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Breaking down the cellular
responses to type I interferon
neurotoxicity in the brain

Barney Viengkhou and Markus J. Hofer*

School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney,
Sydney, NSW, Australia
Since their original discovery, type I interferons (IFN-Is) have been closely

associated with antiviral immune responses. However, their biological functions

go far beyond this role, with balanced IFN-I activity being critical to maintain

cellular and tissue homeostasis. Recent findings have uncovered a darker side of

IFN-Is whereby chronically elevated levels induce devastating neuroinflammatory

and neurodegenerative pathologies. The underlying causes of these

‘interferonopathies ’ are diverse and include monogenetic syndromes,

autoimmune disorders, as well as chronic infections. The prominent involvement

of the CNS in these disorders indicates a particular susceptibility of brain cells to

IFN-I toxicity. Here we will discuss the current knowledge of how IFN-Is mediate

neurotoxicity in the brain by analyzing the cell-type specific responses to IFN-Is in

the CNS, and secondly, by exploring the spectrum of neurological disorders arising

from increased IFN-Is. Understanding the nature of IFN-I neurotoxicity is a crucial

and fundamental step towards development of new therapeutic strategies

for interferonopathies.
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Introduction

Central nervous system (CNS) inflammation is involved in a wide range of neurological

disorders and diseases, from pathogen-driven encephalitis and autoimmune disorders to

trauma, aging, and neurodegeneration (1–4). The complex nature of inflammation is

typically portrayed as either beneficial, such as pathogen elimination, or detrimental, like

induction of cell death. Yet in many cases, these processes occur simultaneously and are

driven by multiple mediators. The type I interferons (IFN-Is) are master regulators of

inflammation. They include the IFN-a subtypes and IFN-b and were originally identified due
to their ability to interfere with viral replication (5). However, a vast amount of research over

the past 60 years has revealed that IFN-Is have a wide range of roles in addition to regulating

inflammation and immunity.

There are three main mechanisms by which IFN-I production and signaling can be

increased. Firstly, activation of innate immune sensors by pathogens or cellular danger signals
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triggers increased expression of IFN-I genes. For example, cytosolic

dsDNA from viruses, damagedmitochondria, or improperly processed

self-nucleic acids are recognized by cyclic GMP–AMP synthase

(cGAS), which in turn activates the stimulator of interferon genes

(STING) (6). Activated STING then triggers a signaling cascade

resulting in the upregulation of IFN-I expression (6). In addition to

STING, there aremultiple other immune sensors that upregulate IFN-I

expression in similar ways (7, 8). Secondly, genetic changes can result

in increased IFN-I signaling such as in trisomy 21 due to an extra copy

of IFN-I receptor 1 (IFNAR1) (9), or reduced negative regulation of the

IFN-I pathway such as in patients with mutations in USP18 or ISG15

(10, 11). Thirdly, IFN-Is are used as treatment for a range of diseases

including chronic viral infections (12), multiple sclerosis (MS), and

several cancers and tumors (13–16).

All IFN-Is mediate their cellular effects through binding to a

single heterodimeric cell surface receptor consisting of the IFNAR1

and IFNAR2 chains. Activation of the receptor complex triggers two

distinct signaling phases (Figure 1). The first phase induces rapid and

widespread changes to protein phosphorylation and affects multiple

signaling pathways including mitogen-activated protein kinase,

cyclin-dependent kinase, and AKT (17). While still not fully

understood, it appears that this widespread change in protein
Frontiers in Immunology 02
phosphorylation prepares the cell for the second phase, which

modulates the expression of several hundreds of IFN-regulated

genes (IRGs). To make matters more complex, this transcriptional

phase mediates its effects through several signaling pathways. Of

these, the best understood is the activation of the interferon-

stimulated gene factor 3 (ISGF3) complex, which consists of the

transcription factors signal transducer and activator of transcription

(STAT1) 1, STAT2, and interferon regulatory factor 9 (IRF9). The

ISGF3 pathway is often also called the canonical IFN-I signaling

pathway and is critical to activate the antiviral response. By contrast,

all other pathways are termed ‘non-canonical’ and are thought to

modulate the antiviral response in a cell- and stimulus-dependent

context (18–22). Moreover, the signaling components in the IFN-I

pathway and can be activated by other cytokines, which complicates

defining the precise contribution of IFN-Is in inflammation and

immunity in vivo. In particular, while IFN-IIIs bind to their unique

cell surface receptor, they also mediate their effects through the ISGF3

complex. Recent findings suggest that IFN-IIIs, which consist of the

IFN-ls, contribute to neuroinflammation, however, many aspects

remain unclear. It appears that IFN-Is are more potent than IFN-IIIs

(23, 24) and that the expression of the IFN-III receptor is restricted

(25) with very low transcript levels in the brain (23, 24). Thus, while
FIGURE 1

IFN-I signaling pathway and strategies of inhibition. After ligation of IFN-Is with its cognate receptor chains, IFNAR1 and IFNAR2, JAK1 and TYK2
transphosphorylate each other before phosphorylating the receptors. In the canonical pathway, STAT1 and STAT2 dock at the receptor to become
phosphorylated by the JAKs. Phosphorylated STAT1 and STAT2 then form a trimolecular complex (ISGF3) with IRF9 and translocate into the nucleus to
bind ISREs to regulate the expression of hundreds of interferon-regulated genes (IRGs). Non-canonical signaling involves homodimers or heterodimers
of STATs, STAT5 binding to CrkL, or recruitment of transcriptional coactivators to regulate ISRE or GAS elements. Additional kinases are activated (PI3K,
NF-kB and MAPK pathways) which modulate the cellular response to IFN-Is that includes translation of a subset of genes, regulation of transcription or a
range of cellular functions. Multiple strategies have been employed to target IFN-I signaling including inhibition or elimination of proteins in the pathway
or its overall effects with immunosuppressants and anti-inflammatories that act on the cell or affect the expression of genes associated with
inflammation. Red circles indicate phosphorylation of a protein. IFN-I, type I interferon; IFNAR, IFN-a/b receptor; JAK1, Janus kinase 1; TYK, tyrosine
kinase 2; STAT, signal transducer and activator of transcription; IRF9, interferon regulatory factor 9; ISFG3, interferon-stimulated gene factor; ISRE,
interferon-stimulated response-elements; GAS, g-activated sequence; CrkL, Crk like proto-oncogene, adaptor protein; IRS, insulin receptor substrate;
PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin; NF-kB, nuclear factor-kB; MAPK, mitogen-activated protein kinase.
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we will not discuss the role of IFN-IIIs in detail, it is important to keep

in mind that synergism and antagonism of signaling pathways

between IFN-Is and other cytokines influences the outcomes of

IFN-I-induced cellular and tissue responses.

Although IFN-Is are critical for the physiological regulation of

inflammation, they are associated with a range of adverse effects.

These adverse effects manifest often as neurological deficits and are

commonly observed when IFN-Is are used as a drug or in patients with

chronically elevated IFN-I production in the brain (26). Importantly, the

cellular and molecular basis for this IFN-I neurotoxicity remains unclear

and its study is complicated by the presence of multiple cell types in the

CNS (e.g., neurons, glia, and vascular cells), each of which shows unique

cell type-specific responses (17, 27–30). Accordingly, in this review, we

dissect the complexity of IFN-I neurotoxicity at two levels: firstly, by

analyzing the cell-type specific responses to IFN-I in the CNS, and

secondly, exploring the spectrum of diseases and symptoms of

neurological disorders with increased IFN-Is.
Cellular responses to IFN-Is in the brain

The existence of a homeostatic level of IFN-I signaling in the

brain is demonstrated by the presence of IRG products in the healthy

brain (31, 32) and reduced expression of IRGs in unstimulated

IFNAR1-deficient mice (18) and cells lacking IFN-I signaling

proteins (33). The role of homeostatic IFN-I signaling in the brain

is diverse and ranges from priming cells for detection and response to

pathogens to roles in learning and memory. For example, several

studies have shown that neutralization of IFNAR1 results in synapse

reduction and impaired synaptic plasticity (34) and ablation of IFN-b
leads to defective neuronal autophagy (35). In addition to

homeostatic production, IFN-I expression can be markedly

increased in most if not all brain-resident cells in response to a

range of stimuli. Recent progress in omic analyzes, particularly at the

single-cell level, has demonstrated that within the diseased brain, a

spectrum of cellular response states occurs simultaneously rather than

a uniform response (36–42). Moreover, while all cell types in the CNS

can respond to IFN-Is, each cell type mounts its specific response to

IFN-Is. Consequently, the sum of the individual responses determines

the local tissue response. In the following sections, we will summarize

these cell-type specific responses.
Neurons

Neurons require IFN-I signaling for normal development.

Homeostatic IFN-b signaling in neurons is involved in the formation

of dendritic spines, neurite branching, and neuronal autophagy, while

loss of IFNAR1 signaling in neurons leads to formation of protein

aggregates or Lewy bodies (35). However, IFN-b injected into the brain
also causes a reduction of synapses (43), demonstrating the importance

of balanced IFN-I signaling for neuronal function. In response to viral

infections, neurons show limited production of IFN-Is (44, 45).

Importantly, while they mount a robust response to IFN-Is,

neurons only regulate the expression of a limited set of IRGs (46,

47). This comparatively (to other CNS cell types - see below) narrow

response provides antiviral protection andmay serve to limit adverse or
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detrimental effects of IFN-I signaling in these delicate cells. The need to

protect neurons from damage is also supported by the elevated basal

expression of some IRGs like ISG15 in neurons compared with other

cells contributing to an intrinsic antiviral resistance (48). IFN-I

mediated neurotoxicity manifests in neurons after IFN-a treatment

with fewer dendrites (49, 50), decreased neuronal neurogenesis (51),

reduced neurotrophic signaling (52), and increased apoptosis of

precursor cells (53). In addition, IFN-a alters glutamate-induced

excitatory potentials in hippocampal neurons and inhibitory post

synaptic potentials in pyramidal neurons (47, 54–56). This in turn

may increase epileptiform discharges associated with seizures and

inhibit long term potentiation, a process important in memory

formation (47, 54–56). Moreover, antagonizing the glutamate

receptor, N-methyl D-aspartate receptor (NMDAR), reduces the

neurotoxicity of IFN-a, indicating a toxic role of IFNAR and

NMDAR coactivation (50). IFN-b also modulates ion channels to

increase the number of action potentials elicited after activation of

protein kinase C (56) and is in line with IFN-b altering glutamatergic

neurotransmission (57). In addition, increased cerebral IFN-a levels in

transgenic mice with CNS-targeted overproduction of IFN-a (termed

GFAP-IFNmice) results in a progressive loss of neurons (58), impaired

learning (59), and changes in phosphoproteins that are associated with

various neuronal functions (17). Thus, increased IFN-I signaling has

detrimental effects on neuronal health and survival.
Astrocytes

Astrocytes are the most abundant glia cell and tile the CNS.

Similar to neurons, basal IFN-I signaling in astrocytes is required for a

healthy brain. Astrocyte-specific deletion of IFNAR1 results in

impaired learning, reduced synapse plasticity, and fewer synapses

(34). Following infection with neurotropic viruses, astrocytes are the

main producers of IFN-b in mice (44, 60). Their response to IFN-Is is

required to limit pathogen replication (61) and to promote blood–

brain barrier (BBB) integrity following virus infection (23). Astrocytes

alter morphology in response to IFN-Is as observed in brains of

patients with increased cerebral IFN-I production (62–64) and

GFAP-IFN mice (17, 59). Treatment of astrocytes with IFN-a or

IFN-b reduces astrocytic process complexity and domain range and

also upregulates genes involved in antiviral responses, metabolism,

apoptosis, and major histocompatibility complex (MHC) (17, 27, 39,

59, 62–64). Of note, increased levels of MHC on astrocytes negatively

impact neuronal function, activate microglia, and are correlated with

social and cognitive deficits in mice (65). Astrocytes can facilitate

leukocyte infiltration by increasing chemokine expression after IFN-a
treatment (66). In line with this, a subset of astrocytes located around

outer cortical blood vessels, and thought to regulate leukocyte access,

has been identified as being highly responsive to IFN-Is (39). This

highly IFN-I-responsive subset has also been identified in mouse

models of Alzheimer’s disease (AD), MS, and acute cortical trauma

(39). Hypertrophic astrocytes and increased parenchymal leukocytes

are also observed in brains of GFAP-IFN mice, supporting a role for

astrocytes in mediating leukocyte infiltration (58, 59). While these

findings suggest an inflammation-promoting role of IFN-Is on

astrocytes, IFN-I signaling in astrocytes can also limit

neuroinflammation through the production of the aryl hydrocarbon
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receptor and suppressor of cytokine signaling 2, dampening

activation of proinflammatory signaling pathways (67). Specifically,

mice with astrocyte-restricted Ifnar1-knockdown show exaggerated

neuroinflammation in experimental autoimmune encephalomyelitis

(EAE), a mouse model of MS (67). In addition, IFN-a but not IFN-b
treatment of human astrocytes reduces proliferation and glucose

uptake (68) which impacts the metabolic heath of the CNS. Thus,

while the contribution of astrocytes to IFN-I neurotoxicity is not

clear, these findings suggest a complex role for astrocytes in

modulating IFN-I responses, one that is of increasing interest.
Microglia

Unlike neurons or astrocytes, microglia do not originate from the

neuroectoderm. They are derived from the yolk sac and colonize the

brain early during embryonic development (69). Microglia are highly

plastic and sensitive to the local environment and are considered the

key immunoresponsive cell type in the CNS. Microglia produce IFN-

a and IFN-b in a wide range of neurological diseases ranging from

viral infection to autoimmune disorders (44, 70, 71). Microglia show a

more rapid and diverse response to IFN-a compared with astrocytes

and neurons (17, 27, 46). Similar to astrocytes, microglia morphology

has been used as an indicator of their functional state (72). However,

rather than changing into an amoeboid morphology, which is

typically observed of microglia in inflammatory situations, in

response to IFN-Is, microglia become hyper-ramified with

increased process complexity (73). This is also observed in AD and

aging (74), indicating microglia are responding to IFN-Is in these

conditions. In response to IFN-a, microglia upregulate expression of

IRGs, cytokines and chemokines and increase antigen presentation

(27), enabling them to act as antigen-presenting cells, propagate

inflammation, and promote leukocyte infi l tration. This

transcriptomic response has been similarly identified in microglia in

the aged brain, AD or demyelination in humans or mouse models (38,

40–42). Although most microglia upregulate IRGs, there is a small

subset of microglia that are IFN-I-hyperresponsive as identified by

single-cell sequencing of a large number of microglia (36, 38, 40, 41).

It has been suggested that this hyperresponsive subset contributes to

age-dependent cognitive decline and increased synaptic stripping

(75–77). In support, minocycline inhibition of microglia activation

reduced features of depression and impaired learning of fear

extinction in mice injected with IFN-a (78) and use of anti-

IFNAR1 treatment in a mouse model of AD demonstrated that

IFN-Is promote microglial engulfment of synapses (79).

Add i t iona l l y , minocyc l ine ha s been used in var ious

neurodegenerative diseases with varied outcomes in animal and

human studies (80). However, a recent study using GFAP-IFN mice

has demonstrated that depletion of microglia exaggerated disease

(81), suggesting that the role of these cells in IFN-I-driven disease

may be both beneficial and detrimental.
Oligodendrocytes

Oligodendrocytes have limited responses to IFN-a and IFN-b. In
viral infections, oligodendrocytes have low production of IFN-Is and
Frontiers in Immunology 04
show less expression of IRGs, compared with microglia (82).

Additionally, IFN-a or IFN-b have no effect on oligodendrocyte

proliferation or survival (31, 51, 83). This suggests on the one hand a

partial refractory state of oligodendrocytes to IFN-Is, and on the other

hand, that the loss of myelin in neurodegenerative diseases may be an

indirect response due to actions from surrounding cells or other

mediators rather directly through IFN-I signaling. In support of this, a

study using single-cell transcriptomics in a mouse model for MS

identified a subset of oligodendrocytes that actively recruit T cells,

driving the loss of myelin (37). However, data on oligodendrocyte

responses to IFN-Is remains limited and further studies are needed to

provide a deeper understanding how IFN-Is affect these cells.
Blood–brain barrier and endothelial cells

The BBB is critical for maintaining CNS homeostasis and brain

function (84) and plays crucial roles in neuroinflammation by regulating

the migration of leukocytes and diffusion of plasma proteins into the

brain parenchyma (85). This separation between blood and brain tissue

differs frommost other vascular barriers, resulting in vascular cells of the

BBB adopting a comparatively distinct phenotype (86). The vascular cells

forming the BBB include endothelial cells, pericytes, and mural cells. In

particular, cerebral endothelial cells may contribute more to IFN-I

signaling in the murine CNS than other cell types as single-cell

transcriptomics indicate expression of Ifnar1 and Ifnar2 is higher in

these cells than in microglia, astrocytes, and neurons (87, 88). Similarly,

in humans, IFNAR2 expression is higher in endothelial cells than glia and

neurons (89). This responsiveness of the vasculature is also evident from

reports of systemic vasculitis and loss of BBB integrity in patients

receiving IFN-Is (55, 90, 91). This vasculopathy is amplified in patients

with cerebral interferonopathies and in GFAP-IFN mice, where

aneurysms and perivascular calcification are hallmarks of the disease

(58, 62, 63, 91). However, the mechanisms leading to these pathologies

are unclear, and studies suggest opposing actions of IFN-Is. IFN-a blocks

angiogenesis and is toxic to endothelial progenitor cells, contributing to

irregular vasculogenesis, abnormal repair and increased atherosclerosis

(92). IFN-I therapy can also cause thrombotic microangiopathy and

aneurysms (91). The response of endothelial cells in the BBB to IFN-b
leads to the secretion of C-X-C motif chemokine 10 resulting in

compromised neuronal function and sickness behavior (30). In vitro

studies support the BBB-damaging effects of IFN-Is, showing that IFN-a
and IFN-b enhance endothelial apoptosis and reduce angiogenesis (93–

96). Yet, other studies found that IFN-a induces endothelial proliferation

(97, 98) and that IFN-b signaling in endothelial cells has anti-

inflammatory roles by inhibiting intracellular signaling of

proinflammatory pathways and promoting BBB integrity in the host

response to viruses and in MS (23, 99, 100). While the basis for these

reported differences in endothelial responses to IFN-Is remains unclear,

it points to the importance of the subtype of IFN-Is involved and also the

context in which IFN-I signaling occurred. Nevertheless, the impact of

IFN-Is on the cerebral vasculature has an active role in disease

progression of patients with cerebral interferonopathies and in other

neurodegenerative diseases. Accordingly, should further studies

demonstrate a direct pathogenic role for the brain’s vasculature, this

would open new therapeutic avenues as in contrast to the brain’s

parenchyma, the vessels are easily targeted by peripheral drugs.
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Neurological disorders with
increased IFN-I

There is growing evidence that inflammatory processes and, in

particular, IFN-Is, are involved in a wide range of neurological

diseases (Table 1) (1–3). The symptomatic overlap between these

diseases, as well as the reported adverse effects of IFN-I therapy,

suggests a causal contribution of increased IFN-I signaling to their

pathogenesis (Figure 2). However, the specific contribution of IFN-Is

to the pathogenesis of these diseases is often not well understood.
Type I interferons directly
induce neurotoxicity

The direct neurotoxic effects of IFN-Is are well documented due

to their clinical use (53, 138–143). Common (>20%) adverse

neurological reactions in patients include flu-like symptoms,

fatigue, and depression. Less commonly (<5%) observed adverse

events include personality changes, cognitive dysfunction, memory

loss, mood disorders, psychomotor slowing, and rare (<1%) but

severe reactions including psychosis, mania, and seizures. Nature

and severity of adverse reactions is dose dependent and generally

worsens over time. Fortunately, cessation of treatment leads to an

eventual recovery in most cases (140), indicating that these reactions

are mediated by IFN-Is rather than the underlying condition for

which IFN-Is have been used as treatment. Importantly, the

requirement of basal IFN-I signaling for normal brain development

suggests a threshold above which IFN-Is become neurotoxic. This is

further supported by findings in glioblastomas. In a subset of

glioblastoma, stem cells that display elevated cell-intrinsic IFN-I

signaling, which contributes to tumor growth, IFN-b treatment can

induce cell death, but not in tumor stem cells that have lower cell-

intrinsic IFN-I signaling (144, 145). Several mechanisms by which

IFN-Is mediate neurotoxicity have been proposed. For example, IFN-

a-induced neuropsychiatric symptoms have been associated with

changes in glucose metabolism and neuronal circuitry activity in

the basal ganglia and prefrontal cortex (146–148), decreased

tryptophan availability with altered serotonergic signaling (149–

152) and increased presence of proinflammatory cytokines (141,

149, 152–154). IFN-a treatment can also cause retinopathy (30–

86% occurrence) (90, 155) and focal BBB leakage which potentially

induces seizures in patients (55). Although rare, IFN-a and IFN-b can
prompt extensive vascular changes including thrombotic

microangiopathy which encompasses endothelial dysfunction,

microvascular ischemia, and microangiopathic hemolytic anemia

with vascular microaneurysms and stenoses (91).
Effects of chronically elevated type I
interferon signaling in the CNS

Diseases associated with chronically elevated levels of IFN-I in the

CNS are collectively termed ‘cerebral interferonopathies’. This diverse

group of diseases may be genetic/hereditary (e.g., Aicardi-Goutières

Syndrome (AGS), ISG15 deficiency, and USP18 deficiency),

autoinflammatory [e.g., systemic lupus erythematosus (SLE) with
Frontiers in Immunology 05
neurological manifestation], caused by congenital and chronic viral

infections (e.g., infections with Toxoplasma gondii, rubella virus,

cytomegalovirus, herpes simplex virus, hepatitis B and C virus, and

human immunodeficiency virus), or without known etiologies such as

Degos disease (156–158). Given their many shared symptoms and

pathological features, cerebral interferonopathies provide valuable

insights into the long-term biological effects of increased IFN-I

signaling in the CNS.

AGS is the commonly exemplified cerebral interferonopathy

whereby mutations in genes involved in nucleic acid detection and

metabolism lead to increased intrathecal IFN-a production (159, 160).

So far, mutations in nine genes have been identified to cause AGS:

TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1,

IFIH1, LSM11, and RNU7-1 (26, 161). It is proposed that loss-of-

function mutations in TREX1, RNASEH2, and SAMHD1 lead to the

accumulation of immunostimulatory nucleic acid species derived from

endogenous retroviral element expression which activate sensors that

induces the expression of IFN-Is (162). Similarly, loss of function in

ADAR1 results in lack of posttranscriptional modification of

endogenous retroviral element transcripts, resulting activation of

MDA5, PKR, and ZBP1, which induces IFN-Is and cell death (163–

165). Gain-of-function mutations in IFIH1 cause an overactive gene

product, MDA5, and consequently abnormal induction of IFN-Is

(166). In contrast to aberrant IFN-I induction through sensing or

regulating endogenous retroviral elements, mutations in LSM11 and

RNU7-1 result in disrupted histone packing of DNA leading to the

activation of cGAS/STING to induce IFN-Is (161).

Clinically, AGS has an early onset that mimics transplacental-

acquired infections and includes increased mortality before adulthood,

irritability, slowed cognitive growth, abnormal movements that develop

into ataxia, and epileptic seizures (26, 156, 162, 167, 168). Neuroimaging

reveals features including microcephaly, white matter disease,

intracranial calcification, necrosis, and vasculopathy with stenosis,

moyamoya (small and inadequate vessels formed due to the narrowed

cerebral artery), aneurysms, infarcts, and hemorrhage (26, 162, 167, 168).

Neuropathological brain examinations showdemyelination, perivascular

calcification, T-cell infiltration, and apoptotic cells (62–64, 169, 170).

Consequently, the clinical and neuropathological observations have led

to the proposal of AGS being either a leukodystrophy (171, 172) or a

microangiopathy (63, 173). Notably, while vessel disease is a common

feature in brains from patients with AGS, whether it mediates pathology

or is a consequence of disease has not been clarified. Further,

immunohistochemistry has revealed that astrocytes are the main

source of IFN-a in the CNS in patients with AGS (62–64) and AGS

has thus also been classified as an astrocytopathy by some authors (174).

Similar to IFN-I therapy, elevated IFN-a plasma and CSF levels correlate

with clinical severity in patients with AGS (160). However, there is a lack

of knowledge regarding which cell types and molecular mechanisms

mediate disease pathology in AGS, a deficit that also extends to other

cerebral interferonopathies. This lack of knowledge stems in large parts

from the fact that mouse or zebrafish models that mimic the genetic

mutations of patients with AGS, do not recapitulate the human disease

(175). By contrast, transgenic mice with increased cerebral IFN-I

production (GFAP-IFN mice) – recapitulating the one feature

common to of all cerebral interferonopathies – develop closely

overlapping clinical and pathological changes also present in patients

(Figure 3) (58, 59).
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TABLE 1 IFN-I signaling and its inhibition in neurological disorders.

Disorder Cause of increased
IFN-I signaling

Blocked IFN-I induction
or signaling

Consequence

Aicardi-Goutières
syndrome (AGS)

Genetic mutation in genes associated
with nucleic acid regulation

JAK inhibitor (H) Improvement of symptoms including some neurologic features
(101–107)

USP18 deficiency Mutation in USP18 that reduces
negative regulation of IFN-I signaling

JAK inhibitor (H) Remission of symptoms (10)

USP18-/- x IFNAR1-/- mice (M) Normal phenotype (31)

Systemic lupus
erythematosus
(SLE)

Unknown Anti-IFNAR1 (H) Improvements of some symptoms (108, 109)
(M) No change phenotypic change (110)
(M) Rescue of some autoimmunity features, no change, or worsen
survival dependent on model (111)

Anti-IFN-a (H) Improvements of symptoms (112)

JAK inhibitor (H) Improvements of some symptoms (113)

x IFNAR-/- mice (M) Attenuated disease phenotype (114–117)

Chronic viral
encephalopathy

Chronic response to viruses IFNAR1 deficiency (H) Lethal infection (118)

Aging Unknown Anti-IFNAR1 (M) Improved cognitive function, reduced gliosis, and reduced age-
related neuroinflammation (119)

JAK inhibitor (M) Improved physical functions and coordination (120)

Trisomy 21 Increased expression of IFNAR JAK inhibitor (H) Improvement in peripheral symptoms, central symptoms not
reported (121–123)
(M) Improved survival and reduced loss of weight when
immunologically challenged (124)

Alzheimer’s disease
(AD)

Microglia response to nucleic acid
containing plaques (43)

Anti-IFNAR (M) Restored microglia activity (43)
(M) Rescued cognitive function (79)

APPSWE/PS1DE9 x IFNAR1-/- (M) Reduced cognitive decline and anti-inflammatory glia response
(125)

Parkinson’s disease
(PD)

a-synuclein aids in neuron-specific
IFN-I responses (126)

MPTP-treated IFNAR1-/- mice
MPTP-treatment and anti-IFNAR1

(M) Reduced neuroinflammation and reduced loss of dopaminergic
neurons (127)

Huntington’s
disease (HD)

Activation of cGAS/STING which
indues IFN-Is (128)
Mutant huntingtin leads to
mitochondrial dysfunction which
induces IFN-Is (129)

cGAS deletion (M) Reduced expression of proinflammatory genes and reduced
autophagy (128)

Amyotrophic lateral
sclerosis (ALS)

Accumulated TDP-43 activates cGAS/
STING to induce IFN-Is (130)

SOD1 x IFNAR1-/- (M) Prolonged survival (131)

x STING-/- mice
STING inhibitor

(M) Reduced IFN-I gene expression, prevented loss of neurons, and
improved motor function (130)

Prion STING mediated IFN-I induction
(132)

IFNAR1-/- mice (M) Reduced neuroinflammation and prolonged survival from
slowed disease progression (132)

Traumatic brain
injury (TBI)

STING-mediated IFN-I induction (4) STING-/- mice (M) Reduced neuroinflammation, reduced lesion size, and
completion of autophagy process (4)

IFN-b-/- mice (M) Reduced proinflammatory response, improved motor and
cognitive functions, and reduced neurodegeneration (133)

Anti-IFNAR1 (M) Improved motor and cognitive functions and no change in
lesion volume (133)
(M) Reduced infarct volume, reduced inflammatory response, and
improved behavioral outcomes (134)

IFNAR1-/- mice (M) Reduced infarct volume and reduced inflammatory response
(134)

Multiple sclerosis
(MS)

Increased around lesions EAE in IFNAR1-/- (M) More severe disease, increased neuroinflammation, and
increased demyelination (28)

EAE in IFNAR1-/-

EAE in IFN-b-/-
(M) Increased myelin debris accumulation (71)

(Continued)
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Chronic infectious encephalopathy

A key feature of the host immune response to pathogens is the

rapid production of IFN-Is that activate and regulate both the innate

and adaptive immune response (176). The ultimate aim of this

immune response is to limit damage to the host, eliminate the

pathogen, and re-establish organismal homeostasis. However, in

situations where pathogen elimination is not achieved, chronic

production of IFN-Is occurs. This is evident in a range of

congenital and chronic infections of the CNS including

toxoplasmosis, syphilis, rubella, cytomegalovirus, Zika virus, herpes

simplex virus and human immunodeficiency virus (177). Many of the

clinical and neuropathological findings mirror those observed in

patients with AGS (157) including cognitive and motor

dysfunction, microcephaly, leukodystrophy, cerebral calcification,

loss of neurons, and gliosis (178, 179) (Figure 2). Importantly, these

changes are paralleled by elevated cerebral IFN-a levels (180).

Further, increased IFN-a levels detected in patients with human

immunodeficiency virus are linked to developing neurocognitive
Frontiers in Immunology 07
disorders (50, 181). Together, these findings indicate a direct

association between increased chronic cerebral IFN-I and disease.
Aging

Aging of the brain concurrently occurs with cognitive decline,

reduced neurogenesis, cerebral atrophy, waning of cerebral vascular

function, and increased neuroinflammation (182, 183), symptoms

which are also seen in patients with cerebral interferonopathies

(Figure 2). The mechanisms of aging are not well understood and

are made more complex by the presence of comorbidities like BBB

breakdown (184, 185), dementia, cerebral small vessel disease and

neurodegenerative disorders (182, 186). Notably, IFN-b protein and

IFN-I signaling are increased in the choroid plexus in the aged CNS of

humans and mice (75, 119). Antibody-mediated neutralization of

IFNAR1 in mice reversed the aged transcriptomic phenotype while

increased IFN-b expression in the choroid plexus of young mice

resulted in a transcriptome that reflected that of aged mice (75, 119).
TABLE 1 Continued

Disorder Cause of increased
IFN-I signaling

Blocked IFN-I induction
or signaling

Consequence

GFAP-IFN mice Transgenic overproduction of IFN-a
in the brain

x IFNAR1-/- mice (M) WT-like phenotype (91)

x STAT1-/- mice (M) Exacerbated disease (91, 135)

x STAT2-/- mice (M) Different disease pathology (135, 136)

x IRF9-/- mice (M) Exacerbated disease (136, 137)
cGAS, cyclic GMP-AMP synthase; EAE, experimental autoimmune encephalomyelitis, a model for MS; IFN-I, type I interferon; IFNAR, type I interferon receptor; IRF, interferon regulatory factor;
JAK, Janus kinase; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, used to model PD; STAT, Signal transducer and activator of transcription; STING, Stimulator of interferon genes; USP18,
Ubiquitin specific peptidase 18; WT, wild-type; (H) indicates findings in humans and (M) indicates findings in mice.
A B

FIGURE 2

Symptomatic links between IFN-I-driven diseases and CNS afflictions. (A) Symptoms that arise in diseases driven by IFN-Is overlap with symptoms that
occur in aging, trisomy 21 and several neurodegenerative diseases, trauma, autoimmune diseases and chronic viral infections, CNS afflictions found to
have increased IFN-I signaling. (B) Further breakdown of symptoms linked to each of the CNS afflictions. Note, protein aggregates can lead to increased
IFN-Is and expression of IRGs. CNS-centric symptoms were compared and linked if there was prevalence in several human cases. Size of nodes and links
are arbitrary. T21, Trisomy 21; AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington’s disease; ALS, amyotrophic lateral sclerosis; TBI,
traumatic brain injury; MS, multiple sclerosis; CVE, chronic viral encephalopathy; TMA, thrombotic microangiopathy; SOD, superoxide dismutase; TPD-
43, transactive response DNA binding protein 43 kDa.
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Additionally, JAK inhibition reduced cellular senescence and

improved physical functions in aged mice (120). Thus, aging and

increased IFN-I signaling in the CNS appear to be interlinked, with

implications for the further study of age-related cognitive decline.
Diseases with abnormal protein aggregation

One important and so far, understudied aspect of neurodegenerative

diseases is the co-occurrence of inflammation and increased IFN-I

signaling. To date, this has probably been best studied in AD. In brain

tissue from patients with AD, expression of IFN-Is and IRGs is increased

(32, 187, 188), which is supported by similar findings inmousemodels of

AD (43, 79, 188). A recent study demonstrated that the induction of IFN-

I is due to nucleic acid contained in amyloid-beta plaques that stimulates

IFN-b production and IFN-I signaling in microglia (43). A role for

increased IFN-Is in AD pathogenesis (rather than just being a bystander

effect) has been demonstrated in mouse models, where IFNAR1 deletion

or neutralization resulted in downregulated expression of

proinflammatory cytokines, attenuated microgliosis, increased

complement-mediated synapse engulfment, enhanced astrogliosis, and

partial improvement in learning (43, 79, 125). Likewise, patients with

mild cognitive impairment had increased blood IFN-I signaling

compared with healthy controls, which was further increased in those

withAD (189). Of note, in a ratmodel of AD, IFN-b treatment improved

memory and reduced inflammatory markers (190), and in humans with

subtle cognitive decline, a preclinical feature of AD, reduced blood IFN-I

signaling levels is linked to an increased risk of progression to mild

cognitive impairment (189). Thus, IFN-Is display protective and

damaging properties in AD.

In Parkinson’s disease (PD), increased IFN-Is and IRG products

surround Lewy bodies (32, 127, 187), the disease-defining

pathological hallmark of PD. Additionally, the protein a-synuclein,
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that form into Lewy bodies, enhances the signaling of IFN-Is in

neurons (126). Ablation of IFNAR1 in a mouse model of PD reduced

neuroinflammation and decreased dopaminergic neuronal death

(127). The increased IFN-I signaling in the vicinity of protein

aggregation, pathological hallmarks of AD and PD, indicates that

protein aggregation facilitates localized IFN-I production in

surrounding cells. This is supported by studies in mouse models on

prion disease, which also involves abnormal protein aggregation.

Here, robust IFN-I signaling is seen in microglia (132), and in mice

lacking IFNAR1 or STING, disease pathology was delayed (132).

Furthermore, increased IFN-I signaling is also observed in the CNS of

mouse models of Huntington’s disease (HD) (128, 129, 191) and

amyotrophic lateral sclerosis (ALS) (130, 131), other disorders with

prominent protein aggregates. Together, these findings suggest that

protein aggregates are strong inducers of IFN-I signaling and may

contribute to disease progression (Table 1).
Traumatic brain injury

Unlike the previous CNS conditions, traumatic brain injury (TBI)

involves external physical disruption to the CNS. Symptoms reflect

both trauma severity and impact location and may include

depression, memory problems, anxiety, agitation, and motor

coordination problems (192, 193). The pathological features around

the CNS injury site include necrosis, glial cell activation, BBB leakage,

neuron degeneration, neuroinflammation, and leukocyte infiltrates

(194), features that also occur in cerebral interferonopathies

(Figure 2). In response to TBI, chronic local upregulation of IRGs

occurs at the injury site, persisting for several months post-injury in

both humans and mice (4, 133, 195, 196). Additional increase in IFN-

b or IFN-I signaling, for example, in the case of traumatic infection or

an aged brain, exacerbates disease outcomes in patients and mice,
FIGURE 3

GFAP-IFN mice recapitulate clinical and pathological features of patients with AGS. Venn diagram showing overlap between clinical CNS symptoms and
neuropathology observed in the GFAP-IFN mice and patients with AGS. Features that do not overlap and/or have yet to been shown in mice or in
patients are also indicated.
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whilst loss of Ifnb and anti-IFNAR1 treatment in mice attenuates the

damage from TBI (133, 134, 196–198), further demonstrating the

neurotoxic capacity of IFN-Is.
Trisomy 21

An extra copy of chromosome 21 in humans (trisomy 21) results in

diverse symptoms affecting many organs including the CNS. Although

symptoms may not all manifest together (9), they include cognitive

dysfunction, moyamoya, craniofacial abnormalities, autoimmunity,

hematological disorders, intracranial calcification, and early-onset AD

(9, 199–203). Some degree of resistance to the development of solid

tumors has been observed (9, 199). IFNAR1 and IFNAR2 are located on

chromosome 21 and their levels are elevated in trisomy 21 (9, 204–206),

possibly rendering cells hyperresponsive to IFN-Is. In support, both

transcriptomic and proteomic studies of various cell types from trisomy

21 patients show elevated IFN-I signaling and IRG products (9, 204).

Notably, many CNS-associated symptoms mirror those observed in

cerebral interferonopathies (Figure 2) indicating that increased cerebral

IFN-Is may contribute to disability in these patients, and trisomy 21 has

been suggested to be an interferonopathy by some authors (9, 204). This

in turn opens new therapeutic options for patients with trisomy 21 and

accordingly, JAK inhibitors, which block formation of the ISGF3

signaling complex, have been used with some success in case studies

andmousemodels showing improvements in disease (121–124) and is in

a clinical trial (ClinicalTrials.gov Identifier: NCT04246372).
Multiple sclerosis

MS is a demyelinating disease with unclear etiology (207).

Patients exhibit a diverse range of symptoms which are largely

associated with the location of lesions that occur in the CNS (207).

These lesions contain inflammatory leukocytes that presumably

mediate oligodendrocyte damage, loss of myelin (208), and local

disruption of the BBB (209). IFN-I serum and CSF levels in MS

patients do not differ from healthy controls (210). However, there is a

focal increase of IFN-I production and IRGs in brain lesions of MS

patients and mouse models of MS (71, 211). This mirrors the increase

in IFN-I around abnormal protein aggregates and TBI lesions

described above, indicating that local production of IFN-I to

cellular damage is a common response in the brain. Further,

pathological overlaps with AGS/leukodystrophies (212) and MS

(Figure 2) such as cerebral small vascular disease exist (213).

Although IFN-Is are produced locally in MS and some mouse

models, overall, IFN-I signaling appears to be protective. Genetic

ablation of IFNAR1 or IFN-b in mice, results in more severe EAE

(28). IFN-b is highly effective for the treatment of MS (IFN-a, although
effective, is less well tolerated due to adverse effects including increased

occurrence of depression) (16, 214, 215). However, the mechanisms by

which IFN-Is are beneficial in MS remain unclear and there is variability

in the responses to IFN-b, with someMSpatients showing improvement,

while others having no change or worsening of disease (216, 217). It has

been suggested that someMS patients with IFN-I-induced worsening of

disease may have been misdiagnosed; MS and neuromyelitis optica
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spectrum disorder (NMOSD) can cause very similar symptoms, but in

contrast to most MS patients, IFN-Is exacerbate disease in NMOSD

(218). In addition, variations in responses to IFN-Is could be due to

subnormal serum responses to IFN-Is (219, 220). Thus, it is possible that

IFN-b treatment rebalances host IFN-I signaling activity in these

patients, rather than being excessive or detrimental.
Therapeutic potential of blocking
IFN-I signaling

Currently, there is no cure for cerebral interferonopathies, such as

AGS and SLE, and available treatments are primarily aimed at managing

symptoms. Treatment is complicated by differences in etiologies, disease

progression, severity, and symptoms and importantly by a lack of

knowledge regarding the vulnerable and disease-mediating cell types

(162). Anti-inflammatory and immunosuppressant drugs (Figure 1)

such as corticosteroids or methotrexate are often given to dampen

inflammation and reduce infiltrating immune cells, while antiepileptics

are used to manage seizures (101, 158, 162, 221–223). Careful

consideration is required when devising therapeutic strategies as

inactivating canonical signaling factors STAT1, STAT2, or IFR9 in

GFAP-IFN mice results in exacerbated disease (135–137),

demonstrating that maintaining balanced IFN-I signaling is critical.

Recently, targeting the IFN-I signaling pathway has shown some

promise. Treatments with anti-interferon, anti-IFNAR, or JAK

inhibitors (Figure 1, Table 1) results in dramatic improvements in

some patients with AGS, SLE, and even recovery of patients with

peripheral interferonopathies (10, 101–106, 108–112, 221, 224–226).

However, these treatments lack support from larger clinical trials,

especially in regards to changes in neurological symptoms (162).

Importantly, the ability of these treatments to bypass the BBB and

improve CNS pathology is yet to be confirmed. Furthermore, the safety

profiles of the therapies are noted to include an increased risk of

opportunistic infections due to the generalized immunosuppression, as

well as an increased risk of major adverse cardiovascular events (227–

230). Currently, several clinical trials are underway for patients with

AGS (ClinicalTrials.gov Identifier: NCT03921554, NCT04517253, and

NCT01724580) and their outcomes will hopefully provide the

necessary rationale for the wider use of these treatments. The

therapeutic potential of IFN-I signaling inhibition is less clear in the

other discussed neurological disorders, with evidence suggesting it may

be beneficial in some cases and detrimental in others (Table 1).
Discussion

IFN-Is are a double-edged sword in the CNS. While they are critical

for normal brain function and antimicrobial immunity, chronically

elevated levels of IFN-Is can be highly neurotoxic. In addition to both

the level and signaling duration of IFN-Is, these opposing effects of IFN-Is

are in part due to cell-type specific responses, disease-specific contexts,

and biological differences between IFN-I subtypes. These parameters

modulate the overall tissue response to IFN-Is in the brain. The

detrimental effects of IFN-Is are most evident in cerebral

interferonopathies which can serve as a paradigm of IFN-I
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neurotoxicity, providing valuable insight into a broad spectrum of

neurological diseases. Recent advancements with single-cell

technologies have provided us with a glimpse of the diversity of the

IFN-I responses in the CNS. These studies have provided novel insights

into the cell-type specificity of the responses to IFN-Is and demonstrated

their variability within a single-cell type. Together, this evidence points to

a complex coordination to IFN-Is resulting in a highly stimulus- and

time-specific response of CNS-resident cells.
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long-term potentiation and unmasks a long-term depression in the rat hippocampus.
Brain Res (2000) 885(1):14–24. doi: 10.1016/s0006-8993(00)02877-8

55. Pavlovsky L, Seiffert E, Heinemann U, Korn A, Golan H, Friedman A. Persistent
BBB disruption may underlie alpha interferon-induced seizures. J Neurol (2005) 252
(1):42–6. doi: 10.1007/s00415-005-0596-3

56. Reetz O, Stadler K, Strauss U. Protein kinase c activation mediates interferon-beta-
induced neuronal excitability changes in neocortical pyramidal neurons. J Neuroinflamm
(2014) 11:185. doi: 10.1186/s12974-014-0185-4

57. Di Filippo M, Tozzi A, Arcangeli S, de Iure A, Durante V, Di Gregorio M, et al.
Interferon-b1a modulates glutamate neurotransmission in the CNS through CaMKII and
GluN2A-containing NMDA receptors. Neuropharmacology (2016) 100:98–105.
doi: 10.1016/j.neuropharm.2015.06.009

58. Akwa Y, Hassett DE, Eloranta ML, Sandberg K, Masliah E, Powell H, et al.
Transgenic expression of IFN-alpha in the central nervous system of mice protects against
lethal neurotropic viral infection but induces inflammation and neurodegeneration. J
Immunol (1998) 161(9):5016–26. doi: 10.4049/jimmunol.161.9.5016

59. Campbell IL, Krucker T, Steffensen S, Akwa Y, Powell HC, Lane T, et al. Structural
and functional neuropathology in transgenic mice with CNS expression of IFN-alpha.
Brain Res (1999) 835(1):46–61. doi: 10.1016/S0006-8993(99)01328-1

60. Pfefferkorn C, Kallfass C, Lienenklaus S, Spanier J, Kalinke U, Rieder M, et al.
Abortively infected astrocytes appear to represent the main source of interferon beta in
the virus-infected brain. J Virol (2016) 90(4):2031–8. doi: 10.1128/jvi.02979-15

61. Hidano S, Randall LM, Dawson L, Dietrich HK, Konradt C, Klover PJ, et al. STAT1
signaling in astrocytes is essential for control of infection in the central nervous system.
mBio (2016) 7(6):e01881-16. doi: 10.1128/mBio.01881-16

62. Cuadrado E, Jansen MH, Anink J, De Filippis L, Vescovi AL, Watts C, et al.
Chronic exposure of astrocytes to interferon-alpha reveals molecular changes related to
aicardi-goutieres syndrome. Brain (2013) 136(Pt 1):245–58. doi: 10.1093/brain/aws321

63. Klok MD, Bakels HS, Postma NL, van Spaendonk RM, van der Knaap MS, Bugiani
M. Interferon-alpha and the calcifying microangiopathy in aicardi-goutieres syndrome.
Ann Clin Transl Neurol (2015) 2(7):774–9. doi: 10.1002/acn3.213

64. van Heteren JT, Rozenberg F, Aronica E, Troost D, Lebon P, Kuijpers TW.
Astrocytes produce interferon-alpha and CXCL10, but not IL-6 or CXCL8, in aicardi-
goutieres syndrome. Glia (2008) 56(5):568–78. doi: 10.1002/glia.20639

65. Sobue A, Ito N, Nagai T, Shan W, Hada K, Nakajima A, et al. Astroglial major
histocompatibility complex class I following immune activation leads to behavioral and
neuropathological changes. Glia (2018) 66(5):1034–52. doi: 10.1002/glia.23299

66. Rizzo MD, Crawford RB, Bach A, Sermet S, Amalfitano A, Kaminski NE.
Imiquimod and interferon-alpha augment monocyte-mediated astrocyte secretion of
MCP-1, IL-6 and IP-10 in a human co-culture system. J Neuroimmunol (2019)
333:576969. doi: 10.1016/j.jneuroim.2019.576969

67. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L,
et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte
activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat
Med (2016) 22(6):586–97. doi: 10.1038/nm.4106

68. Wang T, Takikawa Y, Sawara K, Yoshida Y, Suzuki K. Negative regulation of
human astrocytes by interferon (IFN) a in relation to growth inhibition and impaired
glucose utilization. Neurochem Res (2012) 37(9):1898–905. doi: 10.1007/s11064-012-
0806-1

69. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat
Rev Immunol (2018) 18(4):225–42. doi: 10.1038/nri.2017.125

70. Shiozawa S, Kuroki Y, Kim M, Hirohata S, Ogino T. Interferon-alpha in lupus
psychosis. Arthritis Rheum (1992) 35(4):417–22. doi: 10.1002/art.1780350410

71. Kocur M, Schneider R, Pulm AK, Bauer J, Kropp S, Gliem M, et al. IFNb secreted
by microglia mediates clearance of myelin debris in CNS autoimmunity. Acta
Neuropathol Commun (2015) 3:20. doi: 10.1186/s40478-015-0192-4

72. Walker FR, Beynon SB, Jones KA, Zhao Z, Kongsui R, Cairns M, et al. Dynamic
structural remodelling of microglia in health and disease: a review of the models, the
signals and the mechanisms. Brain Behav Immun (2014) 37:1–14. doi: 10.1016/
j.bbi.2013.12.010

73. West PK, McCorkindale AN, Guennewig B, Ashhurst TM, Viengkhou B,
Hayashida E, et al. The cytokines interleukin-6 and interferon-a induce distinct
microglia phenotypes. J Neuroinflamm (2022) 19(1):96. doi: 10.1186/s12974-022-
02441-x

74. West PK, Viengkhou B, Campbell IL, Hofer MJ. Microglia responses to
interleukin-6 and type I interferons in neuroinflammatory disease. Glia (2019) 67
(10):1821–41. doi: 10.1002/glia.23634

75. Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-
Szternfeld R, Spinrad A, et al. Mef2C restrains microglial inflammatory response and is
lost in brain ageing in an IFN-i-dependent manner. Nat Commun (2017) 8(1):717.
doi: 10.1038/s41467-017-00769-0

76. Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, et al.
Transcriptomic analysis of purified human cortical microglia reveals age-associated
changes. Nat Neurosci (2017) 20(8):1162–71. doi: 10.1038/nn.4597
frontiersin.org

https://doi.org/10.1016/j.celrep.2018.09.003
https://doi.org/10.1016/j.immuni.2016.04.005
https://doi.org/10.15252/embj.201490791
https://doi.org/10.1016/0304-3940(94)90560-6
https://doi.org/10.1074/jbc.M116.756510
https://doi.org/10.1016/j.celrep.2020.107666
https://doi.org/10.1016/j.cell.2015.08.069
https://doi.org/10.1073/pnas.2017742118
https://doi.org/10.1073/pnas.2017742118
https://doi.org/10.1038/s41591-018-0236-y
https://doi.org/10.1016/j.immuni.2018.11.004
https://doi.org/10.1016/j.immuni.2018.11.004
https://doi.org/10.1038/s41593-021-00905-6
https://doi.org/10.1038/s41593-021-00905-6
https://doi.org/10.1016/j.celrep.2017.09.039
https://doi.org/10.1038/s41467-020-19737-2
https://doi.org/10.1126/sciadv.aay6324
https://doi.org/10.1172/jci133737
https://doi.org/10.1128/jvi.01093-12
https://doi.org/10.1128/jvi.01199-08
https://doi.org/10.1128/jvi.79.13.8295-8302.2005
https://doi.org/10.1128/jvi.79.13.8295-8302.2005
https://doi.org/10.1038/sj.mp.4002013
https://doi.org/10.1016/j.jneuroim.2014.12.012
https://doi.org/10.1089/jir.2014.0105
https://doi.org/10.1523/jneurosci.5595-08.2009
https://doi.org/10.1016/j.stemcr.2014.05.015
https://doi.org/10.1111/j.1471-4159.2012.07766.x
https://doi.org/10.1093/ijnp/pyx083
https://doi.org/10.1016/s0006-8993(00)02877-8
https://doi.org/10.1007/s00415-005-0596-3
https://doi.org/10.1186/s12974-014-0185-4
https://doi.org/10.1016/j.neuropharm.2015.06.009
https://doi.org/10.4049/jimmunol.161.9.5016
https://doi.org/10.1016/S0006-8993(99)01328-1
https://doi.org/10.1128/jvi.02979-15
https://doi.org/10.1128/mBio.01881-16
https://doi.org/10.1093/brain/aws321
https://doi.org/10.1002/acn3.213
https://doi.org/10.1002/glia.20639
https://doi.org/10.1002/glia.23299
https://doi.org/10.1016/j.jneuroim.2019.576969
https://doi.org/10.1038/nm.4106
https://doi.org/10.1007/s11064-012-0806-1
https://doi.org/10.1007/s11064-012-0806-1
https://doi.org/10.1038/nri.2017.125
https://doi.org/10.1002/art.1780350410
https://doi.org/10.1186/s40478-015-0192-4
https://doi.org/10.1016/j.bbi.2013.12.010
https://doi.org/10.1016/j.bbi.2013.12.010
https://doi.org/10.1186/s12974-022-02441-x
https://doi.org/10.1186/s12974-022-02441-x
https://doi.org/10.1002/glia.23634
https://doi.org/10.1038/s41467-017-00769-0
https://doi.org/10.1038/nn.4597
https://doi.org/10.3389/fimmu.2023.1110593
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Viengkhou and Hofer 10.3389/fimmu.2023.1110593
77. Olah M, Patrick E, Villani AC, Xu J, White CC, Ryan KJ, et al. A transcriptomic
atlas of aged human microglia. Nat Commun (2018) 9(1):539. doi: 10.1038/s41467-018-
02926-5

78. Zheng LS, Kaneko N, Sawamoto K. Minocycline treatment ameliorates interferon-
alpha- induced neurogenic defects and depression-like behaviors in mice. Front Cell
Neurosci (2015) 9:5. doi: 10.3389/fncel.2015.00005

79. Roy ER, ChiuG, Li S, PropsonNE, Kanchi R,Wang B, et al. Concerted type I interferon
signaling inmicroglia and neural cells promotes memory impairment associated with amyloid
b plaques. Immunity (2022) 55(5):879–94.e6. doi: 10.1016/j.immuni.2022.03.018

80. Romero-Miguel D, Lamanna-Rama N, Casquero-Veiga M, Gómez-Rangel V,
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