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The humoral response is frequently dysfunctioning in autoimmunity with a

frequent rise in total serum immunoglobulins, among which are found

autoantibodies that may be pathogenic by themselves and/or propagate the

inflammatory reaction. The infiltration of autoimmune tissues by antibody-

secreting cells (ASCs) constitutes another dysfunction. The known high

dependency of ASCs on the microenvironment to survive combined to the high

diversity of infiltrated tissues implies that ASCs must adapt. Some tissues even

within a single clinical autoimmune entity are devoid of infiltration. The latter

means that either the tissue is not permissive or ASCs fail to adapt. The origin of

infiltrated ASCs is also variable. Indeed, ASCs may be commonly generated in the

secondary lymphoid organ draining the autoimmune tissue, and home at the

inflammation site under the guidance of specific chemokines. Alternatively, ASCs

may be generated locally, when ectopic germinal centers are formed in the

autoimmune tissue. Alloimmune tissues with the example of kidney

transplantation will also be discussed own to their high similarity with

autoimmune tissues. It should also be noted that antibody production is not the

only function of ASCs, since cells with regulatory functions have also been

described. This article will review all the phenotypic variations indicative of tissue

adaptation described so for at the level of ASC-infiltrating auto/alloimmune tissues.

The aim is to potentially define tissue-specific molecular targets in ASCs to

improve the specificity of future autoimmune treatments.
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1 Introduction

In autoimmune diseases, the immunosuppressive treatments

based on steroids and/or anti-mitotic agents used for decades are

timely replaced by more immune selective drugs. These new therapies

may be in the form of antagonist and cytotoxic antibodies.

Alternatively, solubilized receptors may also be used for antagonism

purposes. Very recently, T cells transduced with chimeric antigen

receptors (CAR) originating from the oncology field has also entered

the game. Regarding humoral immunity, three drugs targeting

distinct molecules but achieving a quite similar immunosuppressive

function have been approved for clinical usage. The first approval

concerns rheumatoid arthritis in 2006 with a depleting antibody

directed against the CD20 molecule, an ubiquitous receptor

expressed on mature B cells (1). The initial discovery came from a

study testing a cytotoxic chimeric antibody, rituximab, in patients

suffering from B-cell lymphoma. The drug was found highly effective,

but most important for our present consideration a patient

cosuffering from rheumatoid arthritis (RA) also showed benefits at

the autoimmune level (2). Hence, a new therapeutic wave in

autoimmunity was launched, the B-cell depletion. This approval

was extended to granulomatosis polyangiitis and pemphigus

vulgaris in 2014 and 2018, respectively (3, 4). Ocrelizumab, the

second generation humanized anti-CD20 was also approved in

multiple sclerosis in 2017 (5). The second approval concerns

systemic lupus erythematosus (SLE) in 2011, and is based on an

antagonist antibody, belimumab, directed against the B-cell activation

factor from the TNF superfamily (BAFF) (6). BAFF (TNFSF13b) is

one of the latest identified members of this superfamily (7). Precisely,

BAFF acts extramedullary on developing B cells at their transitional

stage to provide a signal enabling them to reach their final mature

stage. It does so by stimulating the BAFF receptor (BAFF-R) (8).

BAFF-deficient animals gave a striking phenotype with the almost

complete disappearance of the mature B-cell pool. Such a result was

the proof of concept to design BAFF antagonism in the B-cell

depletion era. Another humanized BAFF, tabalumab, is also under

development (9). The third approval concerns neuromyelitis optica

(NMO) with a depleting antibody, inebilizumab, against the CD19

receptor (10). Other drugs targeting B cells are also tested in

autoimmune diseases such as the depleting antibody ianalumab

targeting the BAFF-R, the negatively signaling epratuzumab

targeting CD22, and atacicept a soluble form of the TACI receptor

antagonizing BAFF and the related member from the TNF

superfamily a proliferation inducing ligand (APRIL, TNFSF13) (11–

13). Note that a second soluble form of TACI, telitacept, is currently

under development with a first recent approval in SLE (14).

According to the European Union and United States clinical trial

registers, 16 different autoimmune diseases are tested or announced to

be with at least one of these drugs in 2022. More precisely, 13 diseases

are targeted with one anti-CD20, 7 with one anti-BAFF, 4 with the

anti-BAFF-R, 3 with the anti-CD19, 1 with the anti-CD22 and 2 with

atacicept. The anti-CD38 antibody, daratumumab, coming from the

hemato-oncology field and successfully used to treat multiple

myeloma (MM), the most common plasma cell (PC)-derived

tumor, has also entered the autoimmunity field for refractory

patients (15). The proteasome inhibitor bortezomib has been tested

in a large spectrum of antibody-mediated autoimmune diseases (16).
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The study is now completed and results are awaited. Finally,

inhibitors of B-cell specific kinases such as the Bruton tyrosine

kinase used to treat B-cell malignancies are also under

investigations (17).

Antibody-secreting cells (ASCs) may be of two kinds, the

plasmablast (PB) representing the first effector stage during the B-

cell differentiation process by its capacity to secrete antibodies and the

terminally differentiated plasma cell (PC). PB and PC are short- and

long-lived, respectively. The different stages and associated

phenotypes of B-cell differentiation has been recently reviewed by

others (18). A common marker used to characterize ASCs is the high

expression of CD38. The coexpression of CD38 and CD138 is further

considered to represent the final PC stage, at least in the human

system (19). One important concern regarding CD19, CD20, CD22,

BAFF-R and their targeting in autoimmunity is their temporal

regulation of expression. Indeed, expression of all these receptors is

gradually lost upon differentiation of B cells into effector ASCs.

Expression is totally lost on PCs, while they may still be present but

at a downregulated level on PBs. This implies that these targets will

lead to depletion at best of short-lived PBs, and will leave untouched

PC already differentiated in patients before diagnosis and treatment.

Notably, these treatments will remove all B cells, precursors of ASCs.

The COVID 19 taught us that such profound depletion may be

unwanted in autoimmune patients, when an urgent vaccination is

needed to face emerging infectious agents (20). The similar expression

pattern for CD19, CD20 and CD22 is explained by the fact that they

are all under the control of the transcription repressor B lymphocyte-

induced maturation protein (Blimp-1), a master activator of PC

differentiation (21). It should be noted that CD19 may be

considered as an outlier in this family, since CD19 has been

observed at the surface of ASCs (22). CD19 expression on PCs may

concern a subset of cells considered to represent an immature stage of

PC (23). Others reported that CD19 may be lost earlier at the PB stage

(24). There are currently no data regarding BAFF-R regulation by

Blimp1. However, it is clear that BAFF-R undergoes downregulation

in germinal center B cells (25–27). It is very much likely that BAFF-R

follows the same transcriptional control considering its highly similar

expression pattern compared to CD20 and CD22 and its absence of

function in PC biology (28). The two other receptors for BAFF and

APRIL, TACI and BCMA, have a different expression pattern. They

are not expressed on naive mature B cells, but appear after antigen

encounter. BCMA is ubiquitous on PCs and key for their survival as

demonstrated in genetically deficient mice (29). TACI has been

defined by others as enigmatic (30). This is definitely the case when

one considers that TACI has two different isoforms harboring

different subcellular localizations, the positive or negative signaling

ability reported, and an uncommon ligand-independent activation

mode (31, 32). TACI expression has been best studied in MM with a

gene expression profile obtained with TACI+ MM cells consistent

with terminally differentiated bone marrow (BM) PCs (33, 34). TACI

is expressed on healthy ASCs, at least a subset, and has a survival role

for these cells (35). BCMA and TACI expression renders BAFF

antagonism potentially efficient to target PCs. However, this has not

been observed experimentally (36). One explanation to this is the low

affinity reported for BAFF with BCMA (37, 38). On the contrary to

BAFF, APRIL is a key PC survival factor (28). Hence, atacicept is so

far the only biotherapy that may act on established PCs. In an animal
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model of antibody-mediated autoimmunity, atacicept was found

more active than BAFF-only blockade (39). The anti-CD38

daratumumab may look promising. However, one should be aware

that CD38 is not only expressed in immune cells including ASCs. In

particular, it is expressed by liver stellate cells and anti-CD38

treatments have been associated to a rise in liver enzymes (40, 41).

Another important issue regarding PC targeting is their quiescent

state rendering them non susceptible to anti-mitotic agents at

variance to proliferative PBs (42).

Cell phenotype described above came from studies conducted

either in secondary lymphoid organs considered as the generation

site, or blood considered as the circulation site, or BM considered as

the long-term residency site. Several concerns exist arguing that the

phenotype of ASC infiltrating autoimmune tissues may differ. Indeed,

one may ask whether terminal differentiation as observed upon

homing in the sterile environment of the bone marrow is also

similarly occurring after infiltration in an inflamed autoimmune

tissue. Autoimmune tissues may harbor ectopic germinal centers

(EGCs) commonly defined by an aggregate of proliferating T and B

cells intermixed with CD21+ follicular dendritic cells (FDCs) (43). In

these cases, the tissue should contain different population of ASCs. All

these considerations may highly modulate ASCs susceptibility to

current biotherapies targeting B cells discussed above. Here, we will

review the literature describing the phenotype and stage of

differentiation of ASCs infiltrating autoimmune tissues. We will

also review the chemokines engaged in ASC homing (44, 45).

Among these chemokines, CXCL-12 has been frequently studied.

One should note that this axis is not strictly specific to ASCs, since

many leukocytes express the associated receptor, CXCR-4, and that

dual pro- and anti-inflammatory functions has been associated to it

(46, 47). We selected diseases based on the frequent tissue infiltration

by ASCs and/or the description of pathogenic antibodies defined by

their ability to transfer/exacerbate the disease in an animal model. We

are also discussing kidney allotransplants rejected upon a chronic

humoral immune response, since these tissues are displaying high in

situ similarities with autoimmune tissues and allotransplanted tissues

are also considered for B-cell depletion (48).
2 Systemic diseases

2.1 Systemic lupus erythematosus

SLE is an autoimmune disease characterized by multi-organ

involvement and the production of autoantibodies that target nuclear

self-antigens of two types. The first type includes antibodies to double-

stranded (DS) DNA and nucleosomal components. The second type,

named antibodies to extractable nuclear antigens (ENA), includes

antibodies to RNA binding proteins. Anti-DS DNA antibodies play a

crucial role in the inflammatory and fibrogenic mechanisms of lupus

nephritis (LN), while immune complexes with anti-ENA antibodies

stimulate interferon production by innate immune cells (49, 50).

Pathogenicity of these antibodies was demonstrated in the human

system during pregnancy with the neonatal lupus syndrome (51). All

B-cell therapies discussed above were tested in SLE (52). However, only

the anti-BAFF has been approved to treat patients. This may be explained

by the strong correlation observed between serum levels of BAFF and
Frontiers in Immunology 03
disease severity. Notably, the anti-BAFF in use recognizes only the

membrane-bound form of the molecule (53). The anti-CD20 has been

disappointing in clinical trials, and a combination of the anti-BAFF and

anti-CD20 is currently under evaluation (54). Most recently, telitaciept

was approved for the treatment of active SLE in China (14). Epratuzumab

failed in SLE, but a post-hoc analysis revealed efficacy in SLE patients with

an associated Sjögren syndrome (SS) (55). Of note in SLE is an antibody

against the type I IFN receptor recently approved (56). It is believed that

such drug may affect ASC differentiation (57). Quite new in the

autoimmunity field, a small cohort of refractory SLE patients has been

successfully treated with CAR-T cells directed against CD19 (58).

In this systemic disease, tissue lesions with CD138+ ASCs may be

observed in kidneys from LN (59). Beyond CD138, their precise

phenotype has not been extensively studied. These cells express

CXCR4, and CXCL-12 is upregulated in tubules and glomeruli of

kidneys from LN patients (60, 61). A single cell RNA analysis recently

confirmed the prevalence of the CXCL-12/CXCR4 axis for leukocyte

infiltration in LN, and provided evidences that recruited leukocytes

may also be a source of CXCL-12 in the inflamed tissue (62). EGC

formation may be observed in these inflamed kidneys (63). In

addition, expansion of effector B cells of extrafollicular origin may

occur during flares (64). Interestingly, the predominance of GCs and

extrafollicular B responses may vary among SLE patients (65).

Regarding ASC survival factors, BAFF and APRIL have been

detected in kidneys from LN (66). However, expression of their

receptors has not yet been reported in kidney-infiltrating ASCs.
2.2 Anti-neutrophil cytoplasmic antibody-
associated vasculitis

Anti-neutrophil cytoplasmic antibody (ANCA)-associated

vasculitis (AAV) are represented by granulomatosis with

polyangiitis (GPA) and microscopic polyangiitis (MPA). The

antibodies are directed against cytoplasmic antigens, primarily

proteinase 3 (PR3) and myeloperoxidase (MPO) from neutrophils.

PR3-ANCA is associated with GPA (75%), whereas MPO-ANCA is

more commonly associated with MPA (60%). Pathogenicity of ANCA

was demonstrated in the human system with the transplacental

transfer of MPO-ANCA and induction of renal pathologies (67).

The anti-CD20 has been approved in conjunction with

corticosteroids (68). Rituximab has also been licensed for remission

induction in severe GPA/MPA and refractory/relapsing GPA/MPA

(69). At variance, the anti-BAFF was disappointing in this disease

(70). It is now tested in association with rituximab (NCT03967925).

Because of the systemic nature of this disease, ASCs have been

mostly studied in the circulation. Matsumoto et al. have shown that

AAV patients display higher proportions of circulating PBs and PCs

as compared to healthy controls, and von Borstel et al. demonstrated

that an increased frequency of these cells defined by expression of

CD27 and CD38 in GPA patients during remission is related to a

higher relapse risk (71, 72). The kidney may be involved in AAV with

tubulointerstitial lesions containing inflammatory cells, and a case

report showed structures similar to EGCs with an aggregates of T/B

cells surrounded by CD138+ PCs (73, 74). To our knowledge, nothing

was reported for in situ chemokine production, infiltrating ASCs and

BAFF/APRIL expression in kidney lesions from AAV.
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2.3 IgG4-related diseases

IgG4-related diseases (IgG4-RDs) are antibody-mediated disorders

not considered as strictly of autoimmune origin but rather as a wide

spectrum of fibro-inflammatory conditions affecting multiple organs

and associated with infiltration of ASCs specifically producing IgG4.

Nevertheless, test of patients’serum reactivity defined several

autoantigens including prohibitin, annexin A11, laminin 511-E8 and

galectin-3 (75). IgG4-RD involves several unrelated organs such as the

pancreas, liver, kidney, lung and skin. Despite the fact that the IgG4

isotype is not able to bind complement proteins and activate Fc

receptors present on immune cells, pooled IgG4 from patients on

their own are nevertheless able to induce pancreatic and salivary gland

injuries when injected subcutaneously in neonate mice (76). It is

believed that IgG4 pathogenic autoantibodies exert their effect by an

antagonism activity of the targeted autoantigen(s). As a relevant

example, recombinant antibodies produced from circulating clonally

related PBs defined IL-1 receptor antagonist (IL-1 RA) as a new

autoantigen, and these antibodies showed an antagonistic activity

against IL-1 RA (77). It should be noted that an heterogeneity exist

at the level of the isotype of pathogenic autoantibodies produced in this

disease, since serum IgG1 from patients also transferred the diseases in

neonate mice (76). Rituximab, belimumab associated to prednisone and

obexelimab, a second form of anti-CD19, are in trials (NCT01584388,

NCT04660565, NCT05662241).

Ducts and acini produce CXCL-12 in IgG4-RDs affecting the

pancreas (78). The receptor CXCR4 has also been detected in

pancreatic lesions, but the type of cells expressing this receptor

were not studied. As for AAV, elevation in total circulating PBs

defined in this case by a CD19lowCD20-CD38highCD138- phenotype is

a valuable biomarker in IgG4-RDs (79). Among these cells, more than

half are IgG4+. EGCs are frequent in IgG4-RDs (80). The precise

phenotype of infiltrating IgG4+ ASCs remains to be determined, since

only CD138 expression was assessed in kidney and skin lesions (81,

82). While there are no data on BAFF expression in IgG4-RDs, APRIL

is produced by CD163+ M2 macrophages (83). There are no data on

BAFF-R/TACI/BCMA expression by infiltrating ASCs.
3 Organ-specific diseases

3.1 Sjögren’s syndrome

Primary Sjögren’s syndrome (pSS) is an autoimmune disease

affecting among others salivary and lacrimal glands with 2/3 of the

patients harboring the so-called anti-Ro/SSA and anti-La/SSB

antibodies recognizing ribonucleoproteins (84). Despite their

intracellular reactivities, these autoantibodies may be pathogenic,

since maternal antibodies transferred via the placenta induce

cutaneous lesions in neonates (85) Regarding B-cell therapies,

rituximab gave contradictory results but some positive clinical

efficacies could be highlighted (86). The anti-BAFF and anti-BAFF-

R gave promising results in phase II (87, 88). The anti-BAFF is also

currently tested associated to the anti-CD20 (NCT02631538). A trial

with telitacicept was recently announced (NCT05673993). A trial

with CAR T cells co-targeting CD19 and BCMA has been announced

in refractory SS patients (NCT05085431).
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pSS has a frequent association with EGCs averaging 30-40% (43).

These EGCs have been associated to SS threatening complications with

the development of B-cell lymphomas (89). ASCs are well present even in

lesions with a low focus score devoid of EGCs (90). Regarding homing,

ASCs are found in the vicinity of CXCL-12 expressing cells including

epithelial cells, infiltrating leukocytes and adipocytes (91). Notably,

CXCL-12 upregulation was also seen in cases with EGCs, implying

that it may not only act as a recruitment but also as a retention factor.

Another study reported an upregulation of CXCL-9/-10 in pSS compared

to healthy salivary glands (92). In EGC+ cases, most ASCs identified by

their CD138 expression did not proliferate based on Ki67 reactivity. This

observation is of particular importance, and we recently confirmed this

finding by imaging mass cytometry with most if not all CD138+ cells

outside EGCs negative for Ki67 (Figure 1, data not published). Indeed, it

shows that ASCs produced locally differentiate further than the PB stage

in the autoimmune tissue. Notably, it has been possible to identify in this

disease autoreactive ASCs in lesions by using tagged recombinant

autoantigens as detection reagents. By this approach, ASCs binding the

Ro52 and Ro60 autoantigens were described among CD20-CD19+ cells

(93–95). Regarding survival factors, pSS is one exception among

autoimmune tissues characterized by the absence of APRIL expression,

whose expression is usually associated with inflammation (96). At

variance, BAFF is well expressed, but the expression of BAFF-R on

ASCs of pSS has not yet been assessed (97).
3.2 Rheumatoid arthritis

RA is an autoimmune disease showing inflammation in the

synovial tissue and affecting joints. RA is associated with

autoantibodies against citrunillated protein antigens (ACPA). Anti-

ACPA are present in more than 80% and 50% in advanced and early

RA, respectively. A common mouse model for RA is the transfer of an

antibody against the glucose-6-phosphate isomerase into mice (98). As

discussed earlier, RA was the first autoimmune disease with an

approved B-cell therapy in the form of an anti-CD20. Three phase II

trials were performed with atacicept with only one showing a positive

clinical response (99). Adding atacicept to rituximab did not ameliorate

efficacy (100) A phase II study showed promising results with the anti-

BAFF (101). The anti-BAFF-R is in trial (NCT03574545).

As for pSS, EGCs are frequent in RA averaging 40% (43). EGCs are

necessarily associated with increased synovium inflammation that may

extend systemically, but not necessarily associated to the presence of anti-

ACPA (102). ASCs may also be present even in the absence of these

EGCs in the early phase of the disease (103). The chemokines CXCL-9/-

10 together with expression of their receptor CXCR3 on ASCs have been

detected in the synovial tissue of patients (104, 105). CXCL-12 is also

upregulated, and CXCR-4 has been reported in ASCS from synovial

tissues at the mRNA level (106). Notably, Scheel et al. reported that B

cells may differentiate into ASCs within synovial tissues devoid of EGCs

(107). In cases positive for EGCs, ASCs present outside EGCs have a non-

proliferating phenotype being CD20- and expressing high level of CD38

and CD138 (108, 109). This confirms the observation made in pSS

indicating that ASCs may differentiate to the PC stage in an autoimmune

tissue. However, a recent single cell RNAseq analysis combined to mass

cytometry classifies the majority of ASCs present in synovial tissues as

PBs (110). Autoreactivity of ASCs in RA was also probed with tagged-
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ACPA, and showed that a subset of CD20-CD138+ ASCs residing outside

EGCs were producing autoantibodies (111). Autoreactivity against

ACPA was further confirmed with the recombinant antibody

technology (112). These ASCs in RA lesions were probed t be non-

susceptible to rituximab treatment (113). BAFF and APRIL produced by

synovial fibroblasts as well as myeloid cells in the case of APRIL are

present in inflamed synovial tissues (114–117). Data regarding BAFF-R,

TACI and BCMA expression on ASCs at the protein level are missing.

However, BCMA and TACI has been described in ASCs from synovial

tissues at the mRNA level (112).
3.3 Liver autoimmune diseases

The liver may suffer from an autoimmune attack in mainly two

different situations, the autoimmune hepatitis (AIH) and the primary

biliary cholangitis (PBC). Two types of AIH have been described

according to autoantibody reactivity in patient serum. Type 1 AIH is

defined by anti-smooth muscle antibodies directed against actin filaments

and associated or not with anti-nuclear antibodies. Type 2 AIH is

associated to autoantibodies more specific to the tissue with the so-

called liver-kidney microsomal 1 directed against cytochrome P450-2D6,

and/or liver-cytosol 1 targeting forminotransferase-cyclodeaminase

antibodies. Autoantigens in PBC originate from the mitochondria.

AIH-like symptoms were reproduced in mice by passive transfer of an

antibody reactive against the hepatocyte surface of IgM isotype and

derived from a type 1 AIH patient (118). To our knowledge, induction of

PBC by transfer of anti-mitochondrial antibodies from patients in an

animal model has not been reported. Quite surprisingly, there is only the

anti-BAFF-R in trial for AIH. This is likely explained by the fact that

steroid and/or anti-mitotic agents are highly effective in AIH with a

limited number of patients estimated around 10% failing. Rituximab and

to a lesser extent belimumab were tested with some promising successes

in steroid non-responding patients from non-randomized trials (119–

122). Notably, rituximab was reported effective in cases of refractory AIH/

PBC overlap (123). However, no clinical trials have been announced yet.

Rituximab failed in phase II for PBC despite reduction in anti-
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mitochondrial antibodies (124). To the best of our knowledge, EGCs

have not been defined in AIH. Despite this, ASC infiltration is common,

ranging to about 2/3 of cases (125). Since seropositivity for autoantibodies

is now considered to be superior to 90% in AIH if one considers all

autoantibodies described in this disease and not only the type-specific

ones (126), seropositive AIH is composed of a least two subtypes, one

with and one without ASC infiltration. There are no data regarding ASC

specific chemokines in AIH lesions. In addition to the absence of EGCs,

this is raising questions regarding ASC homing in AIH livers. CD138+

PCs are observed in AIH lesions (127), but their precise phenotype

warrants further investigations. At variance, ASC chemokines including

CXCL-9/-10/-12 have been reported in PBC livers (128, 129). As a likely

consequence, ASCs also infiltrate PBC livers. ASC infiltration is one

common histological hallmark between AIH and PBC. One difference is

the more prominent fraction of ASCs secreting switched IgG over IgM

antibodies in AIH observed by several independent groups (130–132).

Despite the fact that no studies are reporting T/B aggregates with the

presence of CD21+ FDCs, EGCs are likely in PBC according to the study

reporting the presence of PD-1+ ICOS+ T follicular helper (TFH)

aggregated with CD20+ B cells (133). In PBC, a significant fraction of

CD38highCD138+ ASCs expresses CD19 (134). These ASCs secrete

antibodies against the PDC-E2 mitochondrial antigen. There is

currently no data on the production of BAFF and APRIL in

autoimmune livers.
3.4 Autoimmune thyroiditis

The thyroidmaybe subjected to ahumoral autoimmune reactionwith

the Hashimoto thyroiditis (HT) and Graves disease (GD). HT and GD

harbor anti-thyroperoxydase/thyroglobulin and anti-thyroid stimulating

receptor, respectively. GD may be further associated to orbitopathy.

Pathogenicity of these autoantibodies has been clearly established in the

human system with spontaneous abortion problems (135, 136).

Hypothyroidism in HT is well managed by hormone substitution

therapies. Clinical management of GD is more complex, especially in the

case of associated orbitopathy. Rituximab was first tested in GD not
FIGURE 1

Analysis of pSS lesions with imaging mass cytometry. Formalin-ixed paraffin-embedded minor salivary gland biopsies corresponding to one pSS patient
with mild infitration and one patient with an ectopic germinal center were stained with antibodies conjugated to metal tags using the MaxPar® labeling
kit. Stainings were visualized on a Hyperion. Imaging system coupled to a Helios mass cytometer.
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associated to orbitopathy. A decrease in pathogenic antibodies despite

clinical improvementinsomepatientswasnotalwayscorrelated(137–139).

This suggests another role forBcells than theproductionof autoantibodies

in thepathogenesis ofGD.Twoclinical trialswere achievedwith rituximab

in GD-associated orbitopathy giving controversial effects (140, 141).

Rituximab may be effective when administered early in disease active

patients, but additional data are needed before any conclusive statement.

Two other phase II trials are ongoing.

ASC infiltration and EGC genesis is a very common feature of

HT, and they are a source of autoantibodies (142). EGC genesis may

also occur but to a lesser extent in GD (143). Regarding ASC

chemokines, CXCL-9/-10 and CXCL-9/-10/-11 produced by

thyrocytes have been reported in HT and GD, respectively (144–

146). CD138 staining was not extensively studied in autoimmune

thyroiditis, most likely because it is also expressed at the surface of

thyrocytes. One study reported CD138+ PCs in GD (147). 15% of GD

associated orbitopathy cases show a selective ASC infiltration in the

orbital tissue (148). Notably, upregulation of CXCL-12 in the ocular

manifestation of GD has been reported (149). BAFF is produced in

the EGCs from HT (150). There is no data regarding APRIL.
3.5 Multiple sclerosis

The presence of oligoclonal immunoglobulin bands in the

cerebrospinal fluid (CSF) of patients and the success obtained by B-cell

therapies cited in the introduction led to an increased interest in the

targeting of humoral immunity in multiple sclerosis (MS). Since the

ocrelizumab approval, trial with the anti-CD19 gave trendy results (151).

Atacicept failed in MS because of an unexpected disease exacerbation

(152). Animals models provided several explanations (153–155).

Nevertheless, atacicept failure might not have been directly due to

BAFF/APRIL antagonism, since a new trial with telitacicept is ongoing

in MS (14). BAFF-only treatment with tabalumab gave no significant

results (156). As of today, the disease has never been transferred in an

animal with the systemic injection of antibodies directed against myelin-

associated products (157). However, systemic injection of these

autoantibodies decreased the number of encephalitogenic T cells

required to induce demyelinating lesions in the mouse CNS, indicating

that the humoral immunity may not induce the disease but participates

in its propagation. In patients, one subtype of MS is associated with

antibody/complement-mediated demyelination (158). All together, these

confirm the potential value to target ASCs in MS.

Non-proliferative terminally differentiated CD138+ PCs have been

reported in the CNS parenchyma fromMS patients (159). However, most

of the reports regarding local ASCs inMS concerns the cerebrospinalfluid

(CSF). CXCL-12was reported upregulated in the parenchyma andCSF of

MS patients (160). CSF ASCs expressed CD138, but were nevertheless

classified as PBs due to their coexpression of CD19 and HLA-DR (161).

While CD19 expressionmight now be controversial as discussed earlier to

distinguish ASC differentiation stages, expression of HLA-DR has been

excluded from thePC stage, at least in bonemarrow (162). These PBswere

detected throughout the disease course in patients, and their number

correlated to the level of intrathecal immunoglobulins. This indicates that

short-lived PBs are the main ASCs in CSF from MS patients. Arguing in

favor of the later, a continuous replenishment of these cells was evidenced

byB-cell differentiation intoASCswithin theCSF (163, 164). Furthermore,
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EGCs containing an aggregate of T andB cells, a network ofCD21+ FDCs,

and surrounded by CD138+ ASCs have also been detected in meninges of

MSpatients presenting the secondary progressive formof the disease (165,

166). Upregulation of BAFF and APRIL in the CSF of MS patients is

controversial (167, 168).While there is no direct data about the expression

ofBCMA/TACIon the surface of in situASCs, the elevatedpresence in the

CSF of protease-cleaved soluble BCMA and TACI, a natural process

regulating their surface expression, indicates that theymaybe expressedon

CSFASCs(169,170).WeandothersdetectedBAFFandAPRILexpression

produced by astrocytes andmyeloid cells, respectively, inMS lesions (155,

171). There, APRIL fulfills an immune function outside humoral

immunity by triggering an IL-10-based immunosuppressive response

from reactive astrocytes. It should be noted that two independent studies

in the gold standard mouse model of MS, the experimental autoimmune

encephalitis, revealedASCs harboring an unexpected immunosuppressive

function own to their expression of immunosuppressive cytokines such as

IL-10. One group provided strong evidences for migration into the CNS

during the disease course of gut-derived IL-10-producing IgA+ ASCs

(154).TheothergroupdescribedregulatoryASCsproducing IL-10andIL-

35, another cytokine with immunosuppressive function, in secondary

lymphoid organs (172). Notably, ASCs producing IL-10 have been

detected in CNS lesions from MS patients (173, 174). The phenotype of

these cells has not yet been assessed in detail.
3.6 Neuromyelitis optica spectrum disorders

NMO is nowadays considered part of a spectrum disorders

(NMOSD) of autoimmune origin affecting the central nervous

system, targeting astrocytes and conducting to acute myelitis, optic

neuritis and encephalitis. One hallmark of NMO is the presence of

IgG autoantibodies to aquaporin 4, a receptor present at the surface of

foot processes of astrocytes. Disease transfer by administration of IgG

anti-aquaporin 4 from patients was demonstrated by several groups

(175). As introduced above, inebilizumab has been approved in

NMOSD, and rituximab is in trial (176).

CSF from NMO patients contain elevated levels of CXCL-10 (177,

178). IgG+ ASCs with a PB phenotype according to their expression of

CD19 and HLA-DR are present in NMO CSF (179). As in MS, ASC

differentiation in patients’ CSF has been proposed. BAFF and APRIL

are upregulated in NMO CSFs (167, 180). EGCs in the orbital mass

have been reported in two patients (181). These EGCs were defined by

an accumulation of CD20+ B lymphocytes, BCL6 expression and

surrounding ASCs of IgG and to a lesser extent IgG4 isotypes. As in

MS, APRIL targets reactive astrocytes in NMO lesions (182).
3.7 Kidney allotransplants

The main challenge in solid organ allotransplantation including the

kidney remains the late humoral rejection. These antibody-mediated

rejections (ABMR) are the consequence of the generation of donor-

specific antibodies (DSA) against mismatched human leukocyte antigens.

Near 20% of the kidney recipients may develop de novo DSA by 5 years

post transplantation, which leads to a high risk of graft dysfunction and a

low graft survival as compared to transplantation recipient without DSA.

Pathogenicity of DSA has been well established when
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1111366
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Giovannini et al. 10.3389/fimmu.2023.1111366
allotransplantations were unsuccessfully performed in recipients with

preformed anti-DSA. The later resulted in a mandatory donor

sensitization with plasma exchange prior to graft. Correlative studies

indicated that IgG3 and IgG4 anti-DSA are the two main isotypes

involved in ABMR (183, 184). Rituximab-based regimen were shown

to improve graft survival in 4/7 acute ABMR but only 1/7 chronic ABMR

(185). The subsequent clinical trial failed for acute ABMR (186).

Belimumab is promising with the reduction of de novo DSA antibody

formation in a phase II trial (187). Bortezomib has been tested in late/

chronic ABMR with some promising results, but the following

randomized clinical trial was disappointing (188). Hence, PC targeting

in late ABMR is a real concern (189). Recently, a case report with a

kidney allograft patient further diagnosed with smoldering myeloma, an

early form of MM, reported promising results upon treatment with

daratumumab according to levels of anti-DSA and graft survival (190).

Regarding chemokines, CXCR3 with an upregulation of CXCL-11 is

thought to be involved inmany allograft rejections including kidney (191,

192). CXCL-12 is also elevated in chronic rejection (193). In acute

rejection, ASCs are thought to be scarce accounting usually for less than

5% of the cellular infiltrate (194). Nevertheless, presence of these cells has

been associated with a poor allograft function and survival (195). One

study reported few cases (3%) with numerous CD138+ PCs accounting

for up to 30% of the infiltrate (196). ASC-rich infiltrates tend to occur late

in the rejection process. ECGs defined by an aggregate of TFH and B cells

have been described in acute rejection (197). Longitudinal studies are

doable in allograft patients. Proliferative lymphocyte aggregates without

FDCs were reported already present in almost 50% of biopsies performed

one month after transplant in clinically stable graft (198). EGCs reached

19% at 12 months, and were associated with progressive graft

dysfunction. EGCs in kidney allografts appear to be resistant to
Frontiers in Immunology 07
rituximab treatment (199). In chronic rejection, a local production of

DSA against HLA class I and II molecules was evidenced (200, 201). Both

BAFF and APRIL are present in situ in ABMR (202).
4 Concluding remarks

It is commonly accepted that human clinical diseases are not single

entities but composed of several subtypes. This is well-known also in

autoimmune diseases. Table 1A highlights that autoimmune diseases

highly differ in their susceptibility to current drugs targeting the humoral

immunity. If one assumes that the biodistribution of all these antibody-

based biotherapies is similar for a given tissue, Table 1 shows that diseases

are biotherapy specific. When ASCs infiltrating the autoimmune tissues

are considered, heterogeneity exists at several levels. The first one is the

tissue of origin. It could the draining secondary lymphoid organs

associated to the production of chemokines within the tissue. Table 1B

shows that chemokines may be different according to the tissue

considered. Alternatively, it could be inside the pathologic tissue with

either clonal expansion of differentiated cells or the differentiation of

precursor cells within EGCs. Regarding the latter, their presence appears

to be predominant in autoimmune tissues, since only one disease, AIH,

has not yet been described to contain EGCs as indicated in Table 1B. It is

difficult to state if there is a specific timing of occurrence for EGCs during

an autoimmune disease course without the access to longitudinal biopsies

from the considered tissues. However, study in kidney transplantation

revealed that EGC formation may be frequent in a tissue targeted by an

immune reaction.

ASCs infiltrating autoimmune tissues have been convincingly shown

to produce antibodies targeting autoantigens in several autoimmune
TABLE 1A Biotherapies targeting the humoral immunity.

Diseases Biotherapy approved Biotherapy failed Biotherapy tested

LN Anti-BAFF (6), Soluble TACI (14) Anti-CD20 (54), Anti-CD22 (55) Anti-BAFF+Anti-CD20 (NCT03747159/phase Ill)

AAV Anti-CD20 (68, 69) Anti-BAFF (70) Anti-BAFF+anti-CD20 (NCT03967925)

IgG4-RD None None

Anti-CDI9 (NCT056622421/phase II)

Anti-CD20 (NCT015S4388/phase 1-11)

Anti-BAFF (NCT0116066/phase II)

pSS None Anti-CD20 (86)

Anti-BAFF (NCTOll606661phase IIb)

Anti-BAFF-R (NCT02962S95/phase IIb)

Anti-CD20+anti-BAFF (NCT0263153S/phase II) soluble TACI

(NCT05673993/pbase Ill)

RA Anti-CD20 (I) None

Anti-BAFF (NCT00071S12Jphase II)

anti-BAFF-R (NCT03574545/phase I)

soluble TACI (NCT00595413/pbase II, NCT00664521/phase II,

NCT00430495/phase II, NCT03016013/phase III)

AIH None None anti-BAFF-R (NCT03217422/phase II)

PBC None Anti-CD20 (124) None

HT None None None

(Continued)
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diseases (Table1B).Thishighlights theircontribution,at least inpart, to the

pathogenicity, andwarrants their targeting to test treatment improvement.

However, phenotype of these cells is another level of heterogeneity

rendering their targeting complex. Indeed, isotypes of the pathogenic

antibodies first vary (Table 1B). More importantly, their stage of

differentiation may also vary with the report of PBs and PCs (Table 1B).

The latter shows that ASCs have the ability to complete their full

differentiation process into PCs in some tissues. In total, an extensive

phenotype characterization of ASC infiltrating autoimmune tissues now

possible with high throughput technologies is warranted before any

efficient ASC-targeting treatment could be designed. This approach is

ongoing, and should bring key molecular targets in the near future.
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TABLE 1A Continued

Diseases Biotherapy approved Biotherapy failed Biotherapy tested

GD None None
Anti-CD20 (NCT0015011l/phase II, NCT00424151/phase II,

NCT00595335/phase II, NCT02378298/phase IV)

MS Anti-CD20 (5) Anti-BAFF (156), Soluble TACI (152) Soluble TACI (NCT04625153/pbase II)

NMO Anti-CD19 (10) None Anti-CD20 (NCT04256252/phase IV, NCT00501748/phase I)

ABMR None Anti-CD20 (186) Anti-BAFF (NCT01536379/phase II)

Biotherapies approved, failed and currently tested are listed. References are given for approved and failed biotherapies. Registration numbers from ClinicalTrials.gov for ongoing clinical trials are
also given.
TABLE 1B Heterogeneity in ASC infiltrating auto/alloimmune tissues.

Diseases Chemokines Stage Auto/alloreactivity Isotype Ig EGCs

LN CXCL-12 PC/CD138+ ? ? yes

AAV ? PC/CD138+ ? IgG yes

IgG4-RD CXCL-12 PC/CD138+ ? IgG4, IgG1 yes

pSS CXCL-9,-10,-12 PC/CD138+ Ki67- yes IgG yes

RA CXCL-9,-10,-12 PC/CD138+ Ki67- yes undefined yes

PB/CD38 ?

AIH ? PC/CD138+ ? IgM no

PBC CXCL-9,-10 PC/CD138+ yes ? yes

PC/CD138+CD19+ yes

HT CXCL-9,-10,-12 ? Yes

GD CXCL-9,-10,-11 PC/CD138+ yes IgG4, IgG1 Yes

MS CXCL-12 PB/CD138+CD19+HLADR+ ? IgG yes

NMO CXCL-10,-13 PB/CD138+CD19+HLADR+ no IgG yes

ABMR CXCL-11,-12 PC/CD138+ yes IgG3/IgG4 yes

Tissue chemokines acting on plasma cells, putative stages of differentiation according to the indicated markers, specificity (auto/allo), isotype of the pathogenic antibodies secreted and presence of
ectopic germinal center within the inflamed tissue are listed.
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