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Extracellular adenosine (eADO) signaling has emerged as an increasingly important

regulator of immune responses, including tumor immunity. eADO is mainly

produced from extracellular ATP (eATP) hydrolysis. eATP is rapidly accumulated

in the extracellular space following cell death or cellular stress triggered by

hypoxia, nutrient starvation, or inflammation. eATP plays a pro-inflammatory role

by binding and activating the P2 purinergic receptors (P2X and P2Y), while eADO

has been reported in many studies to mediate immunosuppression by activating

the P1 purinergic receptors (A1, A2A, A2B, and A3) in diverse immune cells.

Consequently, the hydrolysis of eATP to eADO alters the immunosurveillance in

the tumor microenvironment (TME) not only by reducing eATP levels but also by

enhancing adenosine receptor signaling. The effects of both P1 and P2 purinergic

receptors are not restricted to immune cells. Here we review the most up-to-date

understanding of the tumor adenosinergic system in all cell types, including

immune cells, tumor cells, and stromal cells in TME. The potential novel

directions of future adenosinergic therapies in immuno-oncology will

be discussed.
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Introduction

Adenosine (ADO) is a metabolic intermediate involved in the ATP catabolism pathway

and the synthesis of some important signaling molecules, such as cyclic adenosine

monophosphate (cAMP) (1). Extracellular nucleotides, including purines and pyrimidines,

have been unequivocally reported as signaling molecules involved in several systems such as

blood pressure regulation, platelet activation, cardiovascular system remodeling,

neurotransmission, anti-cell death, promotion of cell growth, and immunoregulation (2).

Under physiological conditions, both ATP and ADO are usually at low levels in the
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extracellular space (3). Several cell conditions and stresses like cell

membrane damage, ischemia, inflammation, and cancer could trigger

the massive release of endogenous ATP in controlled manners such as

regulated vesicular exocytosis and ion channel/transporter-mediated

release but also in a direct cell-lytic way through cell destruction

(Figure 1) (4–6). Thus, the accumulation of extracellular ATP (eATP)

actually functions as a danger sign or nominated Danger-Associated

Molecular Pattern (DAMP) to attract phagocytic cells to immigrate to

the inflammatory sites and caution the whole immune system about

the presence of pathogen-associated molecules and cell/tissue damage

(7, 8). The activation of inflammation achieved by eATP is notably

mediated through P2 purinergic receptors, including ligand-gated

receptors (P2X) and metabotropic nucleotide-selective receptors

(P2Y) (9, 10). Most family members of P2Y receptors promote

oncogenic processes directly in tumor cells, while P2Y receptors in

immune cells regulate these processes indirectly (11). Recent studies

suggested that eATP activates P2X purinoceptor 7 (P2X7) expressed

on macrophages, dendritic cells (DCs), granulocytes, T cells, and B

cells to promote the formation of the NLRP3 inflammasome and the

release of inflammatory cytokines such as IL-1b and IL-18 to enhance

anti-tumor immunity (12–14). However, eATP is rapidly hydrolyzed

to extracellular adenosine (eADO) in the tumor microenvironment

(TME) since solid tumors normally have higher levels of

ectonucleotidases than non-tumor tissues (15, 16).
Frontiers in Immunology 02
eADO is primarily derived from the sequential hydrolysis of

eATP mediated by several established ectonucleotidases (5). In a

canonical route, eATP is hydrolyzed to extracellular ADP and AMP

sequentially by CD39, which is known as ectonucleoside triphosphate

diphosphohydrolase 1, and AMP is finally hydrolyzed to eADO by

CD73, which is known as 5′-nucleotidase (17). However, the fate of

eAMP is not limited to producing eADO; eAMP can also be

phosphorylated sequentially to eATP by secreted or membrane-

associated adenylate kinase (ecto-AK) and nucleoside diphosphate

kinase (NDPK) (18).

The non-classical eADO production pathway is mediated by

CD38, which is known as NAD+ ectohydrolase, and CD203a, which

is known as ectonucleotide pyrophosphatase (19). Extracellular

nicotinamide dinucleotide (NAD) released via gap junction protein

connexin 43 (Cx43) regulation can be hydrolyzed to nicotinamide

and ADP-ribose (ADPR) by CD38 (20, 21). Then CD203a consumes

the ADPR to generate inorganic pyrophosphate and AMP, which are

hydrolyzed by CD73 to eADO as mentioned above (19). In addition

to CD73, prostatic acid phosphatase (22) and tissue-non-specific

alkaline phosphatase (TNAP) were reported to hydrolyze eAMP to

eADO (23, 24).

Analogous to eATP, in the extracellular space, the half-life of

eADO is very short. The eADO molecule can be catalyzed directly

into inosine by adenosine deaminase (ADA) and then into
FIGURE 1

eADO metabolic pathways: production, degradation, and signaling.
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hypoxanthine by purine nucleoside phosphorylase (PNP) on the cell

surface (25). eADO could also be transported into cells via

concentrative nucleoside transporters (CNT1/2) or equilibrative

nucleoside transporters (ENT1/2) (26). Inside cells, adenosine also

has several metabolic pathways. The fundamental route is that

intracellular ADO is phosphorylated by cytosolic adenylate kinase

(ADK) to AMP, followed by conversion to ATP (27). Intracellular

ADO could also be converted by cytosolic ADA (cADA) into inosine

or by S-adenosyl-homocysteine hydrolase (SAHH) into S-adenosyl-

homocysteine (SAH) involved in the methionine cycle (28). In

conclusion, the eATP–CD39–CD73 pathway is the fundamental

factor determining the concentration of eADO, but alternative ecto-

enzymes also regulate metabolism, counteracting ATP-

regenerating regulation.

Although the half-life of eADO is short, the concentration of

eADO could remain high in TME. Cancer cell death due to rapid

growth or chemotherapy contributes to ATP release and then eADO

accumulation in the extracellular space (29). In addition to cancer

cells, Treg cell deaths also provide ATP and CD39/CD73 to supply

eADO production for immunosuppression in TME (30). Other than

immune cells, cancer-associated fibroblasts (CAFs) in TME were

reported to highly express CD73 induced by A2B receptor activation

to sustain a high level of eADO concentration in colorectal cancer

(31). Under physiological conditions, ADO plays a role in balancing

the immune system’s activation and overreaction. However, in TME,

all cell types are also regulated by adenosine signaling and involved in

eADO production, which ultimately builds up the role of eADO as a

tumor cell growth supporter.
Frontiers in Immunology 03
Adenosine receptor pathways

eADO has its own specific receptors, which are P1 purinergic

receptors. The P1 receptor family is composed of four G protein-

coupled receptors: A1, A2A, A2B, and A3 (15, 32). These four receptors

have different affinities for eADO. According to affinity, they can be

roughly divided into two groups: A1, A2A, and A3 have affinities for

eADO in the nanomolar range (100–310 nM), while A2B has a

comparatively low affinity for eADO in the micromolar range (15

µM) (33). The common primary function of P1 receptor family

members is to regulate adenylate cyclase activity, which means

modulating the intracellular cAMP concentration (34). A1 and A3,

which are Gi/o(Gi/Go)-coupled adenosine receptors, implement

inhibition of adenylate cyclase to decrease the intracellular level of

cAMP. In contrast, A2A and A2B, as Gq/s(Gq/Gs)-coupled adenosine

receptors, increase the intracellular level of cAMP, which could

potently dampen the immune response in some immune cells (35).

A2A receptor is generally expressed on most immune cells—

monocytes, macrophages, DCs, neutrophils, natural killer (NK)

cells, T cells, and natural killer T (NKT) cells; meanwhile, A2B

receptor is primarily highly expressed on macrophages and DCs (7).

In T cells (Figure 2), the pioneering work that provided evidence

on the role of A2A-mediated immunosuppression in cancer can be

traced to 20 years ago (36, 37). eADO binds to the A2A receptor to

stimulate the accumulation of cAMP, leading to the activation of the

cAMP-dependent protein kinase A (38) signaling pathway, which

negatively regulates the activation of T-cell receptor (TCR)-

dependent transmembrane signaling via providing an OFF signal to
FIGURE 2

eADO/adenosine signaling in T cell.
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activated immune cells (36). In addition to the cAMP/PKA pathway,

eADO receptors can also function through cAMP-independent

pathways such as DAG/PKC, MAPK (ERK and/or p38), and PI3K/

AKT/mTOR pathways (39). In T cells, the eADO-activated A2A

receptor signaling-cAMP/PKA cascade triggers the direct inhibition

of TCR activation via non-receptor tyrosine kinase (CSK). In

addition, CSK inhibits CD28-mediated PI3K/AKT/mTORC

pathways to decrease T cell protein synthesis, proliferation, and

survival (40). PKA also phosphorylates the cAMP response element

binding protein (CREB) to dampen the transcription activity of TCR

downstream NF-kB (41, 42). In addition, PKA could activate SHP-2

and EPAC to impair T cell IL-2 receptor downstream signaling by

inhibiting STAT5 and JAK, respectively, to suppress T-cell activation,

survival, proliferation, and cytokine production (43–45). PKA

inhibits KCa3.1 potassium channels, which causes extracellular Ca2

+ cannot flux in through the calcium release-activated channels

(CRAC) to suppress the upregulation of NFAT regulated genes

which encode factors such as granzyme B (GzmB), IFNg, TNF, IL-
6, IL-17, IL-2, and IL-2R which are crucial to T-cell function and

expansion (46). A2A receptor activation was also reported to

upregulate the expression of T-cell suppressive receptors such as

programmed cell death protein 1 (PD-1), cytotoxic T lymphocyte
Frontiers in Immunology 04
antigen 4 (CTLA4), and T cell immunoglobulin and mucin domain-

containing protein 3 (TIM3) so that T-cell immunosuppression is

potentially enhanced (47, 48).

In other immune cells (Figure 3), such as B cells, NF-kB, the
downstream factor of the B cell receptor (BCR), and Toll-like receptor

4 (TLR4), are suppressed by PKA from activated A2A receptor

signaling, hence disrupting B cell survival (49). PKA from A2A

receptor signaling decreases production of IFNg and perforin,

which is the Fas ligand, to dampen the maturation and activity of

NK cells (50, 51). A2A receptor activation reduces IFNg production in

NKT cells and inhibits NKT cell activation (52). In non-professional

antigen-presenting cells (APCs), such as fibroblasts, A2B receptor-

induced cAMP can suppress IFNg-stimulated STAT1 activity and

inhibit CIITA through upregulating TGFb. The combined effects of

this A2B receptor signaling lead to a decrease of MHC II transcription,

which attenuates tumor immune response (53). In macrophages, the

expression level of both A2A and A2B receptors is promoted by Toll-

like receptor signaling (54, 55). Activation of both A2A and A2B

receptor signaling favors the shift of macrophages towards a

tolerogenic tumor-promoting “M2” phenotype polarization

accompanied by increased production of immunosuppressive IL-10,

IL-6, and VEGF as well as a decrease in pro-inflammatory IL-12 and
FIGURE 3

eADO/adenosine signaling in various immune cells.
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THF (38, 56). Similarly, in dendritic cells (DCs), both A2A and A2B-

mediated cAMP/PKA signaling enhance the production of IL-10, IL-

6, VEGF, and TGFb plus indoleamine 2,3-dioxygenase (IDO),

cyclooxygenase 2 (COX2), and arginase 1/2 (ARG 1/2), which

meanwhile dampen the expression of IL-12 and TNF (57). Based

on most currently known data, in a sense, the A2A receptor elicits

immunosuppression in both lymphocytes and myeloid cells. In

contrast, the A2B receptor elicits immunosuppression mainly from

myeloid cells.

In cancer cells: In the extracellular space of solid tumor TME, the

concentration of eATP is considerably high due to both the passive

release from tumor cell necrosis and the active secretion from tumor

cells and other TME cells. Many factors, such as mechanical stress,

starvation, hypoxia, and chronic inflammation, could induce this

active secretion of ATP (12, 58). eATP binds to both P2X and P2Y,

notably P2X7 expressed in immune cells in TME such as DCs,

macrophages, B cells, and T cells (6, 12). The activation of P2X7

could promote calcium influx to enhance NLRP3 inflammasome

formation, leading to antitumor immunity promotion (29, 59). In

this regard, TME seems to provide a strategy to promote the

inflammatory response, which could potentially contribute to

antitumor activity. In fact, tumor cells express a higher level of

ectonucleotidases such as CD39 and CD73 to execute the hydrolysis

of eATP to eADO. In addition to the most reported transcription

factor, hypoxia-inducible factor 1 (HIF1), several proteins such as

TGFb, TNF, IL-2, and IL-6 could enhance the expression of CD39

and CD73 (16, 60). As mentioned above, CD39 and CD73 are also

generally expressed in immune cells; thus, ectonucleotidases from

both tumor cells and immune cells together produce a large amount

of eADO in the TME niche.

HIF1 as a transcription factor was found to increase the

expression of CD39, CD73, A2A, and A2B as well as suppress the

expression of both ENTs and adenylate kinase, leading to eADO

accumulation in solid tumor TME, which is normally hypoxic (61–

66). The upregulation of CD39, CD73, and A2B in various cancers was

reported to positively correlate with poor prognosis in patients (60,

67). In particular, there have already been tremendous studies

showing that high expression of CD39 and CD73 consistently

correlated with poor prognosis in patients with those high

incidence rates and malignant cancers such as ovarian, gastric,

rectal, breast cancers (including TNBC), hepatocellular carcinoma

(HCC), and non-small-cell lung cancers (NSCLCs) (68–73). This is

the rationale that supports many current and ongoing clinical trials

targeting CD39 and CD73.

More studies uncovered the molecular mechanisms involved in

CD73 upregulation in cancer cells in addition to the regulation of

HIF1 and TGFb. Epithelial-to-Mesenchymal Transition (EMT)

factors such as WNT/b-catenin pathway activators and TWIST

were found to upregulate the expression of CD73 in human tumors

(74). Mutations or upregulation of TP53, KRAS, BRAF, and EGFR

also positively correlated with increased expression of CD73 in

various human tumors (73, 75–77). In tumor cells, especially those

with an EMT phenotype, CD73 and some factors like TGFb form a

positive feedback loop in that TGFb signaling increases CD73

expression and CD73 produces more eADO stimulating A2A and

A2B receptor pathways to favor TGFb production and secretion; thus,
Frontiers in Immunology 05
CD73/eADO receptor signaling contributes to EMT promotion in

cancer cells (78). Since the high concentration of extracellular NAD+

is present in the TME niche in some cancer types, probably due in

part to the altered metabolism in cancer cells, the non-classical eADO

production pathway mediated by CD38 also plays an influential role

in eADO signaling in several solid tumors (22, 79).

The effects of eADO are not limited to immune cells to implement

immunosuppression but also on cancer cells directly to regulate

tumor proliferation, growth, anti-apoptosis, and metastasis. The

PI3K/AKT/mTORC signaling pathway could be promoted upon

eADO-mediated A2A receptor signaling to promote cell

proliferation, tumor progression, and metastasis in melanoma,

hepatocellular carcinoma, and gastric cancer (80–82). The A2B

receptor was found to stimulate different downstream signaling

compared to A2A in cancer cells. In TNBC cells, activation of the

A2B receptor occurs notably via the ERK1/2-MAPK pathway.

Knockdown of the A2B receptor in TNBC cells suppresses cancer

cell proliferation and lung metastasis (67). A2B receptor signaling

could activate FOS-related antigen 1 (FRA-1) and the small GTPase

RAP1B to enhance TNBC cells’ lung metastasis in mouse models (83,

84). An intriguing finding is that A2B receptor signaling is

constitutively activated in prostate cancer cells to promote cancer

cell proliferation in vitro. However, activation is not dependent on the

availability of the A2B receptor ligand, eADO. This study suggested

potential adenosine-independent signaling under the A2B receptor in

cancer cells (85). The EMT process has an unequivocal interaction

with adenosine signaling. Enhancing EMT levels leads to increased

CD73 expression and thus eADO receptor signaling, which in turn

promotes the EMT process in ovarian cancer (68, 78). Cancer cells

with an EMT phenotype usually exhibit cell stemness, which is

suggested as a potential cancer stem cell. In breast cancer and

glioblastoma, hypoxia-induced A2B receptor activation results in the

maintenance of self-renewing tumor cells in the mouse model (86,

87). In a hepatocellular carcinoma study, CD73 was found to be

upregulated, leading to A2A receptor activation, which results in

cancer cells’ EMT and stemness promotion through increasing

SOX9 expression and activity (88).
Therapy for cancer targeting adenosine
signaling pathway

Not surprisingly, drugs designed to target the adenosine signaling

pathway have been blooming vigorously for the last decade. Strategies

for targeting adenosine signaling pathway could generally be classified

into two groups: ① inhibition of adenosine production and prevention

of ATP degradation simultaneously in TME via targeting CD73 and/

or CD39; and ② interruption of adenosine signaling through blocking

A2A and A2B receptors. According to ongoing pre-clinical research

and clinical trials, drugs targeting the CD73 and A2A receptors are the

mainstream adenosine pathway inhibitors. Most CD73 inhibitors are

monoclonal antibodies for potential pharmacological application,

whereas small-molecule inhibitors are currently the only available

clinical drugs targeting A2A and A2B receptors since they are G

protein-coupled receptors (GPCRs) with specific conformations

notoriously difficult for antibody binding.
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Targeting A2A and/or A2B in cancer: A2A antagonists were

initially developed for neurological disorders such as Parkinson’s

disease or adult attention deficit hyperactivity disorder (ADHD) (89,

90). Their evaluations in clinical trials suggested a great tolerability

and safety profile. The available preliminary data of several A2A

antagonists in clinical trials with cancer patients showed good

tolerability and exhibited some effects. They are CPI-444 (Corvus),

PBF-509 (Novartis/Pablobiofarma), EOS100850 (iTeos), MK-3814

(Merck), AZD4635 (AstraZeneca/Heptares), and a dual A2A and

A2B antagonist AB928 (Arcus) (91–96). PBF-1129 (Pablobiofarma),

a selective A2B antagonist, has also been developed and is being tested

in a clinical trial involving NSCLC cancer patients. In two clinical

trials, CPI-444 was administered alone and in combination with

Atezolizumab (PD-L1 antibody, Genentech) in patients with renal

and advanced metastatic castration-resistant prostate cancer (91).

Most common adverse events are in grades 1–2, including fatigue,

pruritus, nausea, diarrhea, rash, vomiting, and anemia as well as

several in grades 3–4, such as decreased appetite, anemia, arthralgia,

and peripheral edema. A better outcome (median progression-free

survival of 5.8 months versus 4.1 months and overall survival of 90%

versus 55% at 20 weeks) was observed with the A2A antagonist CPI-

444 plus the anti-PD-L1 antibody atezolizumab compared to CPI-444

alone in patients with advanced-stage renal cell carcinoma (91).

Similar results have been reported in patients with mCRPC: 57% of

patients (eight of 14) experienced disease control, with five partial

responses and two stable disease responses.

Targeting CD73 and/or CD39: There are several anti-CD73

monoclonal antibodies in phase I/II clinical trials currently,

including MEDI9447 (MedImmune), BMS-986179 (BMS), NZV930

(Novartis), and CPI-006 (Corvus), as well as a small molecule

inhibitor, AB680 (Arcus) (97–99). In these clinical trials, CD73

inhibitors were administered alone and in combination with PD-1/

PD-L1 monoclonal antibodies. Most adverse events were mild, and

most outcomes indicated a decreased primary tumor expansion rate,

less metastasis formation, and an improved survival rate (99). In
Frontiers in Immunology 06
addition to CD73, monoclonal antibodies and small-molecule

antagonists to CD39 and CD38 are also under development (22, 99).

Targeting drugs are listed in Table 1.
Cautions in the adenosine targeting therapy

The existing controversial effects of adenosine blockage in cancer:The

prevalent view is that eADO production and eADOA/ARs signaling

activation are associated with poor clinical outcomes. However, it is not

substantial for every type of cancer. A group found that in endometrial

carcinoma, CD73 played a critical role in tumor suppression (100),

whereas another group reported that in endometrial carcinoma, the loss

of CD73 is essential for tumor progression (101). Although several

studies found a link between A2A expression or activation and poor

outcomes in breast cancer, Vasiukov et al. revealed a positive correlation

between A2A receptor gene expression and better survival data in basal-

type breast cancer and TNBC patients (102). In addition, adenosine

receptors (ARs) also exhibit both stimulatory and inhibitory effects in

melanoma (80). A similar contradictory effect of adenosine receptors on

hepatocellular carcinoma progression has also been reported (103).

More mechanisms and pre-clinical studies are necessary to provide

fundamental knowledge for adenosine targeting therapy.

Specificity issue in adenosine receptor blockage: As mentioned,

adenosine receptors are members of the GPCR family. The

conformational complexity of GPCR gives rise to the difficulty of

developing antibodies to target the receptors. The currently available

pharmacological inhibitors of ARs are small molecules that have the

notorious disadvantage of engaging of multiple targets (poly-

pharmacology). Several compounds, which were previously confirmed

as binding interactors of A1, A2, and A3 receptors, were found to have

intracellular binding targets (104, 105). In addition, the putative selective

A2B receptor agonist BAY 60-6583 was reported to have other binding

molecules to increase CAR-T cell activity independently of the A2B

receptor (106).
TABLE 1 Representative eADO pathway-targeting drugs which were involved in the most recent clinical trials.

Target Cancer Type Drug Name Company

A2A receptor Advanced solid tumors, non-Hodgkin lymphoma CPI-444 Corvus

A2A receptor Non-small cell lung cancer PBF-509 Novartis/Pablobiofarma

A2A receptor Adult solid tumor EOS100850 iTeos

A2A receptor Advanced solid tumors MK-3814A Merck

A2A receptor Advanced solid tumors AZD4635 AstraZeneca/Heptares

A2B receptor Non-small cell lung cancer PBF-1129 Pablobiofarma

A2A and A2B receptors dual antagonist Metastatic castrate resistant prostate cancer AB928 Arcus

CD73 Solid tumors MEDI9447 MedImmune

CD73 Advanced solid tumors BMS-986179 BMS

CD73 Advanced solid tumors NZV930 Novartis

CD73 Advanced solid tumors, non-Hodgkin lymphoma CPI-006 Corvus

CD73 Healthy volunteers AB680 Arcus

CD38 Lymphoma Prostate, Non-small cell lung cancer Isatuximab/SAR650984 Sanofi
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There is still a large amount of work to be done to pursue better

safety and efficacy in adenosine signaling targeting therapy.
Conclusion

Both eATP and eADO are important signal molecules in the

physiological processes of cells and tissues. Tissue damage or various

cell stresses such as hypoxia, starvation, andmechanical stress, which are

common in the TME niche, could stimulate eATP accumulation and

rapid hydrolysis to eADO. This would lead to dramatically increased

eADO.This eATP–eADOmetabolic pathway is involved inpathological

shifts in several aspects: rapid eATP degradation dampens the

inflammatory response; accumulation of eADO triggers

immunosuppression; and it promotes tumor cell proliferation andEMT.

In adenosine signaling, pre-clinical studies suggested the CD39–

CD73–A2A receptor pathway is an attractive and tractable therapeutic

target for cancer treatment. Inhibitors targeting the CD73 and A2A

receptors exhibited good tolerability and achieved some therapeutic

effects in some clinical trials. However, several knowledge gaps are

worthy of exploring to assist further pre-clinical and clinical trial

design (1): What are the potential compensation pathways for the

inhibition of eADO signaling? They are probably not limited to

intracellular ADO release and ADO-independent adenosine receptor

activation. (2) More combined therapies, such as immune checkpoint

blockers and adenosine signaling inhibitors, have shown better efficacy.

(3) What are reliable biomarkers to indicate which patient subgroups

have a higher chance of benefiting from treatments targeting eADO

signaling? Inconclusion, the adenosinergic systemoffersnew therapeutic

strategies aimed at limiting immunosuppression and potentiating

antitumor immune responses.
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