment of CD4+ T cells

from Traf6-DTmice, while no constitutive or inducible cleavage was seen

in T cells from Malt1 PD-T or T6-DT;M1 PD-T double mutant mice

(Figure 1C). In sharp contrast, NF-kB activation monitored by gel shift

assays and p-p65 levels by Western blotting was unaffected in T cells

from Malt1 PD-T mice, but TRAF6 deletion alone (Traf6-DT) or in

combination with the protease deadMALT1 was unable to promote NF-

kB activation (Figure 1C). Basal NF-kB activation wasmildly increased in

Traf6-DT or Malt1 PD-T cells compared to Wthet, which may be

explained by the inflammatory environment from which these cells are

derived (see below). Basal NF-kB levels appeared to be even further

reduced in T cells of T6-DT;M1 PD-T double mutant mice.

To determine functional effects of chronic MALT1 substrate

cleavage, we monitored inducible T cell costimulator (ICOS)

expression on T cells from the modified mice, because ICOS

expression is repressed by the post-transcriptional regulators

Regnase-1 and Roquin-1/2, both of which are inactivated by

MALT1-catalyzed cleavage (21, 22). Indeed, numbers of CD4+ and

CD8+ T cells with elevated ICOS levels were increased in Traf6-DT
mice, whereas ICOS expression was reverted to normal levels in T

cells from T6-DT;M1 PD-T mice (Figure 1D). These results

demonstrate that TRAF6 deficiency provokes chronic MALT1

paracaspase activity in a T cell-intrinsic manner, which leads to

upregulation of targets that are under control of mRNA stability

factors regulated by MALT1 protease.

Next, we determined the consequences of the various genetic

alterations on the relative numbers of naïve T (Tnaïve), central memory

T (TCM) and effector memory T (TEM) cells by measuring expression of

CD44/CD62L on peripheral T cells (Figures 2A–D; Figures S2F, G). Both

deletion of TRAF6 and inactivation of MALT1 paracaspase individually

provoked an increase in numbers of splenic CD4+ TEM cells, which

coincided with a reduction in the Tnaïve and TCM cell populations
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(Figures 2A, B). This increase in the TEM cell population was abolished

and even decreased compared to Wthet in T6-DT;M1 PD-T double

mutant mice. Similar results were seen for frequencies of CD8+ TEM
cells (Figures 2C, D). However, while the increase in CD8+ TEM cells in

Traf6-DT mice primarily coincided with a decrease in TCM cells, higher

frequencies of CD8+ TEM and TCM populations in Malt1 PD-T mice

correlated with decreased Tnaive cell numbers. Higher TEM cell numbers

were also detected in lymph nodes, especially in Traf6-DT mice, and the

increase was abrogated in T6-DT;M1 PD-T double mutant mice

(Figure 2E). In line with increased TEM populations, expression of the
Frontiers in Immunology 04
T cell activation marker CD69 was enhanced on CD3+ T cells in spleen

and lymph nodes of Traf6-DT, and to a lesser extent onMalt1 PD-T, and

reduced on T cells from T6-DT;M1 PD-T, even when compared toWthet

mice (Figure 2F). Therefore, combined TRAF6 deletion and MALT1

paracaspase inactivation in T cells reverts the cell-intrinsic T cell

activation observed by single TRAF6 deficiency or MALT1 protease

dead mutation.

Developmental and functional defects in thymic and peripheral

Treg cells are the underlying cause for the autoimmunity in MALT1

paracaspase defective mice (9, 23). In line with this, CD4+ FoxP3+
A

B

D

C

FIGURE 1

Effects of single or combined TRAF6 KO and MALT1 paracaspase mutation on signaling in CD4+ T cells. (A) Schematic overview of the four conditional
mouse strains used in the analyses. (B) Western blots showing MALT1 substrate cleavage in unstimulated purified CD4+ T cells from Wthet, T6-DT;M1 PD-
T, Traf6-DT and Malt1 PD-T mice (two independent mice each). Asterisks indicate unspecific signals. (C) Analyses of NF-kB activation (EMSA), p65
phosphorylation and MALT1 substrate cleavage (Western blot, WB) in PMA/Ionomycin (P/I) stimulated purified CD4+ T cells of mice as depicted in (A). (D)
Expression of ICOS on CD4+ and CD8+ T cells by flow cytometric analysis of spleen of mice as depicted in (A). Bars show the means ± SEM, and P
values were calculated by one-way ANOVA with Tukey’s multiple comparison test. All analyses were performed with mice 9-11 weeks of age. Each dot
represents one mouse. Ct, C-terminus; l.e., long exposure.
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Treg cells in Malt1 PD-T mice were severely reduced in spleen and

lymph nodes and almost completely missing in the thymus

(Figures 3A, B). In contrast, Traf6-DT mice displayed mildly

reduced Treg cell frequencies in the thymus, while spleen and

lymph nodes showed nearly normal numbers of Treg cells.

However, combination of TRAF6 deletion and MALT1 protease

inactivation in T6-DT;M1 PD-T mice provoked a complete absence

of Treg cells in the thymus and peripheral immune organs. Despite

the severe reduction in thymic Treg cells, no genotype induced

significant alterations in the frequency of double negative, double

positive or single positive CD4+ or CD8+ T cells in the thymus,

indicating that development of Tconv cells is not affected by TRAF6

deficiency and/or MALT1 protease inactivation (Figures S3A–C).

Finally, to determine the consequences of the single and

combined mutations, we measured concentrations of the pro-

inflammatory cytokine TNFa and anti-double-stranded DNA

(dsDNA) antibodies in the sera of the mice as biomarkers for the

onset of autoimmune inflammation. While TNFa and anti-dsDNA

antibodies were upregulated in the serum of Malt1 PD-T mice, there

was only a tendency for an increase in Traf6-DT mice at 9-11 weeks

(Figures 3C, D). However, the increase in TNFa was more

pronounced at 11-13 weeks of age in Traf6-DT mice (Figure 3D).

Further, we have shown that anti-dsDNA autoantibodies were

elevated in older mice (17), indicating a slight delay in the onset of

autoimmune inflammation in Traf6-DT compared to Malt1 PD-T

animals (Figure 3D). Upregulation of TNFa and anti-dsDNA
Frontiers in Immunology 05
autoantibody in the serum was abrogated in T6-DT;M1 PD-T mice,

revealing the interdependency of TRAF6 deletion and MALT1

paracaspase inactivation in triggering autoimmune inflammation.
Discussion

By combining TRAF6 ablation and MALT1 paracaspase

inactivation selectively in T cells, we provide genetic evidence that

T effector responses and autoimmunity in the absence of TRAF6

relies on MALT1 protease activation (Figure 4). Vice versa,

autoimmunity and inflammation triggered by MALT1 paracaspase

inactivation is driven by TRAF6 and thus by activation of NF-kB
signaling downstream of MALT1. In fact, TRAF6 and MALT1

paracaspase double mutations yield a reciprocal rescue of both

autoimmune phenotypes, resulting in an immunodeficiency as

described for global or T-cell specific MALT1-deficient mice (4, 5,

18). Thus, the fine-tuned equilibrium of MALT1 protease and

scaffolding function determines the level of T cell activation and is

critical for maintaining immune homeostasis.

Importantly, either destruction of MALT1 substrate cleavage or

prevention of MALT1 downstream signaling by TRAF6 deletion in T

cells provokes imbalanced immune signaling, which in both cases results

in severe autoimmune inflammation (Figure 4). However, both immune

pathologies are caused by deregulations in distinct T cell subsets. T or
A B

D

E F

C

FIGURE 2

Effects of single or combined TRAF6 KO and MALT1 paracaspase mutation on T cell activation. (A–D) Flow cytometric analysis of CD44 and CD62L
expression on CD4+ (A, B) and CD8+ (C, D) T cells with relative numbers of TEM (CD44hi CD62Llo), TCM (CD44hi CD62Lhi) and Tnaïve (CD44lo CD62Lhi)
cells in spleen of Wthet, T6-DT;M1 PD-T, Traf6-DT and Malt1 PD-T mice. (E) Flow cytometric analyses of CD4+ and CD8+ CD44hi CD62Llo TEM cells from
lymph nodes of mice as depicted in (A). (F) Relative numbers of CD3+ CD69+ T lymphocytes in spleen and lymph nodes of mice as depicted in (A). Bars
show the means ± SEM, and P values were calculated by one-way ANOVA with Tukey’s multiple comparison test. All analyses were performed with mice
9-11 weeks of age. Each dot represents one mouse.
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Treg cell-specific MALT1 inactivation leads to a ‘scurfy-like’

autoimmune syndrome, which is caused by impaired Treg cell

development and function (9, 18). While induction of peripheral Treg

cells especially in aged mice does not rely on MALT1, thymic Treg cells

are lacking in the absence of either MALT1 or functional protease

activation (6, 7, 18, 24). Of note, MALT1 was shown to regulate

susceptibility of induced Treg cells to innate immune stimulation, and

thus MALT1 has an indispensable function in balancing thymic versus

peripheral tolerance (24). Importantly, MALT1 protease activity is

required to maintain high expression of CTLA-4 on Treg cells and it
Frontiers in Immunology 06
was shown that even a moderate decrease in CTLA-4 expression can lead

to autoimmunity (9, 18, 25). Thus, MALT1 protease is critical for

maintaining peripheral immune tolerance, because Malt1 PD Treg cells

can no longer counteract the activation of Tconv effector cells (Figure 4).

Loss of Treg cell control leads to autoimmune reactions in multiple

tissues, even though conventional MALT1 paracaspase defective T cells

are also functionally compromised in effector responses (6–8, 10, 18). In

contrast, despite some decrease in thymic Treg cells, peripheral Treg cells

are present in mice with conditional deletion of TRAF6 in T cells. In

TRAF6-deficient mice, Treg cells are functional, but they are no longer
FIGURE 4

Schematic model for mutual control of homeostasis by MALT1 and TRAF6 in T cells. Effects of single or combined TRAF6 KO and MALT1 paracaspase
mutation on NF-kB signaling and MALT1 substrate cleavage (upper part). Effects of single or combined mutations on regulatory T (Treg) and conventional
T effector (TEMconv) cells, which determine the phenotypes of the mutant mice (lower part). Note that circles represent a combination of cell number
and activation status in the different subsets.
A

B D

C

FIGURE 3

Effects of single or combined TRAF6 KO and MALT1 paracaspase mutation on Treg cell frequencies, TNFa and anti-dsDNA autoantibodies. (A, B) Flow
cytometric analysis of splenic CD4+ FoxP3+ regulatory T (Treg) cells (A) with relative numbers of Treg cells from thymus, spleen and peripheral lymph
nodes (B) of Wthet, T6-DT;M1 PD-T, Traf6-DT and Malt1 PD-T mice. (C) Concentration of the cytokine TNFa in sera of mice as depicted in (A). Right
graph depicts TNFa concentrations in 11-13 week old Traf6-DT mice. (D) Concentrations of anti-dsDNA immunoglobulins in sera of mice as depicted in
(A). Bars show the means ± SEM, and P values were calculated by one-way ANOVA with Tukey’s multiple comparison test. All analyses were performed
with mice 9-11 weeks of age except where otherwise stated. Each dot represents one mouse.
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able to counteract Tconv effector responses (16). Thus, loss of TRAF6

causes autoimmune inflammation primarily by enhancing conventional

T effector cell responses, even in the presence of functional Treg cells

(Figure 4). Both genetic perturbations cause T cell activation by distinct

mechanisms, which may also explain other differences, such as the

decrease or increase in CD8 TCM cell numbers in Traf6-DT or Malt1

PD-Tmice, respectively. We previously showed that selective destruction

of MALT1-TRAF6 interaction in T cells phenocopies the autoimmune

inflammation induced be complete absence of TRAF6 in T cells (17).

Further, symptoms of immune activation in Traf6-DT mice are

ameliorated by systemic MALT1 protease inhibitor treatment. Here we

demonstrate that ablation of TRAF6 in T cells induces autoimmunity via

T cell-intrinsic activation of MALT1 substrate cleavage. Of note, TRAF6

is involved in many other innate immune and inflammatory signaling

pathways (26), but the key roles of TRAF6 in triggering TCR-induced

NF-kB signaling and protecting from uncontrolled T cell activation both

rely upon its interaction with MALT1.

Treg cell development and function is not affected by destruction of

MALT1-TRAF6 interaction and is only partially compromised by loss of

TRAF6, despite strongly impaired TCR-induced NF-kB activation (16,

17). This was somewhat unexpected, because canonical NF-kB subunits

p65 and c-Rel are critical in controlling Treg development and function

(27, 28). Importantly, neither TRAF6 ablation nor lack of MALT1-

TRAF6 interaction affects NF-kB activation in response to inflammatory

TNFa (17), suggesting that other NF-kB inducers are able to compensate

for the loss of TCR-induced NF-kB signaling. Thus, TCR stimulation

seems to primarily drive Treg development and suppressor functions by

providing the signal that induces MALT1 protease activation. It is worth

mentioning that in older mice TRAF6 has a function in maintaining

FOXP3 expression and thus Treg identity, which is independent of its

interaction with MALT1 (17, 29, 30). Reminiscent to Treg cells,

conventional TEM cells develop in the absence of TRAF6 or MALT1-

TRAF6 interaction and are thus also deprived of TCR-inducedNF-kB. In
this setting, chronic MALT1 protease activity seems to initiate T cell

effector responses that drive an inflammatory milieu through the

production of inflammatory cytokines such as TNFa, which in turn

may act on T cells and compensate for the loss of TCR-triggered NF-kB
activation (16, 17). Of note, this cell-intrinsic activation of conventional T

cells causes autoimmune inflammation even in the presence of functional

Treg cells (16, 17). Nevertheless, even though T cells lacking TRAF6

cause autoimmune inflammation, it is unclear in how far they would be

able to mount a productive adaptive immune response upon infection.

Clearly, only the combined mutation of MALT1 scaffolding and protease

functions renders conventional T cells inactive, which results in

immunodeficiency as observed in T cell-specific Malt1 KO mice

(Figure 4) (18). Thus, a tight balance of MALT1 signaling and

proteolytic function in conventional and regulatory T cells is necessary

for maintaining immune homeostasis and for allowing productive

immune activation.
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