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Identification of a glutamine
metabolism reprogramming
signature for predicting
prognosis, immunotherapy
efficacy, and drug candidates
in bladder cancer

Yan Xu1†, Zhixiu Xia2†, Xiaoyu Sun3, Baojun Wei1, Yang Fu1,
Du Shi1* and Yuyan Zhu1*

1Department of Urology, The First Hospital of China Medical University, Shenyang, China, 2Colorectal
Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University,
Shenyang, China, 3Department of Pharmacology, School of Pharmacy, China Medical University,
Shenyang, China
Background: Bladder cancer is the most common malignancy of the urinary

system. However, patient prognosis and treatment outcomes in bladder cancer

are difficult to predict owing to high tumor heterogeneity. Given that abnormal

glutamine metabolism has been identified as a key factor driving the progression

of bladder cancer, it is necessary to assess the prognosis and therapeutic efficacy

of bladder cancer treatments based on an analysis of glutamine metabolism-

related genes.

Methods: We used bladder cancer sample data downloaded from The Cancer

Genome Atlas to identify glutamine metabolism-related genes as prognostic

markers, and established a novel Glutamine Metabolism Immunity Index (GMII)

based on univariate and multivariate COX regression analyses. On the basis of

GMII values, bladder cancer patients were divided into high- and low-risk groups,

and systematic analysis was conducted for clinical features, somatic mutations,

immune cell infiltration, chemotherapeutic response, and immunotherapeutic

efficacy. Candidate small-molecule drugs targeting the GMII core target proteins

were identified based on molecular docking analysis.

Results: The GMII consisting of eight independent prognostic genes was

established to be an excellent tool for predicting the survival in patients with

bladder cancer and was validated using multiple datasets. Compared with

patients in the high-risk group, those in the low-risk group had significantly

better responses to gemcitabine and immune checkpoint blockade. In addition,

we predicted 12 potential small-molecule drugs that could bind to three of the

GMII core target proteins.
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Conclusions: The GMII can be used to accurately predict the prognosis and

immunotherapeutic response of bladder cancer patients, as well as candidate

small-molecule drugs. Furthermore, the novel “Glutamine Metabolism-related

Gene”-guided strategy for predicting survival and chemo-immunotherapeutic

efficacy may also be applicable for cancers other than bladder cancer.
KEYWORDS

bladder cancer, glutamine metabolism, immunotherapy efficacy, prognosis,
molecular docking
Background

Bladder cancer is the most common malignancy affecting the

urinary system, for which there is high recurrence and mortality

rates worldwide (1, 2). Despite advances in surgical treatment,

cisplatin-based chemotherapy, and immunotherapy for bladder

cancer patients, the 5-year overall survival rate remains low,

ranging from 23% to 48% (3). With continued bladder cancer

progression, tumor cells require larger amounts of nutrients to

sustain their growth, resulting in abnormal metabolism within the

tumor microenvironment (4). In this regard. aberrant metabolic

pathways have previously been identified as potentially effective

biomarkers and therapeutic targets in cancer (5), and prognostic

and therapeutic predictions based on such pathways can contribute

to enhancing comprehensive individualized treatment outcomes.

Glutamine, which is considered the most abundant and

versatile free amino acid (6). is bound by amino acid transporters,

following which, it is enzymatically converted to glutamate by

glutaminase. Glutamate is subsequently metabolized to a-
ketoglutarate via glutamate dehydrogenase or transaminase,

which then enters the tricarboxylic acid cycle (TCA) to replenish

circulating metabolites (7). In many types of cancer, including

bladder cancer, glutamine metabolism is dysregulated, which is

integral to the rapid proliferation of most tumor cells (8). Given that

the efficiency of glutamine import and metabolism is essential for

cancer cell viability (9), glutamine is viewed as an attractive target

for cancer antimetabolite therapy. Several proteins and enzymes are

used as biomarkers to guide tumor diagnosis and treatment, and in

this regard, the findings of recent studies have indicated that

whereas the primary energy source for most cells is glucose, some

immune cells metabolize glutamine at a higher rate under

conditions of catabolic stress (10, 11). Glutamine serves as an

important source of reduced nitrogen to fuel the synthesis of

biomacromolecules, such as nucleotides, that are important for

tumor cell proliferation, invasion, and immune escape. However,

glutamine is also an essential metabolite for immune cell activation

and antitumor effects in the tumor microenvironment (12).

Consequently, it is also necessary to take into consideration

glutamine metabolism from the perspective of tumor

immunotherapy (13, 14). Although glucose metabolism in the

context of bladder cancer has been widely studied, the role played

by glutamine metabolism in this cancer type is still unclear.
02
Consequently, it is necessary to assess the prognostic importance

of glutamine metabolism in bladder cancer based on glutamine

metabolism-related genes, and to predict which bladder cancer

patient subtypes would respond better to immunotherapy

and chemotherapy.

In this study, we molecularly subtyped bladder cancer patients

based on glutamine metabolism-related genes and combined a

range of statistical algorithms to construct a Glutamine

Metabolism Immunity Index (GMII) comprising eight genes

involved in glutamine metabolism. We used this GMII to predict

tumor immune cell infiltration, chemotherapeutic response, and

immunotherapeutic effect, and conducted comprehensive

validations. In addition, on the basis of molecular docking

analysis, we identified potential small-molecule drugs that bind

effectively to glutamine metabolism core target proteins.
Materials and methods

Data sources and preprocessing

We from the cancer genome atlas (TCGA) database (https://

portal.gdc.cancer.gov/) to download the bladder cancer patients

(including 414 samples of bladder cancer and 19 adjacent non

tumor samples) expression of the spectral data, clinical information,

somatic mutation. From Gene Expression Omnibus (GEO)

database (https://cancergenome.nih.gov/) download GSE13507

(n = 165) and GSE32894 (n = 224) as an independent verification

of the queue. The list of genes involved in glutamine metabolism

was obtained from the GenesCards database.
Analysis of differentially expressed
glutamine genes

The R package “limma” was used to perform the difference

analysis with the cutoff value set to p value<0.05. Gene Ontology

(GO) and Kyto Encyclopedia of Genes and Genomes (KEGGE)

analyses were performed using R package clusterProfiler. The

STRING database was used to analyze protein-protein

interactions (PPI) (15), and Cytoscape was used to visualize PPI

networks (16). We identified key modules by using the ‘MCODE’
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plug-in in Cytoscape, and used seven algorithms commonly used in

‘cytohubba’ plug-in (Closeness, Degree, EPC, Radiality, Stress,

MCC, MNC) to identify Hub genes. TRRUST databasewas used

to predict the transcription factor (TF) of Hub gene (17).
Identification of glutamine metabolism-
associated clusters

Bladder cancer samples were clustered by R package

“ConsensusClusterPlus” to identify molecular subtypes related to

glutamine metabolism. The R package “Survival” was used to

perform Kaplan-Meier (KM) survival curves to compare

outcomes between the two clusters.
Construction and validation of prognostic
features from glutamine metabolism-
related genes and their derived GMII

Univariate Cox regression analysis was used to screen out the

genes associated with overall survival (OS) of bladder cancer, and

multivariate Cox regression analysis was used to establish GMII.

The Glutamine Metabolism Immunity Index (GMII) was calculated

for each patient according to the following formula: Glutamine

Metabolism Immunity Index (GMII) = Coef(Gene1) × Expr

(Gene1) + Coef(Gene2) × Expr(Gene2) +…… Coef(Genen) ×

Expr(Genen). Expr(Genen) represents the expression level of a

specific gene, and Coef(Genen) represents the coefficient in

multivariate Cox analysis. The prognostic value of the features

was verified by KM analysis and Receiver Operation Characteristic

(ROC) curve, and the prognostic characteristics were verified by

GSE13507. Univariate and multivariate Cox analyses were

performed to determine whether the characteristics were

independent risk factors. According to the clinical characteristic

parameters, the correlation and stratification analysis between

GMII and clinical characteristics were performed, and the

nomogram was constructed to compare the consistency between

predicted and actual survival rates by 1-year, 3-year and 5-year

calibration maps.
Pan-cancer analysis

The GSCALite platform was used to analyze the eight genes of

GMII (18). Fourteen pairs of normal and tumor tissue samples were

selected for differential expression analysis. The prognosis of eight

GMII genes was analyzed in 33 pan-cancer cancers. Gene set

variation analysis (GSVA) was used to score the expression of

these eight genes in each pan-cancer sample, and the GSVA score

was obtained. The GSVA score was used to analyze the expression,

prognosis and immune cell infiltration of these genes in pan-cancer.

We also performed mutational analyses of the eight genes, including

single nucleotide variation, copy number variation and methylation.
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Through CTRP database, we analyzed the expression levels and

drug sensitivity of eight genes of GMII.
Immunohistochemical analysis

Build GMII gene immunohistochemical from Human Protein

Atlas (HPA) database (https://www.proteinatlas.org/) (19).
Gene set enrichment analysis

We performed GSEA analysis by R package “clusterProfiler” to

evaluate the main enrichment pathways in high-GMII groups to

explore the underlying biological mechanisms. Filter for | NES |> 1,

nominal p value < 0.05. Sample replacement was tested 1000 times,

and clustering analysis of enriched gene sets was performed using

the R package “enrichplot”. Reference genomes include Hallmark,

c5go, and c2kegg.
Gene mutation analysis

We calculated the tumor mutation burden (TMB) for each

patient from somatic mutation data and compared TMB between

high-GMII and low-GMII groups. The waterfall map is depicted

through the R package “Maftools”, showing the mutation landscape

of the high-GMII and low-GMII groups. We also performed

mutually exclusive and collaborative analyses of genes with the

highest frequency of mutations in the high-GMII and low-GMII

groups. Finally, somatic mutations of GMII genes were identified by

cBioPortal database.
Immunogenomic landscape analysis

CIBERSORT method used to quantify infiltrating immune cell

ratio (https://cibersort.stanford.edu/) (20). The proportion of 22

immune cells (B-naive cells, B-cell memory, plasma cells, T-cell CD8,

T-cell CD4 naive, T-cell follicular helper cells, T-cell CD4 memory

resting, T-cell CD4 memory activation, regulatory T cells (Tregs), gd
cells, monocytes, activation) was calculated by CIBERSORT method

NK cells, resting NK cells, macrophage M0, macrophage M1,

macrophage M2, resting dendritic cells, activated dendritic cells,

resting mast cells, activated mast cells, eosinophils, and neutrophils).

Samples with P<0.05 indicated that the proportion of immune cells

calculated by CIBERSORT was correct. The tumor purity, stromal

score, immune score and ESTIMATE scorewere calculated for each

tumor sample by R package “ESTIMATE” (21). A single sample Gene

set enrichment analysis (ssGSEA) algorithm was used to assess the

immune infiltration between the two groups based on 28 immune cell

types. XCELL, QUANTISEQ, MCPCOUNTER, EPIC and

CIBERSORT-ABS software were also used to quantify the relative

proportion of immune cell infiltration.
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Analysis of chemotherapeutic drug
sensitivity between different GMII groups

From tumor susceptibility multiple omics (GDSC) database

(https://www.cancerrxgene.org/) (22), download the cancer gene

expression data of different drugs, through the calculation of R

packages “pRRophetic” IC50 to assess patient response to common

chemotherapy drugs.
Prediction of immunotherapy response

Tumor Immune Dysfunction and Exclusion (TIDE) algorithmwas

used to infer the clinical response of patients to immunotherapy (23).

High TIDE scores were associated with poorer immunotherapy. In

addition, we extracted the IMvigor210 dataset, a group of clinical

information on the treatment of urothelial carcinoma by anti-PD-L1

monoclonal antibody (atezolizumab) (24). The relationship between

bladder cancer anti-PD-1 and anti-CTLA4 by Immunophenoscores

(IPS) scores and GMII. The IPS score is a predictive score for a patient’s

response to anti-PD-1 and anti-ctLA-4 treatments (25). was

downloaded from TCIA database (https://tcia.at/home). These results

were used to evaluate the predictive value of GMII for immune

checkpoint therapy.
Molecular docking simulation

We used MOE software to screen FDA-approved drugs that bind

to target proteins and perform molecular docking simulations. Protein

structures of core targets were collected from the PDB database and

FDA-approved drugs were collected from the zinc15 database and

converted to 3D structures in MOE by energy minimization. We

optimized the protonation state of the protein and the direction of

hydrogen at the PH of LigX 7 and the temperature of 300K. Finally, we

studied the binding mode of PPARG, SLC7A9 and GALK1 with small

molecule drugs by rigid docking simulation.
Statistical analysis

Survival curves were drawn using the Kaplan-Meier method.

Wilcoxon test and Kruskal-Wallis test were used for comparison

between two groups and more than two groups, respectively.

Correlation was assessed by Spearman correlation analysis. A P

value of 0.05 or less was considered statistically significant. All

statistical analyses were performed by R (version 4.1.1).
Results

Identification of genes related to glutamine
metabolism and their biological functions

The flow chart of this study is shown in Figure S1. We obtained

501 genes related to glutamine metabolism from the GeneCards
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database, and the screening criteria were that the correlation score

was greater than 8 and they were protein-coding genes. Differential

analysis of BC and normal bladder tissues yielded 301 genes. GO

and KEGG analysis were performed to investigate the functions of

these genes related to glutamine metabolism. The GO results

showed that the genes related to glutamine metabolism were

mainly enriched in the biological functions related to energy and

metabolism. KEGG results showed that genes related to glutamine

metabolism were enriched in signaling pathways such as carbon

metabolism, AMPK signaling pathway and amino acid production

(Figures 1A, B). PPI networks were analyzed by STRING database

and visualized by Cytoscape to obtain three main network diagrams

(Figures 1C–E). The common Hub genes were obtained by seven

algorithms in Cytoscape software and the transcription factors of

Hub genes were predicted in TRRUST database (Figures 1F, G).
Identification of clusters related to
glutamine metabolism and correlation
analysis between clusters and
immune microenvironment

Clustering analysis of bladder cancer patients with glutamine

metabolism-related genes obtained after differential analysis

showed that BC patients were best divided into two clusters, with

good internal consistency and stability of each Cluster (Figure 2A).

The general characteristics of Cluster 1 and Cluster 2 are shown in

Table S1. The survival curve showed that Cluster2 had a poor

prognosis (p < 0.05) (Figure 2B). There were significant differences

in clinical parameters such as age, gender, subtype, grade, clinical

stage, M and race of bladder cancer between the two clusters.

Compared with patients with C1 bladder cancer, the proportions of

patients older than 60, male, non-papillary invasive subtype, high

grade, high stage, M1, white and Asian in patients with C2 bladder

cancer were significantly higher than those in patients with C1

bladder cancer (p < 0.05) (Figure 2C).

We analyzed the immune microenvironment between the two

clusters. Through ESITIMATE algorithm, according to the Cluster

2 has higher ESITIMATE score, immune score, score matrix and

lower purity of tumor (Figure 2D). The CIBERSORT algorithm

showed that Cluster 2 had higher immune cell infiltration

(Figure 2E). Patients’ response to immune checkpoint inhibitors

was negatively correlated with TIDE score. We found that TIDE

score of Cluster 2 patients was significantly higher than that of

Cluster 1 patients (p < 0.05), indicating that Cluster 2 patients had

poor effect on immune checkpoint inhibitors (Figure 2F).
Construction and validation of the GMII

To construct a risk model associated with glutamine

metabolism and its derived GMII, eight genes with independent

prognostic value were identified by univariate and multivariate Cox

analyses to construct GMII (Figure 3A). Coefficients for each gene

in GMII (Figure 3B). Correlation analysis between GMII and

survival status showed that higher GMII was associated with
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higher mortality (Figure 3C). Patients in the high-GMII group had a

worse prognosis than those in the low-GMII group (p < 0.05)

(Figure 3D). To verify the predictive value of this GMII, GSE13507

and GSE32894 were used to verify that the mortality rate in the

high-GMII group was significantly higher than that in the low-

GMII group (p < 0.05) (Figures 3E, F). The area under the 1-year, 3-

year and 5-year ROC curves were 0.747, 0.714 and 0.743,

respectively (Figure 3G), suggesting that GMII could better

predict the short-term and long-term survival status of bladder

cancer patients. The general characteristics of TCGA, GSE13507

and GSE32894 patients are shown in Table S2. Univariate and

multivariate regression analyses showed that GMII was an

independent risk factor (Figures 3H, I). Based on the results of
Frontiers in Immunology 05
multivariate analysis, a nomogram was constructed based on GMII,

age, clinical stage, and T stage, with GMII accounting for the

majority of the total score (Figure 3J). Calibration curves showed

that the predicted and actual 1 -, 3 -, and 5-year survival rates were

consistent with the reference lines (Figure 3K).

The expression of five of the eight GMII genes (TALDO1,

AHCY, FASN, GALK1 and SLC7A9) in bladder cancer tissues

was higher than that in normal tissues, while ENPP1, CYP19A1 and

HSPG2 were down-regulated in tumor tissues (p < 0.05) (Figure

S2A). Immunohistochemical data of HPA showed that FASN

showed moderate staining in the cytoplasm and nucleus of

urothelial cancer cells, but no staining was detected in normal

bladder tissues. HSPG2 showed high staining in the cytoplasm and
A B

D E

F G

C

FIGURE 1

Function and subnetwork analysis of genes related to glutamine metabolism. (A) The top 10 rich terms for Biological Progress(BP), Cellular
Component(CC) and Molecular Function(MF) in GO analysis. (B) The top 30 rich terms in KEGG’s analysis. (C–E) MCODE plug-in gets three main
network modules. (F) UpSet of cytohubba plug-in seven algorithms. (G) Transcription factors predicted by TRRUST for Hub genes. Circles represent
genes and triangles represent transcription factors.
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nucleus of normal bladder cells, but no staining was detected in

urothelial carcinoma cells (Figure S2B). Glutamine Related Genes

(GRGs) is highly expressed in most tumor tissues and is a high risk

factor (Figures S3A, B). Gene set variation analysis (GSVA) was

performed on 8 GRGs, and GSVA score was positively correlated

with the expression of representative gene sets. Most tumor tissues

had significantly higher GSVA scores than normal tissues (Figure

S3C). GSVA score was significantly correlated with the prognosis of

bladder cancer (p < 0.05), including overall survival (OS),

progression-free survival (PFS) and disease-free survival (DSS)

(Figure S3D). We further evaluated the correlation between

GSVA score and immune cell infiltration and showed that GSVA

score was significantly correlated with immune cell infiltration in

bladder cancer (p < 0.05) (Figure S3E). We also collected the

features of published prognostic models for bladder cancer and

compared the GMII features with their prognostic prediction

accuracy. The results showed that GMII values were superior to

other models in terms of prognostic prediction (Figure S4).
Clinical correlations analysis of GMII

To further verify the clinical significance of GMII, we analyzed

the differences in GMII between different clinical characteristics

groups. The results showed that patients with Cluster 2, Non-
Frontiers in Immunology 06
papillary infiltration, lymphovascular invasion, High Grade, stage

III-IV, M1 and N1-3 had higher GMII, suggesting that the higher

the GMII, the more advanced the tumor (Figure 4A). Stratified

analysis showed that GMII could significantly differentiate the

prognosis of almost all clinical subgroups, with patients in the

high-GMII group having a worse prognosis (Figure S5). To

investigate the pathways that regulate tumorigenesis in the high-

GMII group, we performed GSEA analysis, and the results showed

that, The high GMII group was significantly enriched in high

glutamine metabolism, glutamine synthesis and decomposition

(p < 0.05) (Figure 4B). In addition, the high-GMII group was

significantly enriched in carcinogenesis, angiogenesis, and

epithelial-mesenchymal transition (EMT) pathways (p < 0.05)

(Figure 4C). Glycolysis and myosynthesis were the features with

the highest NES in the high-GMII group (Figures 4D, E).
Relationship between GMII and
immune microenvironment

Previous studies have shown that glutamine metabolism and

tumor microenvironment play an important role in tumor

development (7, 26). The ESTIMATE algorithm found that the

high GMII group had lower tumor purity (Figure 5A) and higher

ESTIMATE score (Figure 5B), immune score (Figure 5C) and
A B

D E F

C

FIGURE 2

Cluster analysis and the association between different clusters with tumor microenvironments and immunotherapy. (A) Consensus clustering heat
map when k=2. (B) Survival curves of two clusters. (C) Age, Gender, Subtype, Grade, Stage, M stage and Race between the two clusters.
(D) Differences in tumor purity, ESITIMATE score, stroma and immune cells between the two clusters. (E) CIBERSORT score of immune cell
infiltration between the two clusters. (F) TIDE score was used to compare the immunotherapy effect between Cluster 1 and Cluster 2. *p < 0.05 、

**p < 0.01, ***p < 0.001.
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stromal score (Figure 5D). CIBERSORT algorithm showed that the

level of CD8 T cells in the high-GMII group was significantly lower

than that in the low-GMII group (p < 0.05), and the level of

immunosuppressive M2-type macrophages was increased in the

high-GMII group, suggesting that the high-GMII group had higher

immunosuppressive activity and promoted tumor progression

(Figure 5E). We found correlations between GMII and a variety

of immune cells using different software (Figure 5F). The ssGSEA

algorithm results showed that the high-GMII group had higher

immune cell infiltration and immune-related functions and

pathways than the low-GMII group (Figure 5G).
Frontiers in Immunology 07
Relationship between GMII and somatic
cell mutation

TMB is an important predictor of immunotherapy and

chemotherapy. To further investigate the association of GMII

with somatic mutations in cancer cells, we used single nucleotide

variation data to investigate differences in genomic mutations

between high-GMII and low-GMII groups. TP53, TTN, KMT2D,

MUC16 and ARID1A were the top five genes with the highest

mutation frequency in high-GMII and low-GMII populations, but

the mutation frequency of each gene was different between the two
A B

D E F

G IH

J K

C

FIGURE 3

Construction of prognostic treatment index related to glutamine metabolism and validation of external data sets. (A) Forest maps of eight GRGs
obtained by multivariate Cox analysis. (B) Construct eight GRGs coefficients of GMII. (C) Survival state of TCGA queue. (D) Kaplan-Meier survival
curve of the TCGA cohort. (E) Kaplan-Meier survival curve of the GSE13507 cohort. (F) Kaplan-Meier survival curve of the GSE32894 cohort. (G) ROC
curve of TCGA queue. (H, I) univariate and multivariate regression analysis. (J) Histogram based on GMII, age, clinical stage, and T-stage.
(K) Calibration curves show the consistency of 1-year, 3-year, and 5-year survival rates predicted from bias-adjusted prognostic columns with actual
survival rates.
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groups (Figures 6A, B). Through mutual exclusion and cooperation

analysis among mutated genes, it was found that there was gene

mutation synergy between most genes, and significant mutational

mutual exclusion of TP53-ARID1A and EP300-ZFHX4 was found

in the high-GMII group (Figure 6C). Significant mutational mutual

exclusion of TP53-FGFR3 and KMT2D-FGFR3 was also found in

the low-GMII group (Figure 6D). There were no differences in TMB
Frontiers in Immunology 08
between the two groups or in survival curves between the high and

low TMB groups (Figure S6A, B). After TMB combined with GMII,

the prognosis of the high TMB+ low GMII group was significantly

better than that of the low TMB+ high GMII group (Figure S6C). In

addition, the mutation rate of eight genes in GMII was detected in

the cBioPortal database, and it was found that the mutation rate was

low (Figure 6E).
A

B D

EC

FIGURE 4

Correlation between GMII and clinical traits and gene set enrichment analysis in high-GMII group. (A) Differences in GMII between different clinical
feature groups. (B) Pathways related to glutamine metabolism are abundant in the high-GMII group. (C) Glycolysis was significantly enriched in the
high-GMII group. (D) Pathways associated with tumor development and progression are abundant in the high-GMII group. (E) Muscle synthesis was
significantly enriched in the high-GMII group.
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Prediction of chemotherapy effects by
the GMII

To investigate the potential of GMII for predicting the response to

chemotherapytic therapy, We first downloaded data from the GDSC

database on the response of high-GMII and low-GMII populations to

common chemotherapy agents. The results showed that many

common bladder cancer chemotherapy drugs had significant

differences among high-GMII groups (p<0.05). Gemcitabine, as the

most common chemotherapy drugs for bladder cancer, had

significantly lower IC50 values in the low-GMII group than in the

high-GMII group (p<0.05), suggesting that Gemcitabine may have

better efficacy in the low-GMII group (Figure 7A).We also mapped the

3D structures of chemotherapeutic agents with differences between the

two groups using the PubChem database (Figure S7). The relationship

between GRGs and drug sensitivity was analyzed from cellMiner

database, and the histograms of the top five drugs with the highest
Frontiers in Immunology
 09
correlation between genes and drug sensitivity were drawn. Positive

correlation indicates that stronger gene expression is more sensitive to

drugs, while negative correlation indicates that stronger gene

expression is more resistant to drugs. Among them, up-regulation of

FASN expression may lead to enhanced sensitivity of patients to most

drugs (Figure 7B). In addition, GDSC database was used to analyze the

relationship between drug sensitivity and mRNA expression of the

eight GRGs used to construct GMII. Contrary to cellMiner database,

positive correlation represented that gene expression was related to

drug resistance, while negative correlation represented that gene

expression was related to drug sensitivity. The relationship between

AHCY gene expression and chemotherapy-drug sensitivity is extensive,

and HSPG2 has the highest correlation with most chemotherapy-drug

sensitivity, among whichHSPG2 is correlated withDasatinib sensitivity

in both databases (Figure 7C). These results suggest that the expression

changes of genes constructing GMII may be effective indicators for

predicting drug response and as potential therapeutic targets.
A B D
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C

FIGURE 5

Immune cell infiltration in high-GMII and low-GMII groups. Tumor purity (A), ESTIMATE score (B), immune score (C), and stromal score (D) between
high – and low-GMII populations. (E) CIBERSORT algorithm was used to analyze the contents of immune cell infiltration in high-GMII and low-GMII
groups. (F) Different software evaluated the correlation between immune scores and immune cells. (G) ssGSEA algorithm showed immune cell
infiltration of immune-related functions and pathways in high-GMII and low-GMII groups. *p < 0.05 、**p < 0.01, ***p < 0.001.
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Prediction of immunotherapy efficacy by
the GMII

Immune checkpoint inhibitors have provided clinical benefits

in the treatment of a variety of tumors. By analyzing the correlation

between genes in GMII and common immune checkpoints, we

found that genes with the highest correlation with glutamine

metabolism were significantly negatively correlated with PD-1/

PD-L1 expression. For example, SLC7A9, a glutamine transporter,

and FASN, a key enzyme in the metabolism of glutamine into fatty

acids. These results indicated an inverse correlation between
Frontiers in Immunology 10
glutamine metabolism and PD-1/PD-L1 expression (Figure 8A).

The expression of most immune checkpoints was different between

the high-GMII group and the low-GMII group (p < 0.05) (Figure

S8). Higher TIDE scores were associated with poorer immune

checkpoint blockade therapy and shorter survival, and higher

TIDE scores in the high-GMII group suggested poorer response

to immune checkpoint blockade therapy (Figure 8B). The results of

IMvigor210 dataset showed that there was a significant difference in

GMII between the immunotherapy response group and the non-

response group (p<0.05), and the GMII was lower in the response

group (Figure 8C). The scores of IPS, IPS-PD1 blocker, IPS-CTLA4
A B

D

E

C

FIGURE 6

Association of GMII with genetic changes. Waterfall diagrams of somatic mutations in high-GMII (A) and low-GMII (B) groups. Mutual exclusion and
synergistic heat maps of mutated genes in high-GMII (C) and low-GMII (D) groups. (E) Mutation rates of the eight GRGs that constructed GMII.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1111319
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2023.1111319
blocker, and IPS-PD1-CTLA4 co-blocker were lower in the high-

GMII group, indicating that the high-GMII group had a poor effect

of anti-PD1, anti-CTLA4, and anti-PD1-CTLA4 co-treatment

(Figure 8D). These results suggest that GMII may be associated

with immunotherapy in bladder cancer patients.
Identification of core target proteins and
prediction of drug candidates

In order to identify the core targets of genes related to glutamine

metabolism, we constructed a PPI network through the STRING

database (confidence score greater than 0.4), found the most closely

related subnetwork to the GMII gene and found the core gene

PPARG by “MCODE” in Cytoscape software (Figure S9). PPARG is

located at the hub of the network and has the highest degree among

all nodes. SLC7A9 is potentially used as a glutamine transporter and

GAPK1 as a targeted receptor with small molecule inhibitors of

kinases. We obtained X-ray structures of PPARG, SLC7A9 and

GALK1 from the PDB database to screen 1379 FDA-approved

drugs potentially targeting PPARG, SLC7A9 and GALK1. We used

rigid docking in MOE to simulate the binding mode of small
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molecule drugs to PPARG, SLC7A9 and GALK1, where the

interaction relationship between target proteins and candidate

small molecules is shown in Table S3. We show the top four

small-molecule drugs with the highest binding ability to PPARG

(Bosulif, Candesartan, Centany, and Nefazodone) (Figures 9A–D)

and the top four small-molecule drugs with the highest binding

ability to SLC7A9 (Propantheline, Naloxeg) ol, Cobicistat and

Fosinopril) (Figures 9E–H) and the top four small-molecule drugs

with the highest GALK1 binding capacity (Propantheline,

Ipratropium, Cangrelor and Lopinavir) (Figures 9I–L). For

example, Bosulif (ZINC000022448983) forms hydrogen bonds

with PPARG amino acid residues Met-348, Met-364 and His-449,

among which Met-348 and Met-364 act as hydrogen bond acceptor

and His-449 act as hydrogen bond donor. Naloxegol

(ZINC000095564694) forms hydrogen bonds with SLC7A9 non-

transmembrane amino acid residues Lys-53, Ser-57, Lys-145 and

Thr-434, among which Ser-57 and Thr-434 act as hydrogen bond

acceptor. Lys-53 and Lys-145 act as hydrogen bond donors.

Cangrelor (ZINC000085537017) formed hydrogen bond and ion

bond related interaction with GAPK1 amino acid residues Arg-228

and Arg-105, among which Arg-228 and Arg-105 were hydrogen

bond donors. In addition, these small molecules form van derWaals
A

B C

FIGURE 7

Effect of GMII on drug sensitivity. (A) Differences in response to commonly used chemotherapy drugs between high-GMII and low-GMII groups. (B)
Construct the correlation between GMII gene and drug sensitivity. (C) Correlation between GDSC drug sensitivity and mRNA expression levels of
eight genes that construct GMII.
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(VDW) interactions with residues around the protein receptor,

which contribute to the binding energy between small molecules

and PPARG.
Discussion

Abnormal glutamine metabolism is considered a key factor

driving the progression of solid tumors such as bladder cancer (8)

(27); and consequently, there is an urgent need to identify more

reliable and accurate glutamine metabolism-related markers that

can be used to predict bladder cancer patient survival and

immunotherapeutic response. In this study, we established the

GMII consisting of eight glutamine metabolism-related genes

(ENPP1, GALK1, TALDO1, CYP19A1, FASN, AHCY, SLC7A9,

and HSPG2), a high value of which is associated with poor

prognosis in bladder cancer patients. For comparative purposes,

we evaluated the efficacy of other prognostic models for bladder

cancer, which showed that the predictive performance of GMII was

superior to that of all other assessed models. Furthermore, the GMII

could be used to differentiate among patients with different levels of

immune checkpoint expression, and predict their therapeutic

response to ICI therapy. Moreover, on the basis of in silico

molecular docking analysis, we identified potential drugs that can

modulate the core target proteins of glutamine metabolism. Thus,

aberrant glutamine metabolism signaling, as a reliable predictor of
Frontiers in Immunology 12
bladder cancer prognosis and immunotherapeutic response, may

provide valuable insights for establishing effective therapeutic

approaches for the treatment of bladder cancer.

In our previous study, we attempted to predict the prognosis of

bladder cancer patients and their treatment response based on

overall metabolic profiles (28). However, despite accumulating

evidence that tumor-specific metabolic phenotypes are closely

associated with prognosis and treatment response, there has to

date been an insufficient assessment of gene signature indices

focusing on key amino acid metabolic pathways, such as that

involved in glutamine metabolism (13). In this study, we found

that the GMII value is inversely associated with most immune

checkpoint genes. We established that the TIDE score based on the

high-GMII group (high GMII value) was significantly higher than

that of the low-GMII group, indicating that ICI therapy is less

effective for the treatment of patients with a high-GMII score. IPS

has been established to be a better predictor of immunotherapy

response in cancer patients undergoing anti-PD-1 and anti-CTLA-4

treatment (25). and we found that levels of IPS, IPS-PD1, IPS-

CTLA4, and IPS-PD1-CTLA4 co-blockers were lower in the high-

GMII group, thereby indicating that anti-PD-1 and anti-CTLA-4

treatments were less effective in the treatment of high-GMII group

patients. Consistent with our observations, among patients in the

IMvigor210 cohort with urothelial carcinoma, significant

differences in GMII have been identified in the responders and

non-responders to PD-L1 therapy. In the present study, we assessed
A B

DC

FIGURE 8

Application of GMII in immunotherapy prediction. (A) GMII gene expression was associated with common immune checkpoints. (B) TIDE scores
were used to compare immunotherapy efficacy between high-GMII and low-GMII groups. (C) The IMvigor 210 database analyzed GMII in the
responding and non-responding groups to immunotherapy. (D) The difference in response between high-GMII and low-GMII groups to PD1- or no-
CTLA4 blockers, PD1 blockers, CTLA4 blockers, and PD1-CTLA4 co-blockers. *p < 0.05 、**p < 0.01, ***p < 0.001. ns, Non Significance.
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the responses of bladder cancer patients to common

chemotherapeutic drugs based on their IC50 values and

calculated the association between gene expression and drug

sensitivity, which revealed significant differences in the responses

to common chemotherapeutic drugs such as gemcitabine in the two

GMII groups. These findings thus indicate that the risk model we

constructed and the derived GMII can serve as effective indicators

for assessing the response of bladder cancer patients to

chemotherapy and immunotherapy, and may provide useful

guidance for the future treatment of these patients.

The roles of the eight GMII genes in glutamine metabolism-

related pathways can be characterized as follows. (1) Amino acid

transport: Unlike SLC1A5, which is currently widely targeted in

clinical studies, our analysis indicates that SLC7A9 is important for

bladder cancer (29). Multiple studies have shown that SLC7A9

plays an essential role as a transporter of different amino acids for

tumors, as these compete with immune cells for nutrients (30, 31).
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(2) Glutamate production: AHCY has a strong copper-binding

capacity and is highly expressed, resulting in elevated glutamine

levels (32, 33). GALK1 is a key enzyme in the catabolism of

galactose, which can be further converted to glutamate by other

enzymes (34). (3) Glutamate metabolism: FASN is a central

regulator of de novo fatty acid synthesis that promotes the

anabolic biosynthesis of fatty acids from citrate (7). TALDO1

encodes a transaldolase (TA) that promotes nucleotide synthesis

and the metabolic scavenging of ROS (35). and CYP19A1 is a

cytochrome P450 (CYP) enzyme with immunomodulatory effects

(36). (4) (4) Immune cell-related metabolism: ENPP1 promotes

tumor cell metastasis and tumor immune escape (37). and HSPG2

is a cell-surface antigen that regulates NK cell activation (Figure 10).

Given that the expression patterns of the aforementioned eight

glutamine metabolic genes associated with tumorigenesis and

regulation of the tumor immune microenvironment, the

glutamine metabolism-related risk model and its derived GMII
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FIGURE 9

Molecular docking posture. Candidate drugs and target proteins screened using molecular docking. The Figure shows the docking position of the
PPARG active pocket with Bosulif (A), Candesartan (B), Centany (C) and Nefazodone (D). Docking position of the SLC7A9 active pocket with
Propantheline (E), Naloxegol (F), Cobicistat (G) and Fosinopril (H). Docking position of GALK1 active pocket with Propantheline (I), Ipratropium (J),
Cangrelor (K) and Lopinavir (L).
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can be considered to closely reflect the prognosis of bladder cancer

and predict the effects of chemotherapy and immunotherapy.

Our systematic study of immunological and chemotherapeutic

differences between low- and high-GMII groups has provided

important insights into the mechanisms underlying aberrant

glutamine metabolism in bladder cancer and the predictive utility

of the GMII. In this regard, the findings of several previous studies

have revealed the key roles of glutamine metabolism and the tumor

immune microenvironment in tumor progression (12). Bladder

cancer cells have been established to utilize immune checkpoint

molecules such as PD-L1 to induce immune escape, thereby

generating an immunosuppressive tumor microenvironment

around bladder cancer cells (38),. In addition, bladder cancer cells

have been shown to induce the activation of tumor-associated

macrophages and regulatory T (Treg) cells, which in turn

suppresses the antitumor activity of CD8+ cytotoxic T cells (39,

40). By constructing the GMII for glutamine metabolism-related

genes to identify their response to immunotherapy, we found that

patients in the low-GMII group (low glutamine metabolism)

showed a more significant response to PD-L1 and PD-1 blockade

treatment. Correspondingly, we found that although patients in the

high-GMII group (high glutamine metabolism) were characterized

by higher immune infiltration, they also harbored a larger number

immunosuppressive cells, such as Treg cells and M2 subtype

macrophages, which are known to suppress anti-tumor CD8+ T

cells. Indeed, we detected a significant reduction in the proportion

of CD8+ T cells among patients in the high-GMII group. Overall,

this further highlights the fact that specific immune

microenvironments promote the progression of bladder cancer

and govern the responses to immunotherapy. Consistent with this

scenario, the findings of a recent study have revealed that by

activating the EGFR/ERK/c-Jun pathway, glutamine deprivation

can promote the upregulation of PD-L1 in bladder cancer cells (8).

Moreover, blocking glutamine can induce different metabolic

processes to overcome the immune escape of tumors and enhance

the efficacy of immunotherapy (41, 42). These observations thus

provide evidence to indicate a complex dynamic regulatory

relationship between glutamine metabolism and the tumor
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immune mic roenv i ronmen t (43 ) . Acco rd ing l y , t h e

characterization of glutamine metabolism may represent a novel

approach for screening treatment-receptive patients and enhancing

the efficacy of immunotherapy. Conversely, however, the findings of

previous studies have indicated that glutamine metabolism can

provide raw materials for the over-activated glycolysis and oxidative

phosphorylation of tumor cells, and by promoting metabolic

homeostasis, can also contribute to inducing tumor cell resistance

to chemotherapeutic drugs (44–46). The perturbation of glutamine

metabolism has also been shown to enhance sensitivity to

gemcitabine in different types of solid tumors (47). On the basis

of the aforementioned observations, we further analyzed differences

between the different glutamine metabolism groups with respect to

the efficacy of responses to common chemotherapeutic drugs, and

found that patients in the low-GMII group were characterized by a

more pronounced sensitivity to common chemotherapeutic drugs

such as gemcitabine. These findings thus indicate that

characterizing glutamine metabolism can also serve as a

reasonable and effective method for screening receptive patients

and enhancing the efficacy of chemotherapy. Consequently,

targeting glutamine metabolism combined with PD-1/PD-L1

checkpoint blockade therapy and/or chemotherapy could

represent a potentially effective therapeutic strategy for improving

treatment outcomes among bladder cancer patients.

As a further application of GMII efficacy prediction, we

demonstrated the feasibility of combining core target and

structure-based approaches to identify drug candidates. On the

basis of a PPI network constructed using genes associated with

glutamine metabolism, we identified PPARG as the major hub gene,

and by employing molecular docking software, we used PPARG,

SLC7A9, and GALK1 as small-molecule drug targets to screen for

potential drugs from among those in the FDA-approved drug

library. We accordingly found that the first four small molecules

with the highest PPARG binding ability (Bosulif, Cadesartan,

Centany and Nefazodone) bind to the NR-LBD domain of

PPARG protein and prevent it from binding to the nuclear

ligand. The top four small molecules with the highest GALK1

binding fraction (Propantheline, Ipratropium, Cangrelor and
FIGURE 10

The role of glutamine metabolism immunity index gene in glutamine metabolism-related pathways.
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Lopinavir) bind to the ATP-binding site of GALK1, blocking ATP

occupation and thus affecting the protein kinase function of

GALK1. PPARG acts as a nuclear receptor that regulates multiple

biological functions, including adipogenesis, metabolism, and

immunity (48). and PPARG signaling has been reported to have

an important influence on immune rejection in patients with

bladder cancer (49). Among the four small molecule drugs with

the highest affinity for PPARG, bosulif has been reported in clinical

trials for chronic myeloid leukemia (50). In addition, propantheline,

which can be used to enhance the efficacy of antiretroviral drugs,

can target SLC7A9, which in turn affects the amino acid nutrition of

the tumor microenvironment and thus tumor cell survival.

Cangrelor, which has been shown to be beneficial for

intraoperative antiplatelet therapy, and lopinacir, which has been

used in the treatment of severe COVID-19, were found to have high

affinity for GALK1 (51, 52). Although the specific mechanisms of

action of these small-molecule compounds remain to be further

investigated, our findings indicate that they have potential utility for

tumor immunotherapy, particularly among bladder cancer patients

with abnormal glutamine metabolism.

Despite our important findings, this study does have certain

limitations. Notably, our analysis, and hence conclusions, are based

on data obtained from public databases, which may accordingly

have led to inherent case selection bias. In addition, although our

findings were validated based on assessments using multiple

external datasets, the evaluation of a larger number of clinical

cases is necessary to further verify the accuracy of our results.

Finally, further in vivo and in vitro experiments are needed to

examine the function of GRGs in bladder cancer.
Conclusion

In conclusion, based on the in-depth analysis of multiple

aspects of bladder cancer based on the risk model and its derived

GMII, we found that GMII can better predict the prognosis and

immunotherapy response in BC patients. This study provides useful

clues for the discovery of novel prognostic and therapeutic

biomarkers and small-molecule drug targets from the perspective

of oncogenic amino acid metabolic reprogramming. In an era when

immunotherapy offers great promise for various cancer treatments,

GMII provides guidance for the clinical diagnosis and

individualized comprehensive treatment of bladder cancer.
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Glossary

TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus

BC Bladder Cancer

GRGs Glutamine related Genes

GMII Glutamine Metabolism Immunity Index

ENPP1 Ectonucleotide pyrophosphatase/phosphodiesterase 1

GALK1 Galactokinase 1

TALDO1 Transaldolase 1

CYP19A1 Cytochrome P450 Family 19 Subfamily A Member 1

FASN Fatty Acid Synthase

AHCY Adenosylhomocysteinase

SLC7A9 Solute Carrier Family 7 Member 9

HSPG2 Heparan Sulfate Proteoglycan 2

PD-1 Programmed cell death 1

PD-L1 Programmed cell death 1 ligand 1

CTLA4 Cytotoxic T-lymphocyte-associated protein 4

ICB Immune checkpoint blockade

OS Overall survival

ROC Receiver Operation Characteristic

NES Normalized enrichment score

TMB Tumor mutation burden

IC50 half maximal inhibitory concentration

GDSC Genomics of Drug Sensitivity in Cancer

PPI protein–protein interaction

KM Kaplan–Meier

ssGSEA single-sample gene set enrichment analysis

TIDE tumor immune dysfunction and exclusion

GSEA gene set enrichment analysis

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

LAG3 Lymphocyte Activating 3

IDO1 Indoleamine 2, 3-Dioxygenase 1

PFS Progression-free survival

DSS Disease-free survival

TP53 Tumor Protein P53

TTN Titin

KMT2D Lysine Methyltransferase 2D

MUC16 Mucin 16
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ARID1A AT-Rich Interaction Domain 1A

EP300 E1A Binding Protein P300

ZFHX4 Zinc Finger Homeobox 4

FGFR3 Fibroblast Growth Factor Receptor 3

ADCC Antibody-dependent cytotoxicity

ROS Reactive oxygen species

GPX4 glutathione peroxidase 4

GSH reduced glutathione

TCA tricarboxylic acid
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